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A NEW THEORY AND THE EFFICIENT METHODS OF
SOLUTION OF STRONG, PATHWISE, STOCHASTIC
VARIATIONAL PROBLEMS*

JOHN GREGORY'T AND H. R. HUGHEST

Abstract. This paper has two major objectives. The first objective is to give a new, natural
extension of the classical calculus of variations to a stochastic setting. Most significantly, it appears
that this is the first time in the literature that a random objective functional is used rather than its
mean. This is accomplished by using an appropriate class of variations.

Our second major objective is to give an efficient method of solution for these problems. To
do this we derive the Euler equation in this setting which is the primary necessary condition for
a critical point or extremal solution. We also derive transversality and corner conditions. These
results, which are the three basic necessary conditions for an extremal, are sufficient to construct
closed form solutions, when they exist. Our results hold for n > 1 dependent variables.

Of particular interest are several example problems. They illustrate random objective functionals
that are functions of a Brownian path, pathwise extremals of these functionals, and the use of
necessary conditions to find solutions in closed form. We also illustrate that our theory can generalize
the usual stochastic control theory by considering individual paths and not the mean value of the
objective functional.

Finally, these results illustrate steps towards a complete stochastic variational theory for random
objective functionals by extending deterministic ideas of the first author. The three necessary con-
ditions of this paper allow a general stochastic control theory with general equality and inequality
constraints.
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1. Introduction. It is surprising that there is currently no natural stochastic
extension of the deterministic methods for solving constrained optimization problems
in which the calculus of variations is used to obtain Euler equations and other nec-
essary conditions. Such an extension would contain a stochastic control theory that
can handle general constraints. Perhaps, a major reason is that the mathematical
theory of stochastic differential equations has not been fully exploited in solving these
problems.

In the last several years, the mathematical theory of stochastic differential equa-
tions has become well understood as a mathematical theory. Textbooks and references
are now available to explain the basic theory and the important uses of these equa-
tions. In addition, insightful texts such as [9] provide many of the tools and motivation
so that we can begin to understand the numerical aspects of these equations. In a
sense, the situation corresponds to that of ODE’s in the early 1960’s when the land-
mark work of Henrici [8], for the numerical solution of ordinary differential equations,
appeared.

These advances appear to have little effect on the important areas of stochas-
tic optimization. Although some progress has been made using deep mathematical
methods to extend Hamiltonian-Jacobi-Bellman ideas to specialized control problems,
these results are very limited for applied problems when compared with the determin-
istic situation where (for example) the first author has given a complete numerical
solution to general constrained problems in the calculus of variations/optimal control
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theory with algorithms which have a global error of order O(h?), p > 2 (see [5] and
[6]). They are also limited in the sense they do not provide strong, stochastic solutions
for optimization problems.

Specifically, we believe there is currently a beautiful mathematical theory of sto-
chastic optimal control as exemplified by the text of Chen, Chen and Hsu [2]. However,
our approach has several advantages:

a) Our objective functional is not averaged over the probability measure. It
depends on individual stochastic paths and not just the probability law.
Thus, there is a natural extension from the deterministic calculus of varia-
tions/optimal control theory to finding strong solutions in a stochastic sense.

b) Our methods are associated with the increasingly important area of stochastic
differential equations. Solutions will be given by these equations and simpler
problems will be solved in this way.

c¢) There is a direct connection to the classical calculus of variations and hence
both the theoretical ideas of this most important area of applied mathematics
and the motivation provided by many of history’s most important applied
problems can be easily explored in a stochastic setting.

d) The practical method of solution of the current theory relies on dynamic
programming and hence is, at best, very difficult. Our simpler problems
will be solved by the use of stochastic differential equations. More complex
problems will be solved by efficient numerical procedure with an a priori
error estimate of the form O(h?) where h is the node size and p is at least
1.5. This is what one would expect by analogy with the theory of stochastic
[4] or deterministic differential equations [6] ... or as the first author has done
for general, deterministic constrained calculus of variations/optimal control
problems.

e) Our methods allow us to handle equality and inquality constraints in this
setting.

In the deterministic case cited above, a numerical theory and efficient algorithms

were first given to find a critical point solution for

b
I(a:):/ flt,z, 2" dt

with general boundary /transversality conditions [6] and then a companion theory was
given [5] or [7] to efficiently convert general constrained problems in the calculus of
variations/optimal control theory to this setting so that the extremal solutions were
easily identified.

The problem we will consider in this paper involves the random cost functional

b
(1a) J(z,u) = / ft, z,u)dt + k(xz(b))
and the trajectory equation
(1b) dxy = udt + o(t) dWy.
We also extend our results to the more general trajectory equation

(1c) day = g(t, z,u) dt + o(t) dWr.
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This setting involves a multitude of important physical problems in engineering and
the sciences. It is also the first step from the deterministic case toward a general,
pathwise, stochastic control theory.

Our major theoretical result in this paper will be to obtain stochastic Euler equa-
tions for pathwise critical points of variations of the functional J subject to (1b) or
(1c). In addition, we obtain the corner conditions and transversality conditions so
that feasible methods to obtain solutions can be implemented. We expect to use
this variational approach to obtain efficient numerical algorithms for the solutions
of stochastic calculus of variations and constrained stochastic optimization problems
similar to the deterministic case (described above).

The remainder of this paper is as follows. In Section 2, we will define our basic
problem using trajectory (1b) and derive the Euler equation, transversality conditions,
and corner condition for this problem. We also consider examples with closed form so-
lutions. Example 2 is of particular interest. It illustrates that our ”extremal” /critical
point solutions are random and lead to an expected cost which is smaller than that
in the adapted case [11], which we also derive in an alternate way. In Section 3, we
extend these results to the vector case for the dependent variable z(t) with n > 1
components subject to variation and m > 0 components that are not varied. These
latter components are the solution of a stochastic differential equation. In Section 4,
we generalize our results for trajectory equations of the form (1c).

2. Pathwise solutions. In this section we define a new stochastic calculus of
variations problem. Like the Malliavin calculus, we limit variations to a Cameron-
Martin space [10, pp. 24-25]. Even with this limitation, directional derivatives of the
cost functional yield a stochastic Euler equation (2.6) and other necessary conditions.

Let W; be standard Brownian motion and F; the corresponding filtration of o-
algebras. In this section, we seek extremals for well-defined problems associated with
the random cost functional

b
(2.1a) J(x,u) = / ft, zu) dt + k(x(b)),
where

and u(t) is piecewise continuous in ¢. Conditions on f and its derivatives are assumed
as needed.

Let Hqp = {2: [a,b] — R | z(t) is absolutely continuous with respect to ¢ and
f:(z'(t))2 dt < co}. Alsolet HY, = {z € Hap | z(a) = 0 = z(b)}. We consider the
variation of J for z € Hgy,

(2.2) I(z,u,2,¢) = J(z + ez, u+ €2')

and seek critical point solutions to optimize J:

(2.3) gl(x,u,z,e)

€

b
70 = / (me(t, z,u) + 2 fu(t, @, u)) dt + k' (z(b)) z(b) = 0,

for all z € H, 1, almost surely. Note that

(2.4) d(z +ez); = (u+e2')dt + o(t) dW,
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so that if z(t,€) = z(t) + ez(t) and u(t,€) = u(t) + ev(t) are respectively families of
admissible arcs such that z(t,0) = z(t), u(t,0) = u(t), and

(2.5) d(x + €2)y = (u+ ev) dt + o(t) dWy,
then v(t) = /().

THEOREM 1. A critical point solution to (2.1) satisfies the stochastic differential
equation,

(2.6a) d(fu(t,z,w)) = folt,x,u)dt,

In addition, the critical point solution satisfies the transversality conditions:

(2.7a) x(a) not specified implies f,(a,z(a),u(a)) = 0;
(2.7b) x(b) not specified implies f, (b, x(b),u(b)) + k' (z(b)) = 0.

Finally, the critical point solution satisfies the corner condition,

(2.8) fu(t,z(t),u(t)) is continuous on the interval [a,b).

Proof. Suppose f:(sz + 2/ fy) dt + K (x(b)) 2(b) = 0 for all z € Hyy, a.s. Let
t) = fat fz(s,2(s),u(s)) ds. Then, integrating by parts,

b
29) [ (futalt)ule) ~ p(0) ' de+ (u0) + K 6))2(0) =

for all z € Hqp, a.s. Restricting z to Hgb and using the Lemma of Dubois-Reymond
in [12, p. 50] or [5, p. 36], it follows that

(2.10) Jult,x / fao(s,2(s),u(s)) ds = fula,z(a),u(a)) as.,

which gives (2.6a) in integral form. The continuity of f, (¢, z(t), u(t)) follows immedi-
ately from (2.10).
To derive the transversality conditions, first note that (2.9) and (2.10) imply that

0—/ Fula, 2(a), u(a) 2’ dt + (y(b) + K (x(b))) 2(b)

,x(a)vum))+y(b)+k’(l’(b)))2(b) fula, z(a),u(a)) z(a)
= (fu( s 2(b), u(b)) + K (2(0)))2(b) — fu(a, z(a), u(a)) 2(a).
Now consider z € H,; with different boundary conditions for z. For z(a) # 0 and

z(b) = 0, it follows that fy,(a,z(a),u(a)) = 0. For z(a) = 0 and z(b) # 0, it follows
that fi, (b, z(b),u(b)) + k'(x(b)) = 0. O

Note that, equation (2.10) shows that f, (¢, 2(t), u(t)) is absolutely continuous and
hence (2.6a) involves the standard differential. In the case that u is an It process, if

(2.11)
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f € C3and fu, >0, (2.6) can also be written explicitly as the system of stochastic
differential equations,

- U% th,
(212b) d(Et =udt + Uth,

(2.12a) duy = (

where the arguments of the derivatives of f are always (¢, z,u) and o = o(t).

To illustrate our ideas and the results in Theorem 1, above, we consider the fol-
lowing two examples. Example 1, where we calculate the solution explicitly, illustrates
that our theory is quite different from the more classical stochastic control theory. For
example, our functionals in (2.1a) are random, whereas the classical theory deals only
with the probabilistic mean of these functionals.

ExaMPLE 1. Consider the following problem.

1 1
(2.13a) min —/ u? dt

2Jo
(2.13b) st. dxy =udt+ o dW;
(2.13¢) and z(0) =0, z(1)=1.

In the deterministic case where o = 0 and u = 2’ the solution can be found by
the Euler equation

d
"o , = _
(2.14) T o for=fa=0

which implies z(t) = ¢ because of the boundary conditions.
In the stochastic case, if we assume o # 0 and, for convenience, W(0) = 0, the
necessary conditions (from Theorem 1) are

duy = dfy = fodt =0,
(215) d(Et =udt + Uth,
2(0)=0, z(1)=1

which implies u(t) = ¢ and hence
¢ ¢
(2.16) x(t) = z(0) + / u(s)ds + / o dWs = ct + oWh.
0 0

Now (1) =1=c+oWj orc=1—0W; and z(t) = (1 — cW1)t + cW; which is a
stochastic process.
The cost functional is minimized at the value

1
(2.17) I = 1 / (1—oW)?dt = %(1 —oW)?
0

2
1
/ Adt
0

in the sense that

N~

(2.18) min%/o (c+n'(t)*dt =
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for deterministic variation 7 s.t. n(0) = n(1) = 0 and 7 is absolutely continuous on
[0,1]. We note again a difference between our problem formulation and the classical
stochastic control formulation such as [2], where the functional value is deterministic,
and not a random variable, as I; is in our example. We have that

2

(2.19) E(L) = ﬁ—%ﬂmm+g@mmﬂ:%+%_

N =

differs from I; for o # 0. Finally, we note that I; is a function of the Brownian path
and we refer to the solution as a strong solution.

EXAMPLE 2. In this example, consider the trajectory
(2.20) dry =udt+odW;, x9=E¢,

where o and £ are constants. Consider also the random functional,

b
(2.21) ﬂgw:/%ﬁﬁ+gmf
0

where 7 is a constant.
The Euler-Lagrange equations in this case are

dry = udt + o dW,
(2.22) ' 7
dut =0dt
and the transversality condition

(2.23) up +rap =0,

along with the initial condition, o = &, give a system of SDE’s. However we must
determine how to interpret the end conditions.

One option is to allow anticipating solutions. In this case, we have u = ¢, constant
with respect to time, but possibly only measurable with respect to F. It follows then
that

(224) xt=§+ct+0Wt
and using the end condition,
(2.25) c+r(+cb+oW,) =0,

we have critical solution

wt=c= —T(§+0Wb)

te 1+70d ’
(2.26) €+ ot

* :g_w_i_gwt,

¢ 1+7rb

The value of the functional is random and given by

* ’f‘(§ + UWb)2
(2.27) JT = ma
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which depends on W;,. The processes x; and u; also depend on the end value W;.

Thus our pathwise solution is anticipating and critical with respect to variation in
the specified directions in the Cameron-Martin space. This problem differs from the
treatment of anticipative stochastic control in Davis [3] where mean cost functionals
are considered for arbitrary anticipative controls. Allowing anticipative controls in
LQG control problems, Davis obtains lower mean cost when compared to the adapted
case. We obtain similar results as noted below.

A second approach to interpret the end conditions is to treat the system of sto-
chastic differential equations as a coupled forward-backwards system. In this case we
seek the projection onto the space of adapted solutions by conditioning on F; while
satisfying u, +rzp = 0. In particular, since in the original system, u; = up is constant,
we have 4y = E(u|F:) = E(up|F:) is a martingale. Thus there exists an auxiliary
adapted process V such that du; = V; dW;. Replacing @ with u, we have the system:

d(Et :udt+0th

duy =V, dW,
(2.28) R

zg = ¢

Up = —Trxyp.

Given the form of the last condition, we guess that the process u; may be of the form
uy = 0(t)xy, where 6(b) = —r. Then

dut = 9/(t)117t dt + G(t) dIt

(2.29) ;o
If u; is of this form, then
(2.30) 0 + 6% =0, 0(b) = —,
and
(2.31) Vi = o0(t).
Solving for 0(t) we have
—r
ot) = ——
®) 14+7rb—t)’
—-ro
(232) dUt = m th,
- —Tr T
dl’t = 714—7"(1)—15) dt—f—O’th
Substituting,
1+7rb
2.33 =y,
239 S
we have
1+7rb

dyy = ———— o dWy,

(2.34) ST

|
=

Yo
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Hence the optimal solutions are
t
1+7rb
' o &[L+r(b—s)
7
1+rb-23s)

(2.35) at = W +[1+r0- lt)]/O

t
—ré o
y = — —— dWs.
Ly T/O 1+7r(—s)
The minimum random functional J(z*,u*) can then be computed from these solu-
tions. In this case, the mean of the functional is

r&? o?

- T In(1+rb).
S0y T )

dWs

(2.36) E[J]

We note that here u; is an explicit function of time, ¢, and x; for all t£. We also note
that the mean E[J] is greater than the mean in the anticipating case,

(2.37) E{r(§+aWb)2] r&? orb

1+rbd :2(1—1-7"17) 214+7rb)

There is an extra cost for the adapted case.

Finally, we note that the mean cost obtained in the adapted (FBSDE) case is
identical to that obtained by the HBJ methods for the traditional stochastic control
problem [11, pp. 220-222].

In our third example, we consider the following stochastic version of the harmonic
oscillator problem. Our purpose is to illustrate that there are physically interesting
problems and that nontrivial problems can be solved explicitly by extending the usual
deterministic techniques (i.e., when o = 0).

EXAMPLE 3. We start with the cost functional

1 b
(2.38a) J(x,u) = 5/ (u? — o?x?) dt
0
where
(2.38b) dzy = udt + o dW;.

The Euler equations are then

(2.39a) dus = —a’x dt,
(2.39b) dxy = udt + o dWy,

which have a general solution of the form
(2.40a)
w t t
Ty = X9 cosat + — sinat + cos at/ ocosasdWy + sinat/ osin as dWs,
a 0 0
(2.40b)

t t
Uy = —axg sinat + ug cos at — sin at/ ao cosas dWy + cos at / oo sin as dW.
0 0
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Considering the anticipating solution, boundary conditions on z(0) and z(b) determine
xo and ug and the latter are in general only Fp-measurable. For example, if 2(0) =
0 = x(b), then when ab is not an integral multiple of ,

(2.41a) xo =0,

b b
(2.41b) Ug = —a cot ab/ cosasdWy — a/ sin as dW.
0 0

To obtain these results we proceed as follows. From the stochastic Euler equations
with f, = u, f; = —a?2 we have

duy = —a’z, dt

(2.42)
dCCt = U dt + O'th

and setting X = (z,u)”, where “I"” denotes transpose, this becomes

dX = MX dt + X dW,

(2.43) _ (_0?2 (1)) Xdi+ (g) W

Proceeding as in the deterministic case we note that

(2.44) dle™™MtX) = e~ Mty qW,
and hence
t
(2.45) X; =M X(0) + eMt/ e MY dW,.
0
cosat —Lsinat
In particular, with e=M* = < . o >, we have
asinat cosat

Mt [T [ cosat - é sinat\ (o ([ ocosatdW;
(246) d <e <u>) o <a sin ait cos at > <O> dW; = <0a sinatdW; | *
Integrating and multiplying by e™? gives the general solution in (2.40).

3. Multidimensional problems. The purpose of this section is to extend the
results in Section 2. We consider multidimensional X; and U, with a more general
trajectory equation of the form

(3.1) dX; = Fo(t, X, U)dt + > Fi(t, X,U) dW},
=1

where W; is an r-dimensional Brownian motion. In order for the method of Section 2
to carry over directly, we must put restrictions on the functions F;, ¢ = 0,1,2,...,7.
We allow for X; to be composed of n components that are varied in the cost functional
and m components that are not. Suppose

(3.2) X(t) = (X(t),Y(t)),
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where X (t) and Y (t) are, respectively, n- and m-dimensional processes for integers
n>1and m >0,

(33) 2(t) = (2(2).0)

where Z(t) = (21(t), z2(t), ..., 2n(t)) and z; € Hq, for each i,

(3.4) U = (0).0)

where U(t) is an n-dimensional process, piecewise continuous in ¢, and
(35) E(thvU): (Fl(thvU)aGl(taXaU))a

where F; and G; are n- and m-dimensional vector-valued functions.
The method of Section 2 carries over directly if

dX, + eZ, dt = d(X + €Z),

3.6 - :

(3.6) =Fy(t,X +€Z,U+eZ')dt + > Fi(t, X +€Z,U + €Z') dW;.
i=1

To guarantee that (3.6) holds we restrict F so that Fo(t,X,U) = U + Fy(t,Y),
Fi(t,X,U) = F;(t,Y) is independent of X and U fori =1,2,...,r, and G;(t, X,U) =
Gi(t, Y) is independent of X and U for i = 0, 1,...,7. The trajectory equation there-
fore becomes

(3.7a) dX; = (U + Fy(t,Y)) dt + > Fi(t,Y) dWy,
=1
(3.7b) dY; = Go(t,Y)dt + > _ Gi(t,Y)dW;.
i=1

For simplicity, we illustrate the extensions described above with a pair of two-
dimensional examples.

EXAMPLE 4. Let X = (z1,72)7, U = (u1,u2)” and consider the cost functional

b
(3.8a) J(:E,u):/ f(t, x1, 22, u1, us) dt,
where
(3.8h) ax, = (Y Nvae+ () aw
) ¢ 0 1 g9 ¢

Letting Z = (21,22)T for 21, 20 € H, 3, we have

(3.9) A 1x,0.7,¢

b
y - / (ZTfX(t, X,U) + Z’TfU(t, X,U))dt =0.
€ e=0 a

Integrating by parts and applying the Dubois-Reymond Lemma componentwise, we
obtain

(3.10) d(fu(t, X, U)), = fx(t, X,U) dt
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along with (3.8b).

EXAMPLE 5. Similarly, we can consider the cost functional

b
(3.11a) J(x,u):/ ft,x, W, u) dt,

where W is a Brownian motion. Letting X = (z1,22)7 = (z,W)T and U = (u,0)7,
we consider the trajectory equation

1 0 o
(3.11b) dX; = (O O) Udt+ <1> dW;.

Letting Z = (z,0)T for z € H,, we have

iI(X, U,Z,e€)

b
:/ (Z7 fx(t, X, U) + 27 fu(t, X, U)) dt
de e=0 a

(3.12) .
= / (zfa(t,z, W,u) + 2 fu(t,z, W, u)) dt = 0.

Integrating by parts and applying the Dubois-Reymond Lemma, we obtain
(3.13) d(fut,x, W) = folt,z, W,u) dt
along with (3.11b).

4. More general trajectory equations and constraint problems. The pur-
pose of this section is to show that more general problems can be reduced to the
problem (2.1) in vector form. Thus, the trajectory equation (2.1b) initially looks in-
nocuous or simplistic but we can change a variety of complex problems into this form.
Specifically, for convenience of exposition, to the form

(4.1a) J(X,U)z/bF(t,X,U)dt—i-K(X(b)),
where
(4.1b) dX, =Udt + 3(t) dW,.

In fact this reduction and the ideas of this section, hold for general F'.

Our first example is where (1c) replaces (1b). We include the discussion since it
shows how strong Theorem 1 is.

In order to do this we form the multidimensional problem where

(4.2) F(t,Y,V) = f(t,y1,v2) dt + v3[g(t, y1,v2) — v1]-

Thus we consider finding a critical point solution for

b
(4.3a) / F(t,Y,V)dt+ k(y1(b))
where
dir vy dt + o(t) dW; o(t)
(4.3b) dY = | dy2 | = vo dt =Vdt+ 0 dW;.

dys v dt 0



314 J. GREGORY AND H. R. HUGHES

We note, applying our earlier results on multidimensional problems, that a critical
point solution for this latter problem satisfies d(Fy) = Fy dt. Thus, in component
form we have

—U3 fyl + V339y,
(4.4) A fo, T390, | = 0 dt.
g—v1 0

In addition, since y2(b) and y3(b) are unspecified, the transversality conditions (2.7)
imply that F,,(b,Y(b),V(b)) = 0 and F,,(b,Y(b), V(b)) = 0. From equation (4.4)
and the corner conditions it follows that g — v; = 0 on [a, b], which yields

(4.5) dyr = g(t,y1,v2) + o(t) dWy,

and fy, + 394, = 0 on [a,b]. Thus v3 = — f,,/gv, for g,, # 0. To specify a particular
soluton, we may assume ys(a) = 0 and y3(a) = 0. However, these values do not effect
the other variables. Thus, for g, # 0, the system defined by (4.3b) and (4.4) can be
reduced to a system in z = y; and u = vy alone.

THEOREM 2. A critical point solution to (1), (1c) satisfies the stochastic differ-
ential equation,

(4.62) d (ﬁ> = (fm - ng“) dt,
Gu /¢ Ju
(4.6b) day = g(t,z,u) dt + o(t) dWr.

In addition, the critical point solution satisfies the transversality conditions:
(4.7a) x(a) not specified implies f,(a,x(a),u(a)) = 0;
fub,2(b), u(b))
—— = 4+ k' (z(b)) =0.
gu(b, 2(b), u(d)) (x(5)
Finally, the critical point solution satisfies the corner condition,
fult, z(t), u(t))
Gu(t; x(t), u(t))
We note that the last example could be thought of as a constrained problem with

constraint h(t,Y,V) = v1 — g(¢,y1,v2) = 0. Following the ideas in this last example,
necessary conditions can be derived for critical points of functional

(4.7b) x(b) not specified implies

(4.8)

is continuous on the interval |a, b].

b
(4.9) [ st i+ e ),
subject to the trajectory equation,
(4.9b) dzy = udt + o(t) dWy,

and subject to the constraint,
(4.9¢) h(t,z,u) = 0.

Thus a quite general problem can be “solved” in the sense that, if it has unique
solution we will find a closed form solution in the simplest cases using the necessary
conditions derived above. In more complicated cases, we expect to solve the problem
numerically using an algorithm similar to the deterministic algorithm in [5] and [6].

Finally, we would like to thank the referees for their insightful comments.
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