
METHODS AND APPLICATIONS OF ANALYSIS. c© 2004 International Press
Vol. 11, No. 2, pp. 179–210, June 2004 002

BIFURCATION OF NONLINEAR EQUATIONS: II.

DYNAMIC BIFURCATION∗

TIAN MA† AND SHOUHONG WANG‡

Abstract. We study in this article dynamic bifurcation of nonlinear evolution equations due
to higher order nonlinear terms, focusing on detailed bifurcation behavior of nonlinear evolution
equations in the cases where the algebraic multiplicity of the eigenvalues of the linearized problem
is one or two.
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1. Introduction. This article, which is Part II of a series of two articles, studies
dynamic bifurcation of nonlinear evolution equations, and Part I deals with steady
state bifurcations of nonlinear equations. The main objective of these articles is
to study (both steady state and dynamic) bifurcations when the eigenvalue of the
linearized problem may have even multiplicity. The key idea is to analyze precisely
the effect of the higher-order nondegenerate nonlinear terms.

The main focus of this article is on the cases where the eigenvalue of the linearized
problem has either (algebraic) multiplicity one or two. In the case where the eigenvalue
is simple, our main theorems include (a) Theorems 3.1, 3.2 and 3.6, in the case where
the eigenvalue is simple, and (b) Theorems 4.2, 4.3 and 5.1 in the case where the
eigenvalue has multiplicity two. These theorems provide a complete characterization
of the bifurcation and the stability of the bifurcated solutions in this two cases, and
bifurcated attractors are classified.

The main results obtained can be easily applied to bifurcation problems in partial
differential equations from science and engineering. To demonstrate the applications,
we present an example of a system of two second order parabolic equations. Bifurca-
tion is obtained at the first eigenvalue, which has either multiplicity 1 or 2.

This article is organized as follows. In Section 2, we introduce some preliminary
results. Section 3 studies bifurcation when the eigenvalue is simple. Sections 4 and 5
are concerned with bifurcation when the eigenvalue has multiplicity two, and in par-
ticular, bifurcation to periodic solutions from a real eigenvalue with multiplicity two
is given. Section 6 gives an application to a system of nonlinear parabolic equations.

2. Preliminaries. For convenience, we recall in this section some basic results
and concepts which will be used in the throughout of this article.
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2.1. Set-up. Let H and H1 be two Hilbert spaces, and H1 → H be a dense and
compact inclusion. We consider the following nonlinear evolution equation

du

dt
= Lλu + G(u, λ),(2.1)

u(0) = u0,(2.2)

where Lλ : h1 → H is a family of linear completely continuous fields depending
continuously on λ ∈ R, such that

(2.3)






Lλ = −A + Bλ is a sectorial operator,

A : H1 → H a linear homeomorphism,

Bλ : H1 → H a linear compact operator.

It is known that Lλ generates an analytic semigroup {e−tLλ}t≥0, and we can define
fractional power operators Lα

λ for α ∈ R with domain Hα = D(Lα
λ) such that Hα1

⊂
Hα2

is compact if α1 > α2, H0 = H , and H1 = Hα=1.
Furthermore, we assume that for some θ < 1 the nonlinear operator G(·, λ) =

Hθ → H0 is Cr bounded operator (r ≥ 1), and

(2.4) G(u, λ) = o(‖u‖θ), ∀ λ ∈ R.

Let {Sλ(t)}t≥0 be an operator semigroup generated by (2.1), and the solution of (2.1)
and (2.2) can be expressed as

u(t, u0) = Sλ(t)u0, ∀ t ≥ 0.

Definition 2.1.

(1) We say that the equation (2.1) bifurcates from (u, λ) = (0, λ0) an invariant
set Ωλ, if there exists a sequence of invariant sets {Ωλn

} of (2.1), 0 /∈ Ωλn

such that

lim
n→∞

λn = λ0,

lim
n→∞

max
x∈Ωλn

|x| = 0.

(2) If the invariant sets Ωλ are attractors of (2.1), then the bifurcation is called
attractor bifurcation.

2.2. A spectral theorem. A complex number β = α + iρ ∈ C is called an
eigenvalue of a linear operator L : H1 → H if there exist x, y ∈ H1 with x 6= 0 such
that

(2.5) Lz = βz (z = x + iy).

The space

Eβ = {x, y ∈ H1 | (L − β)nz = 0, z = x + iy, for some n ∈ N}

is called the eigenspace of L corresponding to β, and x, y ∈ Eβ are called eigenvectors
of L.
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A linear mapping L∗ : H1 → H is called the conjugate operator of L : H1 → H ,
if

〈Lx, y〉H = 〈x, L∗y〉H , ∀x, y ∈ H1.

A linear operator L : H1 → H is symmetric if L = L∗.
The following spectral theorem for a completely continuous field can be found in

[5], which can be regarded as a unified version of the classical Jordan theorem and
the Fredholm alternative theorem.

Theorem 2.2. Let L = −A + B = H1 → H be a linear completely continuous
field. Then the following assertions hold true.

(1) If {βk | k ≥ 1} ⊂ C are the eigenvalues of L, then we can take the eigenvectors
{ϕk} ⊂ H1 of L and eigenvectors {ϕ∗

k} ⊂ H1 of the conjugate operator L∗

such that

〈ϕi, ϕ
∗
j 〉H = δij , δij the Kronecker symbol.

(2) H can be decomposed into the following direct sum

H = E1 ⊕ E2,

E1 = span {ϕk | k ≥ 1},
E2 = {υ ∈ H | 〈υ, ϕ∗

k〉H = 0, ∀ k ≥ 1}.

(3) For any u ∈ H we have the generalized Fourier expansion.

u =
∑

k

ukϕk + v, uk = 〈u, ϕ∗
k〉H , v ∈ E2.

In particular, if L is symmetric, then

u =
∞∑

k=1

ukϕk, uk = 〈u, ϕk〉H .

2.3. Higher order nondegeneracy. Let the nonlinear operator G(·, λ) : H1 →
H in (2.1) has the Taylor expansion near u = 0 as follows

(2.6) G(u, λ) = G1(u, λ) + o(‖u‖k
1), k ≥ 2 an integer,

where G1 : H1 × · · · × H1 → H is a k multilinear mapping, and we set

(2.7) G1(u, λ) = G1(u, · · · , u, λ).

Let βj(λ) ∈ C be the eigenvalues (counting the multiplicity) of Lλ. Assume that
βi(λ)(1 ≤ i ≤ m) are real, and

βi(λ)





< 0, λ < λ0,

= 0, λ = λ0, 1 ≤ i ≤ m,

> 0, λ > λ0,

(2.8)

{
Reβj(λ0) > 0, m < j ≤ m + n,

Reβj(λ0) < 0, ∀ m + n < j.
(2.9)
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Let {e1, · · · , er} and {e∗1, · · · , e∗r} ⊂ H1 be the eigenvectors of Lλ and L∗
λ respec-

tively at λ = λ0 satisfying

(2.10) Lλ0
ej = 0, L∗

λ0
e∗j = 0, 1 ≤ j ≤ r,

where r ≤ m is the geometric multiplicity of β1(λ0). Let

ai
j1···jk

(λ) = 〈G1(ej1
, · · · , ejk

, λ), e∗i 〉H .

Definition 2.3. Under the conditions (2.6)-(2.9), the operator Lλ + G(·, λ) is
called k-th order nondegenerate at (u, λ) = (0, λ0), if x = (x1, · · · , xr) = 0 is an
isolated singular point of the following r-dimensional algebraic equations

(2.11)

r∑

j1,··· ,jk=1

ai
j1···jk

(λ0)xj1
· · ·xjk

= 0, 1 ≤ i ≤ r.

In this case, u = 0 is also called a k-th order nondegenerate singular point of Lλ +
G(·, λ) at λ = λ0.

2.4. Attractor bifurcation theorem. We consider the finite system given by

(2.12)
dx

dt
= Aλx + G(x, λ), λ ∈ R, x ∈ R

n (n ≥ 2),

where G = Rn × R → Rn is Cr (r ≥ 1) on x ∈ Rn, and continuous on λ ∈ R,

(2.13) G(x, λ) = o(|x|), ∀λ ∈ R,

and

(2.14) Aλ =




a11(λ) . . . a1n(λ)
...

...
an1(λ) . . . ann(λ)


 ,

where aij(λ) are continuous functions of λ.
Let all eigenvalues (counting the multiplicity) of (2.12) be denoted by

β1(λ), · · · , βn(λ).
Assume that

Reβi(λ)






< 0, λ < λ0,

= 0, λ = λ0, 1 ≤ i ≤ m,

> 0, λ > λ0,

(2.15)

Reβj(λ0) < 0, ∀m + 1 ≤ j ≤ n.(2.16)

Let the eigenspace of Aλ at λ0 be

E0 = ∪m
i=1{x ∈ R

n | (Aλ0
− βi(λ0))

kx = 0, k = 1, 2, · · · }.

The following attractor bifurcation theorem for (2.12) was proved in Ma and
Wang [4, 6].

Theorem 2.4. Under the conditions (2.15) and (2.16), if x = 0 is locally as-
ymptotically stable for (2.12) at λ = λ0, then the following assertions hold true.
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(1) The system (2.12) bifurcates from (0, λ0) on λ > λ0 an attractor Σλ with
m − 1 ≤ dimΣλ ≤ m, which is connected as m ≥ 2.

(2) Σλ is a limit of a sequence of m-dimensional annulus Mk with Mk+1 ⊂ Mk,
i.e. Σλ = ∩∞

k=1Mk.
(3) If Σλ is a finite simplicial complex, then Σλ has the homotopy type of Sm−1.
(4) For any xλ ∈ Σλ, xλ can be expressed as

xλ = zλ + o(|zλ|), zλ ∈ E0.

2.5. Morse index and nondegeneracy of singular points. In order to in-
vestigate the dynamic bifurcation of (2.1), it is necessary to consider the regularity of
bifurcated branches for the following stationary equation of (2.1)

(2.17) Lλu + G(u, λ) = 0.

Definition 2.5. Under conditions (2.8) and (2.9), a bifurcated branch Γ(λ) ⊂
H1 of (2.17), from (0, λ0), is called regular if for any |λ − λ0| 6= 0 sufficiently small,
each singular point uλ ∈ Γ(λ) of (2.17) is nondegenerate, i.e. the derivative operator,

(2.18) Lλ + DG(uλ, λ) : H1 → H,

of (2.17) at uλ is a linear homeomorphism.

Hereafter, we always assume (2.3) and (2.4). Thus, the number of eigenvalues
with positive real part (counting multiplicities) is finite. Hence, we can define the
Morse index for any nondegenerate singular point uλ ∈ Γ(λ) of (2.17) as follows:

k = number of all eigenvalues having positive real part.

It is known that if a nondegenerate singular point uλ of (2.17) has Morse index
zero, then uλ is an attractor. If a nondegenerate singular point uλ of (2.17) has Morse
index k (k ≥ 1), then uλ is called a saddle point of (2.1). We know that a saddle
point uλ of (2.1) with Morse index k has a k-dimensional unstable manifold and a
stable manifold with codimension k in H .

By (2.8) and (2.9), near λ = λ0, the spaces H1 and H can be decomposed into
the form

Hα = Eλ
1 ⊕ Fλ

α , (α = 1, 0),

Eλ
1 = span {e1(λ), · · · , em(λ)},

Fλ
α = the complement of Eλ

1 in Hα,

where ei(λ) (1 ≤ i ≤ m) are the eigenvectors of Lλ corresponding to βi(λ). Near λ0,
(2.17) can be decomposed into

L
λ
1υ + P1G(v + w, λ) = 0,(2.19)

L
λ
2w + P2G(v + w, λ) = 0,(2.20)

where v ∈ Eλ
1 , w ∈ Fλ

1 , and

Lλ
1 = Lλ|Eλ

1
: Eλ

1 → Eλ
1 ,

Lλ
2 = Lλ|F λ

1
: Fλ

1 → Fλ
0 ,
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and P1 : H → Eλ
1 , P2 : H → Fλ

0 the canonical projections.

By (2.9), the operator Lλ
2 is invertible, therefore by the implicit function theorem,

there exists a Cr implicit function near (v, λ) = (0, λ0) defined by

(2.21) w = f(v, λ), v ∈ Eλ
1 ,

which is a solution of (2.20).

By the Lyapunov-Schmidt method, if v0(λ) is a bifurcation solution from (0, λ0)
of the equation

(2.22) L
λ
1υ + P1G(υ + f(υ, λ), λ) = 0,

then (v0(λ), f(v0(λ), λ)) = u(λ) is a bifurcation solution of (2.19) and (2.20).

The following theorem is useful to verify the regularity of a bifurcated branch of
(2.17).

Theorem 2.6. Let u0(λ) = (v0(λ), f(v0(λ), λ)) be a bifurcation solution of (2.17)
from (0, λ0). Then u0(λ) is a nondegenerate singular point of (2.17) if and only if
v0(λ) is a nondegenerate singular point of (2.22).

Proof. The derivative operator of (2.22) at v0 is given by

(2.23) L
λ
1 + DvP1G + DwP1G ◦ Df |v=v0

: Eλ
1 → Eλ

1 .

On the other hand, the derivative operator of (2.17) at u0 = (v0, f(v0, λ)) is
invertible if and only if the following equations has no nonzero solution u = (v, w) ∈
H1:

(Lλ
1 + DvP1G) · v + DwP1G · w = 0,(2.24)

(Lλ
2 + DwP2G) · w + DvP2G · v = 0,(2.25)

where the derivative is taken at u0 = (v0, f(v0, λ))

Because ‖u0‖ is small near λ0, by (2.4), ‖DwP2G‖ is also small. Therefore the
operator

B = L
λ
2 + DwP2G(u0, λ) : H1 → H

is invertible. Thus it follows from (2.25) that

(2.26) w = −B−1 ◦ DvP2G · v.

Putting (2.26) in (2.24), we get

(2.27) (Lλ
1 + DvP1G − DwP1G ◦ B−1 ◦ DvP2G) · v = 0, v ∈ Eλ

1 .

We deduce from (2.20) that

Df · v = (−B−1 ◦ DvP2G) · v.

Hence, (2.23) is invertible if and only if (2.27) has no nonzero solution in Eλ
1 . The

proof is complete.
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2.6. An index formula. In order to investigate dynamic bifurcations of (2.1)
from eigenvalues with multiplicity two, it is necessary to discuss the index of the
following vector field at x = 0.

(2.28) u =

(
a11x

2
1 + a12x1x2 + a22x

2
2

b11x
2
1 + b12x1x2 + b22x

2
2

)
.

We assume that the vector field (2.28) is 2nd order nondegenerate at x = 0, which
implies that a2

11 + b2
11 6= 0. Without loss of generality, we assume that a11 6= 0.

Let

△ = a2
12 − 4a11a22,

and if △ ≥ 0, let

α1 =
−a12 +

√△
2a11

,

α2 =
−a12 −

√△
2a11

,

βi = b11α
2
i + b12αi + b22, i = 1, 2.

The following index theorem will be useful in studying dynamic bifurcation of
(2.28) hereafter.

Theorem 2.7. Let the vector field (2.28) be 2nd order nondegenerate at x = 0,
and a11 6= 0. Then

(2.29) ind(u, 0) =






0, if △ < 0 or β1β2 > 0,

2, if a11β1 > 0 and a11β2 < 0,

−2, if a11β1 < 0 and a11β2 > 0.

Proof. We proceed in several steps as follows.

Step 1. When △ = a2
12 − 4a11a22 < 0, the following quadratic form is either

positively or negatively definite:

a11x
2
1 + a12x1x2 + a22x

2
2 > 0 (or < 0), ∀x ∈ R

2, x 6= 0,

depending on the sign of a11. Hence the following system of equations

{
a11x

2
1 + a12x1x2 + a22x

2
2 = −ε2(or = ε2),

b11x
2
1 + b12x1x2 + b22x

2
2 = 0,

has no solution for any ε 6= 0, which implies that

(2.30) ind(u, 0) = 0, as △ < 0.

Step 2. In the case where △ ≥ 0, the vector field u given in (2.28) can be
rewritten as

(2.31) u =

(
a11(x1 − α1x2)(x1 − α2x2)
b11x

2
1 + b12x1x2 + b22x

2
2

)
.
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Since u is 2nd order nondegenerate at x = 0, β1 ·β2 6= 0. By (2.31), u = (0,±ε2)t,
with ε 6= 0, is equivalent to

(2.32) x1 = αix2, βix
2
2 = ±ε2 (i = 1, 2).

If β1 · β2 > 0, then one of the systems in (2.32), for either +ε2 or −ε2, has no
solution, which means that the index of u at x = 0 is zero.

Step 3. When β1 · β2 < 0, it is easy to see that α1 6= α2 and △ > 0. The vector
field u = (u1, u2)

t given in (2.31) takes the following form:

(2.33)





u1 = a11(x1 − α1x2)(x1 − α2x2),

u2 =
1

(α1 − α2)2
[β1(x1 − α2x2)

2 + β2(x1 − α1x2)
2

+ γ(x1 − α1x2)(x1 − α2x2)],

where γ = −(2b11α1α2 + b12α1 + b12α2 + 2b22). Let

β1 > 0, β2 < 0 if a11 > 0,

β1 < 0, β2 > 0 if a11 < 0.

Then the solutions y = (y1, y2) of (2.32) are given by

(2.34)






y±
1 =

{
α1y

±
2 , if a11 > 0,

α2y
±
2 , if a11 < 0,

y±
2 =

{
±β

−1/2
1 ε, if a11 > 0,

±β
−1/2
2 ε, if a11 < 0.

Let

(2.35) z1 = x1 − α1x2, z2 = x1 − α2x2.

Then the Jacobian matrix of u is given by

J(u) =




∂u1

∂z1

∂u1

∂z2
∂u2

∂z1

∂u2

∂z2







∂z1

∂x1

∂z1

∂x2
∂z2

∂x1

∂z2

∂x2


 .

It is easy to see that

det




∂z1

∂x1

∂z1

∂x2
∂z2

∂x1

∂z2

∂x2


 = det

(
1 −α1

1 −α2

)
= α1 − α2 > 0.

Hence we infer from (2.33) and (2.35) that

(2.36) detJu(x) = (α1 − α2) det




a11z2 a11z1

2β2z1 + γz2

(α1 − α2)2
2β1z2 + γz1

(α1 − α2)2


 .
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On the other hand, by (2.34) we deduce that

(2.37)





z±1 = y±
1 − α1y

±
2 =

{
0, if a11 > 0,

±(α2 − α1)β
−1/2
2 ε, if a11 < 0,

z±2 = y±
1 − α2y

±
2 =

{
±(α1 − α2)β

−1/2
1 ε, if a11 > 0,

0, if a11 < 0.

Therefore, by (2.36) and (2.37) we arrive

(2.38) det Ju(y±) =

{
2a11β1(α1 − α2)

−1(z±2 )2, if a11 > 0,

−2a11β2(α1 − α2)
−1(z±1 )2, if a11 < 0.

By the Brouwer degree theory, we know that

(2.39) ind(u, 0) = deg(u, Br, x0), x0 = (0, ε2) ∈ Br

where Br = {x ∈ R2| |x| < r}, and r > 0 sufficiently small.
It follows from (2.38) and (2.39) that

ind(u, 0) =sign det Ju(y+) + sign det Ju(y−)

=2, for a11β1 > 0 and a11β2 < 0.

We can obtain in the same fashion that

ind(u, 0) = −2, for a11β1 < 0 and a11β2 > 0.

Thus, the formula (2.29) is proved. The proof of the theorem is complete.

Remark 2.8. If a11 = 0 and b11 6= 0, we let

△̃ = b2
12 − 4b11b12.

If △̃ ≥ 0, we define

α̃1 =
−b12 −

√
△̃

2b11
,

α̃2 =
−b12 +

√
△̃

2b11
,

β̃i = a11α̃
2
i + a12α̃i + a22, i = 1, 2,

then, the formula (2.29) is written as

ind(u, 0) =





0, △̃ < 0 or β̃1β̃2 > 0,

2, b11β̃1 < 0 and b11β̃2 > 0,

−2, b11β̃1 > 0 and b11β̃2 < 0.

Remark 2.9. The index formula (2.29) shows that a two dimensional vector
field, which is 2nd order nondegenerate at x = 0, takes only values {0,±2} as its
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indices at x = 0. In fact, let u be an m-dimensional vector field, which is k-order
nondegenerate at x = 0, defined by

(2.40) u =




∑
j1+···+jm=k

a1
j1···jm

xj1
1 · · ·xjm

m

...∑
j1+···+jm=k

am
j1···jm

xj1
1 · · ·xjm

m




,

then its index at x = 0 is given by

(2.41) ind(u, 0) =






0, if m = odd, k = even,

even, if m = even, k = even,

odd, if k = odd, ∀m ≥ 1.

Moreover, the index of (2.40) at x = 0 takes values in the following range.

(2.42) ind(u, 0) =

{
0,±2, · · · ,±km−1, as k = even, m = even,

±1, · · · ,±km−1, as k = odd.

The formula (2.41) was known [5], and (2.42) will be proved elsewhere.

3. Bifurcation From Simple Eigenvalues.

3.1. Main theorems. Now we study the dynamic bifurcation of (2.1) from a
simple eigenvalue. We assume n = 0 in (2.9) for attractor bifurcation, i.e.

(3.1) Reβj(λ0) < 0, ∀j ≥ m + 1.

Let m = 1 in (2.8), and

Lλ0
e1 = 0, L

∗
λ0

e∗1 = 0, < e1, e
∗
1 >H= 1.

Let

(3.2) α =< G1(e1, λ0), e
∗
1 >H ,

where G1 is the k-multilinear operator defined by (2.7). Then we have the following
bifurcation theorems.

Theorem 3.1. Assume (2.6)-(2.8), (3.1), m = 1, and k = odd. Then the
following assertions hold true.

(1) If α > 0, then (2.1) bifurcates from (0, λ0) exactly two saddle points
v1(λ), v2(λ) ∈ H1 with Morse index one on λ < λ0, and (2.1) has no bi-
furcation on λ0 < λ.

(2) If α < 0, then (2.1) bifurcates from (0, λ0) exactly two singular points v1(λ)
and v2(λ), which are attractors on λ0 < λ, and (2.1) has no bifurcation on
λ < λ0.

(3) If α < 0 and λ0 < λ, there is an open set U ⊂ H with 0 ∈ U which can be
decomposed into two open sets Uλ

1 and Uλ
2

U = U
λ

1 + U
λ

2 , Uλ
1 ∩ Uλ

2 = ∅,
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such that Γ = ∂Uλ
1 ∩ ∂Uλ

2 is the stable manifold of u = 0 with codimension
one in H, vi(λ) ∈ Uλ

i (i = 1, 2), and

lim
t→∞

‖u(t, u0) − vi‖H = 0, if u0 ∈ Uλ
i (i = 1, 2),

where u(t, u0) is the solution of (2.1) and (2.2).
(4) The bifurcated singular points v1(λ) and v2(λ) in above cases can be expressed

as the following form

v1,2(λ) = ±|β1(λ)/α |1/(k−1)e1 + o(|β1/α |1/(k−1)).

Theorem 3.2. Assume (2.6)- (2.8) and (3.1) with m = 1, k =even, and α 6= 0.
Then the following assertions hold true.

(1) (2.1) bifurcates from (0, λ0) a unique saddle point v(λ) with Morse index one
on λ < λ0, and a unique attractor v(λ) ∈ H1 on λ0 < λ.

(2) If λ0 < λ, there is an open set U ⊂ H with 0 ∈ U , and U is divided into
two open sets Uλ

1 and Uλ
2 by the stable manifold Γ having codimension one of

u = 0:

U = U
λ

1 + U
λ

2 , Uλ
1 ∩ Uλ

2 = ∅, Γ = ∂Uλ
1 ∩ ∂Uλ

2 ,

such that v(λ) ∈ Uλ
1 , and

lim
t→∞

‖u(t, u0) − v(λ)‖H = 0 if u0 ∈ Uλ
1 .

(3) The bifurcated singular points v(λ) of (2.1) can be expressed as

v(λ) = −(β1(λ)/α)1/k−1e1 + o(|β1/α|1/k−1).

Remark 3.3. Theorem 3.1 corresponds to the classical pitchfork bifurcation.

Remark 3.4. In general, if we replace (3.2) by

〈G(xe1 + f(xe1, λ0), λ0), e
∗
1〉H = αxk + o(|x|k), x ∈ R,

where f(v, λ) is given by (2.21), then for α 6= 0 and k > 1, Theorems 3.1 and 3.2 are
valid.

Remark 3.5. The topological structure of dynamic bifurcation of (2.1) is
schematically shown in the center manifold in Figures 3.1-3.3.
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v1
v2u=0 u=0

(a)                                                                       (b)

Fig. 3.1. Topological structure of dynamic bifurcation of (2.1) when k = odd and α > 0: (a)
λ < λ0; (b) λ ≥ λ0. Here the horizontal line represents the center manifold.

(a)                                                                     (b)

u=0 v1 v2u=0

Fig. 3.2. Topological structure of dynamic bifurcation of (2.1) when k = odd and α < 0.

u=0 u=0v vλ λu=0

(a)                                                       (b)                                                (c)

Fig. 3.3. Topological structure of dynamic bifurcation of (2.1) when k = even and α 6= 0.

If we replace the condition (3.1) in Theorems 3.1 and 3.2 by (2.9), then the
bifurcated singular points of (2.1) are saddle points, which are characterized in the
following theorem. The proof is trivial, and we omit the details.

Theorem 3.6. Assume the conditions (2.6)-(2.9) with m = 1 and α 6= 0 in (3.2).
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Then the bifurcated singular points of (2.1) from (0, λ0) have Morse index n + 1 on
λ < λ0, and have Morse index n on λ0 < λ. Moreover, u = 0 has Morse index n on
λ < λ0 and has Morse index n + 1 on λ0 < λ.

3.2. Proof of Theorems 3.1, 3.2 and 3.6. By Theorem 2.2, (2.8) and m = 1,
near λ = λ0 we let e1(λ) and e∗1(λ) be the eigenvectors of Lλ and L∗

λ respectively such
that

Lλe1(λ) = β1(λ),

L∗
λe∗1(λ) = β1(λ)e∗1(λ),

〈e1(λ), e∗1(λ)〉H = 1,

and set

H1 = Eλ ⊕ Fλ
1 ,

H = Eλ ⊕ Fλ
0 ,

Eλ = {xe1(λ) | x ∈ R},
Fλ

1 = {u ∈ H1 | 〈u, e∗1(λ)〉H = 0},
Fλ

0 = {u ∈ H | 〈u, e∗1(λ)〉H = 0}.

Furthermore, we let L
λ
1 : Eλ → Eλ and L

λ
2 : Fλ

1 → Fλ
0 by L

λ
1 (xe1(λ)) = xβ1(λ)e1(λ),

and L
λ
2 has eigenvalues βj(λ) (j ≥ 2) such that

Lλ = L
λ
1 ⊕ L

λ
2 .

Hence, by the center manifold theorem [2], the dynamic bifurcation of (2.1) is
equivalently reduced to

(3.3)
dx

dt
= β1(λ)x + 〈G(xe1(λ) + h(x, λ), λ), e∗1(λ)〉H .

where h is the center manifold function satisfying

(3.4) h(x, λ) = o(|x|), ∀λ ∈ R.

By (2.6) and (2.7), (3.3) can be rewritten, near λ = λ0, as

(3.5)
dx

dt
= β1(λ)x + αλxk + o(|x|k),

where

(3.6) αλ = 〈G1(e1(λ), λ), e∗1(λ)〉H → α, if λ → λ0.

On the other hand, the stationary bifurcation equation (2.22) can be written as

(3.7) β1(λ)x + 〈G(xe1 + f(xe1, λ), λ), e∗1(λ)〉H = 0.

By (2.6) and (2.7), the implicit function f satisfies

(3.8) f(xe1, λ) = o(|x|).
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Therefore, we infer from (2.6), (2.7) and (3.8) that (3.7) takes the following form

(3.9) β1(λ)x + αλxk + o(|x|k) = 0.

By Theorem 2.6, Assertions (1), (2) and (4) in Theorem 3.1, and Assertions (1) and
(3) in Theorem 3.2 follow from (3.9). In addition, Assertion (3) in Theorem 3.1 and
Assertion (2) in Theorem 3.2 can be deduced from (3.5) and (3.6).

The proofs of Theorems 3.1 and 3.2 are complete, and Theorem 3.6 can be proved
in the same fashion.

4. Bifurcation from Eigenvalues with Multiplicity Two.

4.1. Main theorems. Under the conditions (2.8)-(2.10), the integers m and r
are the algebraic and geometric multiplicities of the eigenvalue β1(λ0) = β2(λ0) of Lλ

at λ = λ0. Here, we assume that m = r = k = 2, and the operator Lλ + G(·, λ) is
second-order nondegenerate at (u, λ) = (0, λ0).

Let

a11(λ) = 〈G1(e1(λ), e1(λ), λ), e∗1(λ)〉H ,

a22(λ) = 〈G1(e2(λ), e2(λ), λ), e∗1(λ)〉H ,

a12(λ) = 〈G1(e1(λ), e2(λ), λ) + G1(e2(λ), e1(λ), λ), e∗1〉H ,

b11(λ) = 〈G1(e1(λ), e1(λ), λ), e∗2(λ)〉H ,

b22(λ) = 〈G1(e2(λ), e2(λ), λ), e∗2(λ)〉H ,

b12(λ) = 〈G1(e1(λ), e2(λ), λ) + G1(e2(λ), e1(λ), λ), e∗2(λ)〉H ,

where G1 is given by (2.7), and ei(λ), e∗j (λ) (i, j = 1, 2) are the eigenvectors of Lλ and
L∗

λ near λ0:

Lλei(λ) = βi(λ)ei(λ), L∗
λe∗j (λ) = βj(λ)e∗j (λ), i, j = 1, 2.

Thus, we obtain a vector field

(4.1) u0(λ) =

(
a11(λ)x2

1 + a12(λ)x1x2 + a22(λ)x2
2

b11(λ)x2
1 + b12(λ)x1x2 + b22(λ)x2

2

)

By assumption, u0 is second order nondegenerate at x = 0 near λ0.
To proceed, we need to recall a theorem on steady state bifurcation given in Part

I of this series [5].

Theorem 4.1. Let (2.6)-(2.9) with r = k = 2 hold true, and that Lλ +
G(·, λ) be second-order nondegenerate at (u, λ) = (0, λ0), and the two vectors
(a11(λ), a12(λ), a22(λ)) and (b11(λ), b12(λ), b22(λ)), are linearly independent near λ0.
Then we have the following assertions.

(1) There are at most 3 bifurcated branches of (2.17) from (0, λ0) on each side of
λ = λ0.

(2) If all bifurcated branches on one side are regular, then the number of branches
on this side is either 1 or 3.

(3) If the number of branches on one side is 3, then all branches on this side must
be regular.

(4) If the number of branches on one side is 2, then one of them is regular.
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By Theorem 2.7, the index of u0 given by (4.1) at x = 0 is either 0, or 2 or −2.
Now we state the main dynamic bifurcations of (2.1) in each situation. We start with
the case where ind(u0(λ0), 0) = −2.

Theorem 4.2. Let the conditions (2.6)-(2.9) with m = r = k = 2 hold true,
Lλ+G(·, λ) be second order nondegenerate at (u, λ) = (0, λ0), and ind(u0(λ0), 0) = −2
for u0 defined in (4.1). Then (2.1) bifurcates exactly 3 saddle points with Morse index
n + 1 from (0, λ0) on each side of λ = λ0, where n is given in (2.9).

For other two cases, we need to introduce a notation. A S(θ) ⊂ R2 is called a
sectorial region with angle θ ∈ [0, 2π], if S(θ) is enclosed by two curves γ1, γ2 starting
with x = 0 and an arc Γ, and the angle between the two tangent lines L1 and L2 of
γ1 and γ2 at x = 0 is θ; see Figure 4.1. Let Sr(θ) be the sectorial domain with angle
θ and radius r > 0 given by

Sr(θ) = {x ∈ R
2| |x| < r, and x ∈ S(θ)}.

θ

L1L2 γ
γ2

1

Γ

x=0

Fig. 4.1.

Theorem 4.3. Assume (2.6)-(2.8), (3.1), m = r = k = 2, and β1(λ) = β2(λ)
near λ0. Let Lλ + G(·, λ) be 2nd order nondegenerate at (0, λ0), and u0(λ) be given
by (4.1). Then the following assertions hold true.

(1) If ind(u0(λ0), 0) = 2, then (2.1) bifurcates an attractor Aλ with dimAλ ≤ 1
from (0, λ0) on λ0 < λ, and Aλ attracts a sectorial region Sr(θ) in H with
angle θ ∈ (π <, 2π], and radius r > 0.

(2) The attractor Aλ contains minimal attractors, which are singular points, as
shown in Figure 4.2 (a) - (c).

(3) If ind(u0(λ0), 0) = 0 and (2.1) bifurcates from (0, λ0) three singular points
on λ0 < λ, then one of them is an attractor, which attracts a sectorial region
Sr(θ) with 0 < θ < π, as shown in Figure 4.3 (a) and (b).

Remark 4.4. If β1(λ) 6= β2(λ) near λ = λ0 and λ 6= λ0, then Theorem 4.3 may
not be valid. Consider for instance

(4.2)






dy1

dt
= 4λy1 + λy2 + y2

1 − 4y1y2 − y2
2 ,

dy2

dt
= −λy1 + y1y2.
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It is easy to see that y = (0, λ) is a unique bifurcated singular point of (4.2) from
λ0 = 0, which is not an attractor on λ0 < λ near (y, λ) = (0, λ0), which has the
topological structure as shown in Figure 4.4.

θ x=0

p

(a)

θ

0

γ

p1

p2

(b)

p2

p1

p0

γ2

γ1

θ 0

(c)

Fig. 4.2. (a) If (2.1) bifurcates one singularity p, the attractor Aλ = {p}; (b) If (2.1) bifurcates
two singularities p1 and p2, then Aλ = γ ∪ {p1, p2}, where γ is the orbit connecting p1 and p2; and
(c) If (2.1) bifurcates three singularities p0, p1 and p3, then Aλ = γ1 ∪ γ2 ∪ {p1, p2, p3}, where γi

are the orbits connecting p0 and pi.
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θ
p

(a)                                                                              (b)

Fig. 4.3. (a) λ = λ0, (b) λ0 < λ with {p} being an attractor.

y2

y1

y2 =λ

Fig. 4.4.

4.2. Proof of Theorems 4.2 and 4.3.

4.2.1. Center manifold reduction. By the center manifold theorem, the dy-
namic bifurcation of (2.1) is equivalently reduced to that of the following equations

(4.3)





dx1

dt
= β1(λ)x1 + 〈G(x1e1 + x2e2 + h(x, λ), e∗1(λ)〉H ,

dx2

dt
= β2(λ)x2 + 〈G(x1e1 + x2e2 + h(x, λ), e∗2(λ)〉H ,

where h(x, λ) is the center manifold function satisfying (3.4) for x ∈ R2. Thus, near
(x, λ) = (0, λ0), (4.3) can be written as

(4.4)
dx

dt
= Bλx + F (x, λ) + o(|x|2),

where

Bλx =

(
β1(λ) 0

0 β2(λ)

) (
x1

x2

)
=

(
β1(λ)x1

β2(λ)x2

)
,

F (x, λ) =

(
a11(λ)x2

1 + a12(λ)x1x2 + a22(λ)x2
2

b11(λ)x2
1 + b12(λ)x1x2 + b22(λ)x2

2

)
,
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and aij , bij are as in (4.1).
Since F is 2nd order nondegenerate at (x, λ) = (0, λ0), the vector field on the

right hand side of (4.4) is a perturbation of Bλ + F near x = 0. Hence, it suffices to
prove Theorems 4.2 and 4.3 for the following system

(4.5)
dx

dt
= Bλx + F (x, λ).

4.2.2. Proof of Theorem 4.2. The proof can be achieved by Theorem 2.6 and
the following lemma.

Lemma 4.5. If ind(F (·, λ0), 0) = −2, then (4.5) bifurcates from (x, λ) = (0, λ0)
exactly three saddle points with Morse index one on each side of λ = λ0.

Proof. By Theorem 2.7, as ind(F, 0) = −2, the two vectors (a11, a12, a22) and
(b11, b12, b22) are linearly independent. Therefore it follows from Theorem 4.1 that
(4.5) has at most three bifurcated singular points from (0, λ0). We shall prove that
(4.5) has just three bifurcated singular points on each side of λ = λ0.

It is known that

ind (Bλ + F, 0) = sign [β1(λ) · β2(λ)] = 1, if λ 6= λ0,

k∑

i=1

ind (Bλ + F, pi) + ind (Bλ + F, 0) = ind (F, 0) = −2,

where pi (1 ≤ i ≤ k) are the bifurcated singular points of (4.5) from (0, λ0). Hence,
we have

(4.6)

k∑

i=1

ind (Bλ + F, pi) = −3, if λ 6= λ0.

If the number k < 3 in (4.6), then one of bifurcated singular points, say p1, of (4.5)
satisfies that

(4.7) | ind (Bλ + F, p1)| ≥ 2.

By the Brouwer degree theory, if

J(Bλ + F )(p1) 6= 0,

then the index is reduced to the index of a one-dimensional operator at the isolated
singular point, which can only be 0 and ±1. Hence

|ind(Bλ + F, p1)| ≤ 1.

Therefore, it follows from (4.7) that the Jacobian matrix of Bλ + F at p1 is zero:

(4.8) J(Bλ + F )(p1) = Bλ +

(
∂Fi(p1)

∂xj

)
= 0.

Let p1 = (z1, z2), then we infer from (4.8) that

(4.9)






β1 + 2a11z1 + a12z2 = 0,

a12z1 + 2a22z2 = 0,

β2 + 2b22z2 + b12z1 = 0,

b12z2 + 2b11z1 = 0,
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which, together with Bλp1 + F (p1, λ) = 0, imply that p1 = 0, a contradiction to
p1 6= 0. Thus, we have shown that k = 3. From (4.6) and Theorem 4.1 we have

ind(Bλ + F, pi) = −1, i = 1, 2, 3,

which implies that pi (1 ≤ i ≤ 3) are saddle points with Morse index one. This proof
is complete.

4.2.3. An index formula and stability of extended orbits. In order to
prove Theorem 4.3, we need the following two lemmas. The first one is known as the
Poincare formula; see [1].

Lemma 4.6. Let v be a two dimensional Cr(r ≥ 0) vector field with v(0) = 0.
Then

(4.10) ind(v, 0) = 1 +
1

2
(e − h),

where e is the number of elliptic regions, and h number of hyperbolic regions. Here
the elliptic, hyperbolic and parabolic regions E, H and P in a neighborhood U ⊂ R2

of x = 0 are defined as follows; see Figure 4.5.

E = {x ∈ U | the orbits S(t)x and S(−t)x → 0 as t → ∞},
H = {x ∈ U | S(t)x, S(−t)x /∈ U for some t > t0 > 0},
P = {x ∈ U | either S(t)x → 0(t → ∞), S(−t)x /∈ U(t > t0),

or S(−t)x → 0, S(t)x /∈ U, or S(t)x, S(−t)x ∈ U, ∀t ≥ 0}.

E E

P
H

Fig. 4.5.

Next we need a technical lemma on stability of extended orbits for vector fields.
Let v ∈ Cr(U, Rn) be a vector field where U ⊂ Rn is an open set. A curve γ ⊂ U is
called an extended orbit of v, if γ is a union of curves

γ =
⋃

i=1

γi

such that either γi is an orbit of v, or γi consists of singular points of v, and if γi and
γi+1 are orbits of v, then the ω–limit set of γi is the α-limit set of γi+1,

ω(x) = α(y), ∀x ∈ γi, y ∈ γi+1.
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Namely, endpoints of γi are singular points of v, and the starting endpoint of γi+1 is
the finishing endpoint of γi; see Figure 4.6.

p

p

p
γ1

γ2

γi

1

2

i

Fig. 4.6.

Then we have the following stability lemma of extended orbits. The result of this
lemma has been proved and used in Step 2 of the proof of Lemma 4.5 in [3]. Here we
only state the result as a lemma.

Lemma 4.7. (Stability of Extended Orbits [3]). Let vk ∈ Cr(U, Rn) be a con-
sequence of vector fields with limk→∞ vk = v0 ∈ Cr(U, Rn). Suppose that γk ⊂ U is
an extended orbit of vk with finite length uniformly with respect to k, and the starting
points pk

1 of γk converge to p1, then the extended orbits γk of vk converge, up to taking
a subsequence, to an extended orbit γ of v0 with starting point p1.

4.2.4. Proof of Theorem 4.3. The proof of Theorem 4.3 can be derived in a
few lemmas as follows. Here, we always assume that β(λ) = β1(λ) = β2(λ) for λ near
λ0.

First, by the homotopy invariance of indices, for λ near λ0,

(4.11) ind(F (·, λ), 0) = ind(F (·, λ0), 0).

Lemma 4.8. Let indF (·, λ), 0) = 0 or 2. Then for λ near λ0, the vector fields
F (x, λ) have k straight orbit lines with 1 ≤ k ≤ 3:

(4.12) αix1 + βix2 = 0, α2
i + β2

i 6= 0, i = 1, · · · , k,

where σi = αi/βi or σi = −βi/αi are the solutions of the following algebraic equation:

(4.13)





a22σ
3 + (a12 − b22)σ

2 + (a11 − b12)σ − b11 = 0,

or

b11σ
3 + (b12 − a11)σ

2 + (b22 − a12)σ − a22 = 0.

Proof. When F (x, λ) are second-order nondegenerate at x = 0 near λ0, a2
11+b2

11 6=
0. We assume that a11 6= 0. By the homogeneity of F (x, λ), a straight line x2 = σx1

is an orbit line of F (x, λ) if and only if

σ =
F2(x, λ)

F1(x, λ)

=
b11x

2
1 + b12x1x2 + b22x

2
2

a11x2
1 + a12x1x2 + a22x2

2

=
b11 + b12σ + b22σ

2

a11 + a12σ + a22σ2
.
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Hence, the straight lines (4.12) satisfying (4.13) are orbit lines of F (x, λ). Obviously,
one of the two equations in (4.13) has a solution. Thus we obtain that the number of
solutions of (4.13) is k (1 ≤ k ≤ 3). The proof is complete.

Lemma 4.9. If ind(F (·, λ0), 0) = 2, then we have

1. F (x, λ) has no hyperbolic regions at x = 0,
2. F (x, λ) has exactly two elliptic regions E1 and E2,
3. F (x, λ) has no parabolic regions if k = 1, which is the number of solutions of

(4.13), and has exactly two parabolic regions P1 and P2, if k ≥ 2,
4. the elliptic and parabolic regions E and P are sectorial regions E = S(θ1), P =

S(θ2) with 0 < θ1, θ2 < π, θ1 + θ2 = π, and the edges of Sr(θ1) and Sr(θ2)
are the straight orbit lines of F (x, λ); see Figure 4.7 (a)-(c).

Proof. Based on Lemma 4.8, we take an orthogonal coordinate transformation
y = Ax with a straight orbit line of F (x, λ) as the y1-axis. Under this transformation,
the vector field F (x, λ) is changed into the following form

(4.14) F̃ (y, λ) =

(
ã11y

2
1 + ã12y1y2 + ã22y

2
2

y2(̃b1y1 + b̃2y2)

)
.

Since ind(F̃ (·, λ), 0) = 2, b̃1 6= 0. Otherwise, there is no solution for F̃ =

(0,−sign(̃b1)ε)
t for any ε > 0 small. Hence the index is zero, a contradication.

Take another coordinate transformation as follows

x′
1 = b̃1y1 + b̃2y2,

x′
2 = y2.

Then, by Theorem 2.7 the vector field in (4.14) is transformed into

(4.15) F ′(x′, λ) =

(
F ′

1

F ′
2

)
=

(
a(x′

1 − α1x
′
2)(x

′
1 + α2x

′
2)

bx′
1x

′
2

)

where a · b > 0, α1, α2 > 0.

It is known that F (x, λ) and F ′(x′, λ) have the same topological structure. It is
easy to see that (4.15) has the topological structure as shown in Figure 4.7(a) - (c)
for a, b > 0 in (4.15).
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E

E

x’

x’1

2

(a)

x’

x’1

2

E

E θ1

θ2

P

P

(b)
x’

x’1

2

P

Pθ1

θ2

E

E

(c)

Fig. 4.7. Toplogical structure of (4.15): (a) The number of straight orbit lines k = 1, (b) k = 2,
and (c) k = 3.

To derive the topological structure in Figure 4.7(a)-(c) of (4.15). Let D1, D2,
D3 and D4 be the 4 open quadrants in R2, and the two straight lines x1 − α1x2 =
0, x1 + α2x2 = 0 also divide the plane R2 into four regions

Q1 = {(x1, x2) ∈ R
2 | x1 − α1x2 > 0, x1 + α2x2 > 0},

Q2 = {(x1, x2) ∈ R
2 | x1 − α1x2 < 0, x1 + α2x2 > 0},

Q3 = {(x1, x2) ∈ R
2 | x1 − α1x2 > 0, x1 + α2x2 < 0},

Q4 = {(x1, x2) ∈ R
2 | x1 − α1x2 < 0, x1 + α2x2 < 0}.

It is easy to see that

(4.16)





F ′
1 > 0 in Q1 and Q4,

F ′
1 < 0 in Q2 and Q3,

F ′
2 > 0 in D1 and D3,

F ′
2 < 0 in D2 and D4.

The properties (4.16) ensure that (4.15) has only two elliptic regions E1 and E2, with
E1 ⊂ R2

+ = {(x1, x2)|x2 > 0} and E2 ⊂ R2
− = {(x1, x2)|x2 < 0}; see Figure 4.8.
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x1

x2

x1= − α 2 2x

x1= α 1 x2

Fig. 4.8.

Thus, by Lemma 4.6, F ′ has no hyperbolic regions, and Assertions (1) and (2)
are proved.

By (4.13), it follows from (4.15) that the straight orbit lines Li(i = 0, 1, 2) of
F ′(x′, λ) are given by

L0 : x2 = 0, L1 : x2 = σ1x1, L2 : x2 = σ2x1,

and if σ1, σ2 are real, then

σ1 =
1

α1
− ε1, σ2 = − 1

α2
+ ε2,

for some real numbers 0 < ε1 < 1/α1 and 0 < ε2 < 1/α2. Hence we have

(4.17) Li ⊂ Q1 ∪ Q3.

Therefore, Assertions (3) and (4) follow from (4.17) and the symmetry of F (x, λ), i.e.
F (−x, λ) = F (x, λ). The proof is complete.

Lemma 4.10. If ind(F, 0) = 2, then (4.5) bifurcates from (x, λ) = (0, λ0) an
attractor Aλ on λ0 < λ, which attracts a sectorial region Sr(θ) with π < θ ≤ 2π.
Actually, Sr(θ) ⊂ (E1 ∪ E2 ∪ P1) ∩ Br, where E1, E2 are the elliptic regions of F .
P1 is the parabolic region where all orbits of F reach x = 0, Br = {x ∈ R2||x| < r},
θ = 2π − θ0, and θ0 the angle of the parabolic region.

Proof. We know that under an orthogonal coordinate system transformation, the
linear operator

Bλ =

(
β(λ) 0

0 β(λ)

)

is invariant. Therefore, without loss of generality, we take the vector F as given by
(4.14). By Theorem 2.7, F (x, λ) can be written as

(4.18) F =

(
F1

F2

)
=

(
a(x1 − α1x2)(x1 + α2x2)

bx2(x1 − σx2)

)
,
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where a · b > 0, α2
1 + α2

2 6= 0.
We proceed with the case where a, b > 0 and σ ≥ 0. The other case can be proved

in the same fashion. By Theorem 2.7 we know that α1 > σ > α2, which implies that
the lines x1−αix2 = 0(i = 1, 2), x2 = 0, and x1−σx2 = 0 are alternatively positioned
in R

2.
Based on the definition of elliptic and parabolic regions, by Lemma 4.9 we obtain

that

(4.19) lim
t→∞

Sλ(t)x = 0, ∀x ∈ E1 ∪ E2 ∪ P1,

where Sλ(t) is the operator semigroup generated by F (x, λ).
On the other hand, we obtain from (4.18) that for any x ∈ E1 ∪E2 ∪ P1, there is

a t0(x) ≥ 0 such that

(4.20) Sλ(t)x ∈ D = {x ∈ R
2 | x1 − σx2 < 0}, ∀ t ≥ t0(x);

see Figure 4.9.

E2

E1
D

P2

P1

x1 = σ x2

Fig. 4.9.

It is clear that P1 ⊂ D ⊂ E1 ∪ E2 ∪ D. Let

D(r) = {x ∈ D | |x| < r},
D(r1, r2) = {x ∈ D | 0 < r1 < |x| < r2}.

Let Tλ(t) be the operator semigroup generated by Bλ + F (·, λ). It is known that for
λ > λ0 all orbits of Bλx are straight lines emitting outward from x = 0. Therefore,
by (4.20) we deduce that

(4.21) Tλ(t)x ∈ D, ∀ t > 0, x ∈ ∂D, x 6= 0.

Now, we shall prove that for any λ−λ0 > 0 sufficiently small there are r1, r2, r3 > 0
with r1 < r2 < r3 such that

(4.22) Tλ(t)x ∈ D(r1, r2), ∀ x ∈ D(r3), t > tx,
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for some tx ≥ 0.
We know that for λ > λ0, the singular point x = 0 of Bλ + F has an unstable

manifold Mu with dim Mu = 2. We take r1 > 0 such that the ball Br1
⊂ Mu. Then,

by (4.21) we obtain that

(4.23) Tλ(t)x ∈ D(r1, r2), ∀ x ∈ D(r1), t > tx;

see Figure 4.9.
If (4.22) is not valid, then by (4.21) and (4.23) there exist λn → λ0 + 0, tn → ∞

and {xn} ⊂ D(r3) such that

(4.24) | Tλn
(tn)xn | ≥ r2, ∀ n ≥ 1.

Let xn → x0 ∈ D(r3). Then by Lemma 4.7 and (4.24) there is an orbit line γ
of F (·, λ0) with starting point x0 ∈ D(r3) which does not reach to x = 0. This is a
contradiction to (4.19).

It follows from (4.21) and (4.22) that D(r1, r2) is an absorbing set in a neighbor-
hood U of D(r1, r2). Hence, by the existence theorem of attractors, for λ > λ0, the
set

Aλ = ω(D(r1, r2), λ),

with 0 /∈ Aλ, is an attractor of (4.5), which attracts D(r3). Here the ω-limit set
ω(D, λ) of a set D ⊂ R2 for Bλ + F (·, λ) is defined by

ω(D, λ) =
⋂

s≥0

⋃

t≥s

Tλ(t)D.

Applying Lemma 4.7 again we infer from (4.19) that

lim
λ→λ0

max
x∈Aλ

|x| = 0.

Thus Aλ is a bifurcated attractor of (4.5) from (0, λ0).
We can deduce from (4.20) that Aλ attracts a sectorial region Sr(θ) ⊂ E1∪E2∪P1,

with θ = 2π − θ0, where θ0 is the angle of the parabolic region P2. The proof is
complete.

Lemma 4.11. The attract Aλ has dimension dimAλ ≤ 1, and Aλ contains
minimal attractors consisting of singular points.

Proof. It is clear that Aλ contains all singular points of (4.5). We shall prove that
Aλ does not contain closed orbit line.

By Lemma 4.8, all singular points of (4.5) must be in the straight orbit lines L of
F (x, λ), and L are invariant sets of (4.5) which consist of orbits and singular points.

Use the method as in the proof of Lemma 4.9, for any straight orbit line L we can
take an orthogonal coordinate system transformation with L as its x1−axis. Thus,
the vector field F (x, λ) take the form of (4.18), and the singular point x0 = (x0

1, x
0
2)

of Bλ + F on L is given by

x0 = (x0
1, x

0
2) = (−β(λ)/a, 0),

and the Jacobian matrix of Bλ + F at x0 is given by

J(Bλ + F )(x0) =

(
−β(λ) ∗

0 (1 − b
a )β(λ)

)
.(4.25)
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Hence, on each straight orbit line there is only one singular point x0 of Bλ + F , and
there are two orbits γ1 and γ2 in L reaching to x0. Moreover one of γ1 and γ2 connects
from x = 0 to x0. It follows that the attractor Aλ containing all singular points has
no closed orbit lines. By the Poincare-Bendixon theorem we obtain that dimAλ ≤ 1.

When Bλ + F has three singular points zi (1 ≤ i ≤ 3), by Theorem 4.1 they are
regular, and

(4.26) ind (Bλ + F, z1) = −1, ind (Bλ + F, z2) = ind (Bλ + F, z3) = 1.

It follows from (4.25) and (4.26) that z1 is a saddle point, z2 and z3 are attractors.
In this case the attractor Aλ has the structure as shown in Figure 4.2 (c).

When Bλ + F has two singular points z1 and z2,

ind(Bλ + F, z1) = 0, ind(Bλ + F, z2) = 1,

which implies, by (4.25), that z2 is an attractor, and z1 has exactly two hyperbolic
regions. Thus, Aλ has the topological structure as shown in Figure 4.2 (b).

When Bλ + F has only one singular point z, then

ind(Bλ + F, z) = 1,

which implies by (4.25) that z is an attractor, and Aλ = {z} has the topological
structure as shown in Figure 4.2 (a). The proof is complete.

Note that Lemmas 4.9-4.11 are still valid. Hence if there is a higher order non-
linear perturbation for the vector field F (x, λ), Assertions (1) and (2) of Theorem 4.3
follows from Lemma 4.10 and Lemma 4.11. Assertion (3) of Theorem 4.3 is an imme-
diately consequence of the following lemma.

Lemma 4.12. If ind(F, 0) = 0, and (4.5) bifurcates three singular points from
(0, λ0) on λ0 < λ, then one of them is an attractor which attracts a sectorial region
Dr(θ) with 0 < θ < π.

Proof. By Theorem 4.1 the three bifurcated singular points pi (1 ≤ i ≤ 3) are
nondegenerate, and

ind (Bλ + F, p1) = ind (Bλ + F, p2) = −1, ind (Bλ + F, p3) = 1.

Then as in the proof of Lemma 4.11, we can deduce that p3 is an attractor.
Since p1 and p2 are in the other two straight orbit lines which enclose the parabolic

region P , the singular point p3 ∈ P and attracts a domain P ∩ Br = Dr(θ) for some
r > 0. The proof of the lemma is complete.

5. Bifurcation to Periodic Solutions. In this subsection, we consider the case
where m = 2, r = 1 and k = odd ≥ 3 in (2.7) - (2.10). Since m = 2 and r = 1, the two
eigenvectors v1, v2 of Lλ at λ = λ0 enjoy the following properties; see Theorem 2.2:

Lλ0
v1 = 0, Lλ0

v2 = v1,

L∗
λ0

v∗2 = 0, Lλ0
v∗1 = v∗2 ,

〈vi, v
∗
j 〉H

{
> 0, i = j,

= 0, i 6= j.

Let α ∈ R be the number defined by

(5.1) α = 〈G1(v1, λ0), v
∗
2〉H ,
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where G1 is as in (2.7).
Then, we have the following bifurcation theorem of periodic orbits from the real

eigenvalues with m = 2 and r = 1.

Theorem 5.1. Assume the conditions (2.6)-(2.9) with m = 2, r = 1 and k =
odd ≥ 3. Let α be given by (5.1). If α < 0, then (2.1) bifurcates from (u, λ0) = (0, λ0)
a periodic orbit.

Proof. Step 1. By the center manifold theorem, it suffices to consider the
bifurcation of the following equations

(5.2)






dx1

dt
= β1(λ)x1 + ax2 + 〈G(x + h(x, λ), λ), v∗1 (λ)〉H ,

dx2

dt
= β2(λ)x2 + 〈G(x + h(x, λ), λ), v∗2 (λ)〉H ,

where x = x1v1(λ) + x2v2(λ), h(x, λ) is the center manifold function,

a =< v1(λ), v∗1(λ) >H> 0,

Lλv1(λ) = β1(λ)v1(λ),

Lλv2(λ) = β2(λ)v2(λ) + v1(λ),

L∗
λv∗1(λ) = β1(λ)v∗1(λ) + v∗2(λ),

L∗
λv∗2(λ) = β2(λ)v∗2(λ),

〈vi(λ), v∗j (λ)〉H
{

> 0, if i = j,

= 0, if i 6= j.

By (2.6) and (5.1), equation (5.2) at λ = λ0 reads as

(5.3)
dx

dt
= F (x) =

(
F1(x)
F2(x)

)
,

where

F1(x) = ax2 + 0(|x1|k, |x2|k),

F2(x) = αxk
1 + 0(|x1|k+1, |x1|1|x2|k−1, |x1|2|x2|k−2 · · · , |x2|k).

Since a > 0, α < 0 and k = odd ≥ 3, we have

(5.4) ind(F, 0) = 1.

Step 2. We now prove that the number of elliptic regions of F at x = 0 is zero,
i.e. e = 0. Assume otherwise, then there exist an orbit γ of (5.3) connected to x = 0,
i.e.

lim
t→∞

S(t)x = 0, ∀x ∈ γ,

where S(t) is the operator semigroup generated by (5.3). Let γ be expressed near
x = 0 as

x2 = f(x1), (x1, x2) ∈ γ.
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From (5.3) it follows that for any (x1, x2) ∈ γ

dx2

dx1
=

αxk
1 + 0(|x1|k+1, |x1|1|f(x1)|k−1, |x1|2|f(x1)|k−2 · · · , |f(x1)|k)

af(x1) + 0(|x1|k, |f(x1)|k)
.

Thus we obtain

(5.5) af(x1)f
′(x1) + 0(|x1|k, |f |k)f ′ = αxk

1 + 0(|x1|k+1, |x1|k−i|f |i),

which implies that

(5.6) f(x) = βxm + o(|x|m), 2 ≤ m =
k + 1

2
< k, β 6= 0.

Therefore, from (5.5) and (5.6) we get

amβ2 = α(α < 0, m ≥ 2 and β 6= 0).

It is a contradiction. Hence e = 0.

Step 3. By (5.4) and the Poincaré formula (4.10), h = 0. Therefore x = 0 must
be a degenerate singular point, and is either (a) a stable focus, or (b) an unstable
focus or (c) a singular point having infinite periodic orbits in its neighborhood.

The case (c) implies a bifurcation of periodic orbits for (5.2).

For the case (a), x = 0 is an asymptotically stable singular point of (5.3). Then
by Theorem 2.4, the equation (5.2) bifurcates from (x, λ) = (0, λ0) an S1-attractor
Σλ on λ > λ0. For the case (b), x = 0 is an asymptotically stable singular point of
the vector field −F (x), therefore the vector field

(
β1(λ) 0

0 β2(λ)

)
x − F (x)

bifurcates from (0, λ0) an S1-attractor Σλ on λ > λ0, which implies that (5.2) bifur-
cates from (0, λ0) on λ < λ0 an S1- repelor Σλ, which is an invariant set.

Step 4. Now, we need to prove that the S1-invariant set Σλ contains no singular
points. Consider the following equations

β1(λ)x1 + ax2 + 0(|x1|k, |x2|k) = 0,(5.7)

β2(λ)x2 + αxk
1 + 0(|x1|k+1, |x2|k−i|x1|i) = 0.(5.8)

Hence

x2 = −β1(λ)a−1x1 + 0(|x1|k, |β1|k),(5.9)

αxk−1
1 − a−1β1(λ)β2(λ) + o(|x1|k−1, |β1|2) = 0.(5.10)

By α < 0, a > 0 and β1(λ)β2(λ) > 0, (5.10) has no solution near (x, λ) = (0, λ0).
Hence, there is no singular points in Σλ, which means Σλ must contain a periodic
orbit. The proof is complete.
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6. An Application. As an example we consider the following equations

(6.1)





∂u1

∂t
= △u1 + α1λu1 + au2 + g1(u1, u2),

∂u2

∂t
= △u2 + α2λu2 + g2(u1, u2),

where λ1, λ2 are parameters, a > 0 a constant, Ω ⊂ Rn (n ≤ 3) is bounded smooth
domain, and

g1 =
∑

i+j=2

a1
iju

i
1u

j
2 +

∑

i+j=3

a2
iju

i
1u

j
2 + o(|u|3),

g2 =
∑

i+j=2

b1
iju

i
1u

j
2 +

∑

i+j=3

b2
iju

i
2u

j
2 + o(|u|3).

Equations (6.1) are supplemented with the Dirichlet boundary conditions

(6.2) u1|∂Ω = 0, u2|∂Ω = 0.

Let λ1 > 0 and h1(x) be the first eigenvalue and eigenvector of the Laplacian operator
with the Dirichlet boundary condition

{
−△h1 = λh1,

h1|∂Ω = 0.

Let

H = L2(Ω, R2),

H1 = H2
0 (Ω, R2).

Then we define corresponding operators Lλ = −A + Bλ : H1 → H and G : H1 → H
by

− Au =

(
△u1

△u2

)
,

Bλ =

(
α1λ a
0 α2λ

)(
u1

u2

)
,

Gu =

(
g1(u1, u2)
g2(u1, u2)

)
.

Case 0 < α1 < α2. In this case, β1(λ) = α1λ − λ1, λ0 = α−1
1 λ1, and the first

eigenvectors e1 and e∗1 of Lλ and L∗
λ corresponding to β1(λ) are given by

e1 =

(
h1

0

)
, e∗1 =




h1

− ah1

(α2 − α1)λ



 .

Let G1 be the second-order homogeneous term of G given by

(6.3) G1 =




∑
i+j=2

a1
iju

i
1u

j
2

∑
i+j=2

b1
iju

i
1u

j
2


 .
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Let

α = 〈G1(e1), e
∗
1〉H =

[
a1
20 −

α1a1

(α2 − α1)λ1
b1
20

] ∫

Ω

h3
1dx.

If

α 6= 0,

or equivalently

(6.4) a1
20 −

α1a1

(α2 − α1)λ1
b1
20 6= 0,

then by Theorem 3.2, as λ0 = α−1
1 λ1 < λ, the problem (6.1) and (6.2) bifurcate from

(0, α−1λ1) an attractor

vλ = −(β1(λ) · α−1)
(
β1(λ) · α−1

) (
h1

0

)
+ o

(
|β1α

−1|
)
.

Case α1 = α2 > 0 and a = 0. We have β1(λ) = β2(λ) = α1λ − λ1, and

e1 = e∗1 =

(
h1

0

)
, e2 = e∗2 =

(
0
h1

)
.

Let u0 be a vector field u0 as in (4.1) defined by

u0 =

(
C(a1

20x
2
1 + a1

11x1x2 + +a1
02x

2
2)

C(b1
20x

2
1 + b1

11x1x2 + +b1
02x

2
2)

)
,

where c =
∫
Ω h3

1dx. If u0 is second-order nondegenerate, then Theorems 4.2 and 4.3
are applicable to the problem (6.1) and (6.2).

Case α1 = α2 > 0, a1
ij = 0, b1

ij = 0, and a > 0. In this case, we set

G1 =





∑
i+j=3

a2
iju

i
1u

i
2

∑
i+j=3

b2
iju

i
1u

i
2



 .

Then β1 = β2(λ) = α1λ − λ1, λ0 = α−1
1 λ1. Let

v1 =

(
h1

0

)
, v2 =

(
0

a−1h1

)
,

v∗2 =

(
0
h1

)
, v∗1 =

(
a−1h1

0

)
.

Then

Lλ0
v2 = v1,

L∗
λ0

v∗1 = v∗2 .

Let

α = 〈G1(v1), v
∗
2〉H

=

∫

Ω

b2
30h

3
1 · a−1h1dx = a−1b2

30

∫

Ω

h4
1dx.

If b2
30 < 0, then by Theorem 5.1, the problem (6.1) and (6.2) bifurcates from (0, λ0) a

periodic orbit.
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