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GLOBAL ENTROPY SOLUTIONS IN L∞ TO THE EULER
EQUATIONS AND EULER-POISSON EQUATIONS FOR

ISOTHERMAL FLUIDS WITH SPHERICAL SYMMETRY ∗

GUI-QIANG CHEN† AND TIAN-HONG LI†

Abstract. We prove the existence of global entropy solutions in L∞ to the multidimensional
Euler equations and Euler-Poisson equations for compressible isothermal fluids with spherically sym-
metric initial data that allows vacuum and unbounded velocity outside a solid ball. The multidi-
mensional existence problem can be reduced to the existence problem for the one-dimensional Euler
equations and Euler-Poisson equations with geometrical source terms. Due to the presence of the
geometrical source terms, new variables–weighted density and momentum–are first introduced to
transform the nonlinear system into a new nonlinear hyperbolic system to reduce the geometric
source effect. We then develop a shock capturing scheme of Lax-Friedrichs type to construct approx-
imate solutions for the weighted density and momentum. Since the velocity may be unbounded, the
Courant-Friedrichs-Lewy stability condition may fail for the standard fractional-step Lax-Friedrichs
scheme; hence we introduce a cut-off technique to modify the approximate density functions and
adjust the ratio of the space and time mesh sizes to construct our approximate solutions. Finally
we establish the convergence and consistency of the approximate solutions using the method of com-
pensated compactness and obtain global entropy solutions in L∞. The solutions we obtain allow
unbounded velocity near vacuum, one of the essential difficulties here, which is different from the
isentropic case.

1. Introduction. We are concerned with the convergence and stability of shock
capturing schemes and their applications to constructing global entropy solutions
to the Euler equations and Euler-Poisson equations for compressible fluids. Shock
capturing schemes have played an important role in providing excellent numerical
solutions for various physical problems in science and technology; examples of success
include the Lax-Friedrichs scheme [27], the Glimm scheme [19], the Godunov scheme
[20] and related high order schemes such as ENO and WENO (see Harten-Osher [23],
Harten-Engquist-Osher-Chakravarthy [24], Shu-Osher [46], and Shu [45]), van Leer’s
MUSCL [48], Colella-Wooward’s PPM [11], as well as the Lax-Wendroff scheme [29]
and its two-step version, the Richtmyer scheme (see [43]) and the MacCormick scheme
[37].

In this paper, we present two examples through the Euler equations and the
Euler-Poisson equations to show that efficient numerical shock capturing schemes
not only provide excellent numerical solutions, but also can yield a mathematical
existence theory for global entropy solutions. Other related schemes of success include
the Glimm scheme [19] (see [12, 34, 36, 44, 47]), the wave-front tracking algorithm
(see [2, 13, 25, 30]), and the Lax-Friedrichs scheme and the Godunov scheme (see
[4, 14, 15]).

The Euler equations for compressible isothermal fluids are of the form:

(1.1)
∂tρ+ ∇ · �m = 0,

∂t �m+ ∇ · ( �m⊗�m
ρ ) + ∇p = 0, �x ∈ RN , t ∈ [0,∞),

where ρ, �m, and p are the density, the momentum, and the pressure of the fluid,
respectively, and p(ρ) = κρ for the isothermal fluid (κ can be chosen as 1 by scaling).
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The Euler-Poisson equations for compressible isothermal fluids are of the form:

(1.2)
∂tρ+ ∇ · �m = 0,

∂t �m+ ∇ · ( �m⊗�m
ρ ) + ∇p = ρ∇φ− �m

τ ,

∆φ = ρ−D(�x), �x ∈ RN , t ∈ [0,∞),

where φ is the potential function, D(�x) is the doping profile, and τ > 0 is the relaxation
time. This system describes the dynamic behavior of many important physical flows
including the propagation of electrons in submicron semiconductor devices [1, 17, 18,
40] and the biological transport of ions for channel proteins (see [3] and the references
cited therein) in bounded domains.

We are interested in spherically symmetric solutions to system (1.1) with the
form:

(1.3) (ρ, �m)(�x, t) = (ρ(x, t),m(x, t)
�x

x
), x = |�x|,

and to system (1.2) for which D(�x) = D(|�x|) with the form:

(1.4) (ρ, �m, φ)(�x, t) = (ρ(x, t),m(x, t)
�x

x
, φ(x, t)).

Then (ρ(x, t),m(x, t)) in (1.3) is governed by the one-dimensional Euler equations
with geometric source terms:

(1.5)
∂tρ+ ∂xm = −N−1

x m,

∂tm+ ∂x(m2

ρ + ρ) = −N−1
x

m2

ρ ,

and (ρ(x, t),m(x, t), φ(x, t)) in (1.4) is governed by the one-dimensional Euler-Poisson
equations with geometric source terms:

(1.6)
∂tρ+ ∂xm = −N−1

x m,

∂tm+ ∂x(m2

ρ + ρ) = −N−1
x

m2

ρ − m
τ + ρ∂xφ,

∂xxφ = −N−1
x ∂xφ+ ρ−D(x).

When N = 1 and initial data in BV stays away from vacuum, the first existence
result in BV for the Euler equations for isothermal fluids was established by Nishida
[41] by using the Glimm scheme; and the existence problem for the Euler-Poisson
equations was worked out by Poupaud-Rascle-Vila [42]. For large initial data in L∞

containing vacuum, the existence of entropy solutions in L∞ containing vacuum for the
Euler equations was recently solved by Huang-Wang [26] by combining the method
of compensated compactness with analysis of entropy pairs via analytic extension
techniques, and the global existence problem for the Euler-Poisson equations was
worked out by Li [31].

When N > 1 and initial data in BV stays away from vacuum, only available
result is due to Makino-Mizohata-Ukai [38] for the existence of global entropy solutions
with spherical symmetry by using the Glimm scheme. For the multidimensional case,
the geometrical source terms induce the resonance between the characteristic fields
and the stationary geometrical sources. Such a nonlinear resonance causes extra
difficulties; and more efficient methods have to be developed to solve (1.5) and (1.6)
with initial data that allows vacuum.
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In this paper, we first focus on the spherically symmetric initial data in L∞ with
vacuum for isothermal fluid flow outside the solid ball {x ≥ 1}. That is, we consider
the Euler equations (1.5) for isothermal fluids with the initial-boundary conditions:

(1.7) (ρ,m)|t=0 = (ρ0(x),m0(x)), m|x=1 = 0.

The natural issues associated with this problem are: (a) whether the solution has
the same geometrical structure globally; (b) whether the solution blows up in a finite
time, especially the density. These issues are not easily resolved through physical
experiments or numerical simulations, especially the second one, due to the limited
capacity of available instruments and computers.

To overcome the difficulty of resonance arising from the geometric source terms,
one of our ingredients is to introduce new variables

� = xN−1ρ, � = xN−1m,

the weighted density and momentum so that the resulting hyperbolic system has less
geometrical source effect. Indeed, these new variables are then governed by

(1.8)
∂t�+ ∂x� = 0,

∂t� + ∂x(�2

� + �) = N−1
x �,

in which the first equation is homogeneous and the second has only the source term
of first order in the density. With this special structure, our main strategy is to
follow Ding-Chen-Luo [15] to develop a shock capturing scheme of Lax-Friedrichs
type to construct approximate solutions so that they are uniformly bounded and the
corresponding family of entropy dissipation measures is compact in H−1.

The main obstacle in constructing the approximate solutions and making the re-
quired estimates is the unboundedness of velocity near vacuum. Then the characteris-
tic speeds are unbounded near vacuum which yields that the Courant-Friedrichs-Lewy
condition fails for the standard fractional-step Lax-Friedrichs scheme as developed in
[15]. To overcome this difficulty, we develop a cut-off technique to modify the approx-
imate density functions so that the characteristic speeds can be bounded by λ(h) that
is unbounded as the space mesh size h→ 0 and then to adjust the ratio of the space
and time mesh sizes so that the Courant-Friedrichs-Lewy condition holds for each
fixed space and time mesh sizes. Furthermore, the boundedness of the gradients of
entropy and entropy flux functions fails since the velocity is unbounded near vacuum;
while the boundedness is essential to get the H−1 compactness of entropy dissipation
measures for the isentropic case. In this paper, we establish the estimates required
for the convergence of approximate solutions to an entropy solution in L∞.

Consider the following family of entropy pairs (η, q) for the isothermal case:

(1.9) η = ρ
1

1−ξ2 e
ξ

1−ξ2
m
ρ , q = (

m

ρ
+ ξ)η for ξ ∈ R.

Definition 1.1. An L∞ vector function (ρ(x, t),m(x, t)) is called a global entropy
solution of the initial-boundary value problem (1.5) and (1.7) in Π := {(x, t) : x >
1, 0 < t <∞} provided that

(i) for any ψ ∈ C∞
0 (Π), Π = {(x, t) : x ≥ 1, 0 ≤ t < ∞}, with ψ(1, t) = 0 for

t ≥ 0,

(1.10)
∫ ∞

0

∫ ∞

1

(
ρ ∂tψ +m∂xψ − N − 1

x
mψ

)
dxdt+

∫ ∞

1

ρ0(x)ψ(x, 0) dx = 0,
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(1.11)∫ ∞

0

∫ ∞

1

(
m∂tψ + (

m2

ρ
+ ρ) ∂xψ − N − 1

x

m2

ρ
ψ

)
dxdt+

∫ ∞

1

m0(x)ψ(x, 0) dx = 0;

(ii) when ε→ 0,

(1.12)
1
ε

∫ 1+ε

1

m(x, t)dx ∗−→ 0 in L∞
loc((0,∞));

(iii) for any nonnegative smooth function ψ ∈ C∞
0 (Π) with ψ(1, t) = 0,

∫ ∞

0

∫ ∞

1

(
η(ρ,m) ∂tψ + q(ρ,m) ∂xψ − N − 1

x
(∂ρη(ρ,m)m+ ∂mη(ρ,m)

m2

ρ
)ψ
)
dxdt

+
∫ ∞

1

η(ρ0,m0)ψ(x, 0) dx ≥ 0,(1.13)

for any entropy pair (η, q) in (1.9) with ξ ∈ (−1, 1).

The following theorem is the main result of this paper.

Theorem 1.1. Suppose that the initial data (ρ0(x),m0(x)) satisfies the condi-
tions:

0 ≤ ρ0(x) ≤ C0

xN−1
, |m0(x)| ≤ ρ0(x)

(
C0 + | ln(xN−1ρ0(x))|

)
for some constant C0 > 0. Then there exists a global entropy solution (ρ(x, t),m(x, t))
of the initial-boundary value problem (1.5) and (1.7) in the sense of Definition 1.1
such that, for any T > 0, there exists M = M(T ) > 0 so that

(1.14)

0 ≤ ρ(x, t) ≤ M

xN−1
, |m(x, t)| ≤ ρ(x, t)

(
M + | ln(xN−1ρ(x, t))|) , 0 ≤ t ≤ T.

With this (ρ(x, t),m(x, t)) obtained in Theorem 1.1, we set (ρ, �m)(�x, t) through
(1.3). Then (ρ, �m)(�x, t) is an entropy solution of (1.1) with initial data:

(ρ, �m)|t=0 = (ρ0(|�x|),m0(|�x|) �x|�x| ), |�x| ≥ 1.

Related results have been obtained for the isentropic case (p = κργ , γ > 1) with
large initial data in L∞ containing vacuum. For N = 1, the global existence for the
Euler equations with large initial data in L∞ was established for γ = 1+ 2

2n+1 , n ≥ 2,
by DiPerna [16] by using the method of compensated compactness, for 1 < γ ≤ 5/3 by
Ding-Chen-Luo [14] and Chen [4, 5], and for γ > 5/3 by Lions-Perthame-Tadmor [33]
and Lions-Perthame-Souganidis [32]; also recently by Chen-LeFloch [9] for general
pressure laws in which the approach further simplifies the proof for the case γ > 1.
The global existence problem for the Euler-Poisson equations with γ > 1 was worked
out by Zhang [49].

For N > 1, the local existence of such a weak solution for 1 < γ < 5/3 was
constructed by Makino-Mizohata-Ukai [39] with the aid of the compactness theorem
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in Ding-Chen-Luo [14] and Chen [4, 5]. A theorem was also established for the gen-
eral case by Chen [6] to ensure the existence of L∞ spherically symmetric entropy
solutions in the large amplitude, which models outgoing blast and large-time asymp-
totic solutions. Chen-Glimm [8] obtained the existence of entropy solutions in L∞

for γ > 1 by incorporating the Godunov scheme and the steady-state solutions for
general initial data in L∞. Entropy solutions to the Euler-Poisson equations (1.6) for
γ > 1 were also obtained by Chen-Wang in [10].

In Section 2, we introduce some basic results which are used in subsequent sec-
tions. In Section 3, we develop a shock capturing scheme of Lax-Friedrichs type to
construct a family of approximate solutions. The uniform L∞ estimate of the approx-
imate solutions is achieved in Section 4 by estimating the corresponding Riemann
invariants of the approximate solutions and by identifying invariant regions for Rie-
mann solutions at each time step. In Section 5, the difficulty of unbounded velocity
is overcome and a compactness embedding technique is used to prove that the family
of entropy dissipation measures is compact in H−1

loc . Then, in Section 6, we employ
the compensated compactness framework to obtain a convergent subsequence, and we
then show that the limit of this subsequence is a physical entropy solution. In Section
7, we employ the approaches and ideas developed in Sections 3–6 to construct global
entropy solutions to the Euler-Poisson equations for isothermal fluids with spherical
symmetry.

2. Preliminaries. In this section, we first introduce some basic facts about the
homogeneous Euler system of (1.8):

(2.1)
∂t�+ ∂x� = 0,

∂t� + ∂x(�2

� + �) = 0.

For more details, see [26, 4, 14, 28, 49].
First, system (2.1) can be rewritten in the form of vector v = (�,�) as

(2.2) ∂tv + ∂xf(v) = 0,

where f(v) = (�, �2

� + �)�. The eigenvalues of (2.1) are

(2.3) λ1 =
�

�
− 1, λ2 =

�

�
+ 1,

and the Riemann invariants are

(2.4) w =
�

�
+ ln �, z =

�

�
− ln �.

Consider the classical Riemann problem for (2.1) with Riemann data:

(2.5) (�,�) |t=0=
{

(�l,�l), x < x0, x0 > 1,
(�r,�r), x > x0,

and the lateral Riemann problem for (2.1) with lateral Riemann data:

(2.6) (�,�) |t=0= (�r,�r), x > 1; �|x=1 = 0,

where �l, �r,�l, and �r are constants satisfying

0 ≤ �l, �r ≤ C0, |�l

�l
| ≤ C0 + | ln �l|, |�r

�r
| ≤ C0 + | ln �r|.
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There are two distinct types of rarefaction waves and shock waves called ele-
mentary waves, which are labeled 1-rarefaction or 2-rarefaction waves and 1-shock or
2-shock waves, respectively.

Lemma 2.1. There exists a global entropy solution of the Riemann problem (2.5),
which is a piecewise smooth vector function satisfying

w(x, t) ≡ w(�(x, t),�(x, t)) ≤ max{w(�l,�l), w(�r,�r)},
z(x, t) ≡ z(�(x, t),�(x, t)) ≥ min{z(�l,�l), z(�r,�r)}.

Also there exists a global entropy solution of the lateral Riemann problem (2.6), which
is a piecewise smooth vector function satisfying

w(x, t) ≡ w(�(x, t),�(x, t)) ≤ max{w(�r,�r),−z(�r,�r)},
z(x, t) ≡ z(�(x, t),�(x, t)) ≥ min{z(�l,�l), z(�r,�r)},

where w and z are the Riemann invariants in (2.4).

It follows that the regions Λ = {(�,�) : w ≤ max(w0,−z0), z ≥ z0} are invariant
regions for the Riemann problem (2.5)–(2.6). More precisely, if the Riemann data
lies in Λ, then the corresponding Riemann solution of (2.5)–(2.6) also lies in Λ. This
implies that there exists C > 0 such that the Riemann solution (ρ(x, t),m(x, t))
satisfies

0 ≤ �(x, t) ≤ C, |�(x, t)
�(x, t)

| ≤ C + | ln �(x, t)|.

Lemma 2.2. If (�,�) : (a, b) → Λ, then

(
1

b− a

∫ b

a

�(x)dx,
1

b− a

∫ b

a

�(x)dx) ∈ Λ.

These two properties above for γ = 1 are the same as the case γ > 1.

Definition 2.1. A pair of mapping (η, q) : R2 → R2 is called an entropy pair
of system (2.1) if (η, q) satisfies the following linear hyperbolic system:

∇q = ∇η∇f.

If η |�=0= 0, then η is called a weak entropy.

The following entropy pairs (η, q) of (2.1):

(2.7) η = �
1

1−ξ2 e
ξ

1−ξ2
�
� , q = (

�

�
+ ξ)�

1
1−ξ2 e

ξ

1−ξ2
�
�

satisfy

(2.8) η��η�� − η2
�� =

ξ4

(1 − ξ2)3
�

2ξ2

1−ξ2 −2
e

2ξ

1−ξ2
�
� for ξ ∈ R.

Thus, η is a weak and convex entropy for any ξ ∈ (−1, 1).
The following compactness theorem for γ = 1 was established in Huang-Wang

[26].
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Theorem 2.1. Assume that the family of functions (�h(x, t),�h(x, t)), defined
on a bounded open set Ω ⊂ Π, satisfies the following conditions:

(i) There exists some constant M = M(Ω) > 0 such that

0 ≤ �h(x, t) ≤M, |�h(x, t)| ≤ �h(x, t) (M + | ln �h(x, t)|) a.e.

(ii) The sequence of entropy dissipation measures ηt(�h,�h)+ qx(�h,�h) is com-
pact in H−1

loc (Ω), for any entropy pair (η, q) in (2.7) with ξ ∈ (−1, 1).
Then there exist (�,�) ∈ L∞ and a subsequence (still denoted) (�h, �h) such that

(�h,�h) −→ (�,�) a.e. as h→ 0

and

0 ≤ �(x, t) ≤M, |�(x, t)| ≤ �(x, t)(M + | ln �(x, t)|).

We will use this compactness theorem in proving the convergence of our approx-
imate solutions.

3. Construction of approximate solutions. We now develop a shock captur-
ing scheme of Lax-Friedrichs type to construct approximate solutions of (1.7)–(1.8).

Let h > 0 be the space mesh length. We partition the interval [1,∞) into cells
with the jth cell centered at xj = 1 + jh, j = 0, 1, 2, .... To ensure the Courant-
Friedrichs-Lewy (CFL) stability condition, we choose the time mesh length

(3.1) k =
h

10(1 + | lnh|) .

We then set ti = ik.
To ensure the CFL condition, we employ a cut-off technique so that the approxi-

mate density functions stay away from vacuum by hβ , with 2 ≤ β ≤ 3, starting from
the initial data:

�0 = max(�0, h
β), �0 = �0.

Let v0 = (�0, �0). We define

v(x, 0 + 0) =
{
v0

j for xj−1 ≤ x ≤ xj+1, j ≥ 4 even,
v0
2 for 1 ≤ x ≤ x3,

where v0
j is the average value of the function v0 in each cell:

v0
j =

1
2h

∫ xj+1

xj−1

v0dx, j ≥ 4 even; v0
2 =

1
3h

∫ 1+3h

1

v0dx.

Then we solve the Riemann problem (2.5) in the region

R1
j ≡ {(x, t) : xj ≤ x ≤ xj+2, 0 ≤ t < t1}, j ≥ 2,

with Riemann data:

vh|t=0 =
{
v0

j for x < xj+1,
v0

j+2 for x > xj+1, j = 2, 4, ...
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and the lateral Riemann problem (2.6) in {(x, t) : 1 ≤ x ≤ x2, 0 ≤ t < t1} with
Riemann data:

vh|t=0 = v0
2, x > 1; � |x=1= 0

to obtain vh(x, t) for 0 ≤ t < t1. Then we set

vh(x, t) = vh(x, t) + V (vh(x, t))t for 0 < t < t1,

where V = (V1, V2) = (0, N−1
x �).

Suppose that we have defined approximate solutions vh(x, t) for 0 ≤ t < ti. Then
we set

(3.2) �h(x, t) = max(�h(x, t), hβ), �h(x, t) = �h(x, t) for ti−1 ≤ t < ti.

We define v(x, ti + 0) as follows: When i ≥ 1 is odd,

v(x, ti + 0) =
{
vi

j for xj−1 ≤ x ≤ xj+1, j ≥ 3 odd,
vi
1 for 1 ≤ x ≤ x2;

and, when i ≥ 2 is even,

v(x, ti + 0) =
{
vi

j for xj−1 ≤ x ≤ xj+1, j ≥ 4 even,
vi
2 for 1 ≤ x ≤ x3,

where vi
j is the average value of the function vh(x, ti−0) in each cell as follows: When

i is odd,

(3.3) vi
j =

1
2h

∫ xj+1

xj−1

vh(x, ti − 0)dx, j ≥ 3 odd; vi
1 =

1
2h

∫ 1+2h

1

vh(x, ti − 0)dx,

and, when i is even,

(3.4) vi
j =

1
2h

∫ xj+1

xj−1

vh(x, ti − 0)dx, j ≥ 4 even; vi
2 =

1
3h

∫ 1+3h

1

vh(x, ti − 0)dx.

Then we solve the Riemann problem (2.5) in the region

Ri
j ≡ {(x, t) : xj ≤ x ≤ xj+2, ti ≤ t < ti+1}

with initial data:

(3.5) vh |t=ti
=
{
vi

j , x < xj+1,
vi

j+2, x > xj+1

for j ≥ 2 even when i is even and for j ≥ 1 odd when i is odd, and the lateral Riemann
problem (2.6) in {(x, t) : 1 ≤ x ≤ x2, ti ≤ t < ti+1} when i is even with the Riemann
data:

(3.6) vh |t=ti
= vi

2, 1 < x ≤ x2; � |x=1= 0,

and {(x, t) : 1 ≤ x ≤ x1, ti ≤ t < ti+1} when i is odd with the Riemann data:

(3.7) vh |t=ti
= vi

1, 1 < x ≤ x1; � |x=1= 0
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to obtain vh(x, t), 0 ≤ ti < ti+1. We set

(3.8) vh(x, t) = vh(x, t) + V (vh(x, t))(t− ti) for ti ≤ t < ti+1.

We summarize the above process as follows:

vi+1 = Ch ◦R ◦ Ek ◦Ah(vi),

or

vi+1 = R ◦ Ek ◦Ah ◦ Ch(vi),

where Ch is the cut-off operator (3.2), Ah is the cell-averaging operator (3.4), Ek is
the exact evolution operator (3.5), and R is the reconstruction step (3.8).

4. A uniform bound for the approximate solutions. To obtain a uniform
bound for the approximate solutions, we first estimate the Riemann invariants wh(x, t)
and zh(x, t). For ti ≤ t < ti+1, we have

(4.1) wh(x, t) = wh(x, t) +
N − 1
x

(t− ti), zh(x, t) = zh(x, t) +
N − 1
x

(t− ti),

where wh and zh are Riemann invariants corresponding to the Riemann solutions vh.

Theorem 4.1. Suppose that (�0(x),�0(x)) satisfies the following conditions:

(4.2) 0 ≤ �0(x) ≤ C0, |�0(x)| ≤ �0(x)(C0 + | ln �0|).
Then, for any given T > 0, (�h(x, t),�h(x, t)) are uniformly bounded in the region
ΠT := {(x, t) : x ≥ 1, 0 ≤ t ≤ T}; that is, there exists M = M(T ) > 0 such that

0 < hβ ≤ �h(x, t) ≤M, |�h(x, t)| ≤ �h(x, t)(M + | ln �h(x, t)|).

Proof. Let

(4.3)
wh(x, t) = w(vh(x, t)), wh(x, t) = w(vh(x, t)), wh(x, t) = w(vh(x, t)),
zh(x, t) = z(vh(x, t)), zh(x, t) = z(vh(x, t)), zh(x, t) = z(vh(x, t)).

For ti ≤ t < ti+1, (4.1) and Lemma 2.1 imply

wh(x, t) = wh(x, t) +
N − 1
x

(t− ti) ≤ sup
x
wh(x, ti + 0) + (N − 1)k,(4.4)

zh(x, t) = zh(x, t) +
N − 1
x

(t− ti) ≥ inf
x
zh(x, ti + 0).(4.5)

By the assumption that 0 ≤ �0(x) ≤ C0 and |�0(x)| ≤ �0(x)(C0 + | ln �0(x)|), there
exists α0 > 0 such that

(4.6) sup
x
w(�0(x),�0(x)) ≤ α0, inf

x
z(�0(x),�0(x)) ≥ −α0.

It is easy to check that, for the Riemann invariants corresponding to the modified
functions by the cut-off technique, we have

(4.7) w(�0(x),�0(x)) ≤ α0, z(�0(x),�0(x)) ≥ −α0.
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For 0 ≤ t < t1, the properties of Riemann invariants in Lemmas 2.1 and 2.2 yield

(4.8) w(�
h
(x, t),�h(x, t)) ≤ α0, z(�

h
(x, t),�h(x, t)) ≥ −α0.

By (4.4) and (4.5), we obtain

wh(x, t) = w(�h,�h) ≤ α0 + (N − 1)k, zh(x, t) = z(�h,�h) ≥ −α0 − (N − 1)k.

Performing the same procedure, we conclude that, for 0 ≤ t < T ,

wh = w(�h,�h) ≤ α0 + (N − 1)T, zh = z(�h,�h) ≥ −α0 − (N − 1)T,

which implies that there exists M = M(T ) > 0 such that

(4.9) 0 ≤ �h(x, t) ≤M, |�h(x, t)| ≤ �h(x, t)(M + | ln �h(x, t)|).
On the other hands, by the definition of �h, we have �h ≥ hβ . This completes the
proof.

With the uniform bound for the approximate solutions in ΠT , there exists h0 =
h0(T ) > 0 such that, when h ≤ h0, the CFL condition holds, which implies that the
approximate solutions are well-defined in ΠT .

5. H−1 compactness of entropy dissipation measures. In this section, we
estimate the H−1 compactness of entropy dissipation measures

∂tη(vh) + ∂xq(vh)

associated with any weak entropy pair (η, q) in (2.7) for the approximate solutions vh,
constructed in Section 3. For simplicity, we drop the subscript h of the approximate
solutions vh, and, from now on, we denote C a generic constant independent of h,
which may be different at each occurrence.

Lemma 5.1. Let v(x, t) be the approximate solutions. Then, for any given L ≥ 1
and T > 0, there is a constant C = C(L, T ) > 0 independent of h such that

(5.1)
∑

ik≤T

∑
1+(j+1)h≤L

∫ xj+1

xj−1

(
v(x, ti − 0) − vi

j

)2
dx ≤ C,

where vi
j = 1

2h

∫ xj+1

xj−1
vh(x, ti − 0)dx for j ≥ 4 even with vi

2 = 1
3h

∫ 1+3h

1
vh(x, ti − 0)dx

when i is even, and j ≥ 3 odd with vi
1 = 1

2h

∫ 1+2h

1
vh(x, ti − 0)dx when i is odd.

Proof. Fix a strictly convex entropy η in (2.7) with ξ ∈ (− 1
2 ,

1
2 ). For the Riemann

solutions v for (2.5) and (2.6) in the time strip ti ≤ t < ti+1, the Green formula
implies

(5.2)
∑

1+(j+1)h≤L

∫ xj+1

xj−1

(
η(vi+1) − η(vi

j)
)
dx+

∫ ti+1

ti

∑
(σ[η] − [q])dt ≤ 0,

where vi+1 = v(x, ti+1 − 0), the summation
∑

is taken over all the shock waves in v
at a fixed t between ti and ti+1, σ is the propagating speed of the shock wave, and [η]
and [q] denote the jumps of η and q across the shock wave from the left to the right,
respectively. That is, if S = (x(t), t) denotes a shock wave in v, then

[η] = η(v(x(t) + 0, t)) − η(v(x(t) − 0, t)), [q] = q(v(x(t) + 0, t)) − q(v(x(t) − 0, t)).
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Summing over all i in (5.2) yields

(5.3) Ih + IIh + IIIh + IV h ≤ C,

where

Ih =
∑
i,j

∫ xj+1

xj−1

(
η(vi) − η(vi)

)
dx, IIh =

∑
i,j

∫ xj+1

xj−1

(
η(vi) − η(vi)

)
dx,

IIIh =
∑
i,j

∫ xj+1

xj−1

(
η(vi) − η(vi

j)
)
dx, IV h =

∫ T

0

∑
(σ[η] − [q])dt,

with 1 ≤ 1 + (j + 1)h ≤ L, 0 ≤ ik ≤ T , i+ j even, and vi = v(x, ti − 0).
By the reconstruction step (3.8),

�i = �i, �i −�i = �iN − 1
x

k.

Noting that η� = ξ
1−ξ2 �

1
1−ξ2 −1

e
ξ

1−ξ2
�
� = ξ

1−ξ2
1
�η, we have

|
∫ xj+1

xj−1

(
η(vi) − η(vi)

)
dx| ≤

∫ xj+1

xj−1

|η(vi) − η(vi)|dx

=
∫ xj+1

xj−1

|
(∫ 1

0

∇η(vi + θ(vi − vi))dθ
)
· (vi − vi)|dx

≤ k

∫ xj+1

xj−1

(∫ 1

0

|ξ|
1 − ξ2

η(�i, �̃i
θ)dθ

)
N − 1
x

dx,

where �̃i
θ = θ�i + (1 − θ)�i. Notice that, using Theorem 4.1, | �̃i

θ

�i | ≤ M + | ln �i|
and, hence

(5.4) η(�i, �̃i
θ) = (�i)

1
1−ξ2 e

ξ

1−ξ2
�̃i

θ
�i ≤ C(�i)(

1
1−ξ2 − |ξ|

1−ξ2 ) = C(�i)
1−|ξ|
1−ξ2 .

Since 1−|ξ|
1−ξ2 > 1

2 when ξ ∈ (−1, 1), both functions η(�i, �̃i
θ) and | ln �i|η(�i, �̃i

θ) are
bounded. Then we conclude

|
∫ xj+1

xj−1

(
η(vi) − η(vi)

)
dx| ≤ Chk.

Summing over all cells, we have

(5.5) |Ih| ≤ C,

where C depends only on L and T .
When � < hβ ,

η = �
1

1−ξ2 e
ξ

1−ξ2
�
� ≤ e

ξ

1−ξ2 M
�

1−|ξ|
1−ξ2 ≤ e

ξ

1−ξ2 M
h

β
1−|ξ|
1−ξ2 .

If ξ ∈ (−1, 1), 1−|ξ|
1−ξ2 ∈ ( 1

2 , 1]. Since β ≥ 2 > 1 + |ξ|, then β 1−|ξ|
1−ξ2 > 1. By (3.1), we
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have

|IIh| = |
∑
i,j

∫ xj+1

xj−1

(
η(vi) − η(vi)

)
dx|

= |
∑
i,j

∫
[xj−1,xj+1]∩{�i>hβ}

(
η(vi) − η(vi)

)
dx

+
∑
i,j

∫
[xj−1,xj+1]∩{�i≤hβ}

(
η(vi) − η(vi)

)
dx|

≤ 0 +
∑
i,j

∫ xj+1

xj−1

2e
ξ

1−ξ2 M
h

β
1−|ξ|
1−ξ2 ≤ C(1 + | lnh|)hβ

1−|ξ|
1−ξ2 −1

.

Thus we have

IIh −→ 0 as h→ 0.(5.6)

Therefore,

IIIh + IV h ≤ C.

Since η is convex, the entropy inequality σ[η] − [q] ≥ 0 holds across the shock waves
[14] which implies IV h ≥ 0. Also, since vi

j is the average of vi and η is convex, we
have IIIh ≥ 0. Then we obtain

(5.7)

0 ≤ IIIh =
∑
i,j

∫ xj+1

xj−1

(η(vi) − η(vi
j))dx ≤ C, 0 ≤ IV h =

∫ T

0

∑
(σ[η] − [q])dt ≤ C.

Moreover, since η is strictly convex for ξ ∈ (− 1
2 ,

1
2 ) so that

C ≥ IIIh =
∑
i,j

∫ xj+1

xj−1

(η(vi) − η(vi
j))dx

=
∑
i,j

∫ xj+1

xj−1

(∇η(vi
j)(v

i − vi
j) + (vi − vi

j)
�∇2η(θi

j)(v
i − vi

j)
)
dx

≥ 0 + α
∑
i,j

∫ xj+1

xj−1

(vi − vi
j)

2dx for some α > 0.

Therefore, we conclude (5.1).

We now use the duality and the Sobolev interpolation inequality to obtain the
H−1 compactness by the following lemma, whose proof can be found in [14, 4].

Lemma 5.2. Let Ω ⊂ Rm be a bounded open set. Then

(Compact set of W−1,p(Ω)) ∩ (Bounded set of W−1,r(Ω)) ⊂ (Compact set of H−1
loc (Ω))

for some constants p and r satisfying 1 < p ≤ 2 < r <∞.

Theorem 5.1. Assume that the conditions of Theorem 4.1 are satisfied. Then
the sequence of entropy dissipation measures ∂tη(v) + ∂xq(v) is compact in H−1

loc (Π)
for any (η, q) in (2.7) with ξ ∈ (−1, 1).
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Proof. For any ψ ∈ C∞
0 (Π), there exist L > 0, T > 0, and an open set Ω such

that suppψ ⊂ Ω ⊂ (1, L) × (0, T ). We consider

(5.8)
∫ ∞

0

∫ ∞

1

(η(v)∂tψ + q(v)∂xψ)dxdt = A(ψ) +R(ψ) + Σ(ψ) + S(ψ),

where

A(ψ) =
∑
i,j

∫ xj+1

xj−1

(
η(vi) − η(vi

j)
)
ψ(x, ti)dx,

R(ψ) =
∑
i,j

∫ xj+1

xj−1

(
η(vi) − η(vi)

)
ψ(x, ti)dx+

∑
i,j

∫ xj+1

xj−1

(
η(vi) − η(vi)

)
ψ(x, ti)dx,

Σ(ψ) =
∫ ∞

0

∑
(σ[η] − [q])ψ(x(t), t)dt,

S(ψ) = S1(ψ) + S2(ψ)

with

S1(ψ) =
∫ ∞

0

∫ ∞

1

((η(v) − η(v))∂tψ + (q(v) − q(v))∂xψ) dxdt,

S2(ψ) =
∫ ∞

0

∫ ∞

1

((η(v) − η(v))∂tψ + (q(v) − q(v))∂xψ) dxdt.

First we have

A(ψ) =
∑
i,j

ψi
j

∫ xj+1

xj−1

(
η(vi) − η(vi

j)
)
dx+

∑
i,j

∫ xj+1

xj−1

(η(vi) − η(vi
j))(ψ

i − ψi
j)dx

= A1(ψ) +A2(ψ),

where ψi = ψ(x, ti) and ψi
j = ψ(xj , ti). By (5.7),

(5.9) |A1(ψ)| ≤ ‖ψ‖∞
∑
i,j

∫ xj+1

xj−1

(η(vi) − η(vi
j))dx ≤ C‖ψ‖∞,

and

|A2(ψ)| ≤
∑
i,j

∫ xj+1

xj−1

|η(vi) − η(vi
j)||ψi − ψi

j |dx

≤ C‖ψ‖Cα
0
hα

×
∑
i,j

∫ xj+1

xj−1

(
|�i − �i

j |
∫ 1

0

1
�θ

|(1 − ξ
�θ

�θ
)ηθ|dθ + |�i −�i

j |
∫ 1

0

| 1
�θ
ηθ|dθ

)
dx,

where 0 < α < 1, vθ = vi
j + θ(vi − vi

j), ηθ = �
1

1−ξ2

θ e
ξ

1−ξ2
�θ
�θ , and

(5.10) �θ = �i
j + θ(�i − �i

j) = �i + (1 − θ)(�i
j − �i).
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By Theorem 4.1 and Lemma 5.1, we have

∑
i,j

∫ xj+1

xj−1

(
|�i − �i

j |
∫ 1

0

1
�θ

|(1 − ξ
�θ

�θ
)ηθ|dθ

)
dx

=
∑
i,j

(∫
[xj−1,xj+1]∩{�θ>1}

+
∫

[xj−1,xj+1]∩{�θ≤1}

)(
|�i − �i

j |
∫ 1

0

1
�θ

|(1 − ξ
�θ

�θ
)ηθ|dθ

)
dx

≤ C
∑
i,j

∫ xj+1

xj−1

|�i − �i
j |dx+ C

∑
i,j

∫ xj+1

xj−1

(
|�i − �i

j |
∫ 1

0

�
− 1

2
θ (1 + | ln �θ|)dθ

)
dx

≤ C

⎛
⎝∑

i,j

∫ xj+1

xj−1

(�i − �i
j)

2dx

⎞
⎠

1
2
⎛
⎝∑

i,j

∫ xj+1

xj−1

kdx

⎞
⎠

1
2

k−
1
2

+C
∑
i,j

∫ xj+1

xj−1

(
|�i − �i

j |
∫ 1

0

�
− 3

4
θ dθ

)
dx

≤ Ck−
1
2 + C

∑
i,j

∫ xj+1

xj−1

|�i − �i
j |

1
4 dx ≤ Ck−

7
8

with C depending only on L, T , and η, where we used an estimate similar to (5.4)
and the definition of �θ in (5.10).

By Theorem 4.1, we have

|�i −�i
j | ≤ �i(M + | ln �i|) + �i

j(M + | ln �i
j |) ≤ C

(
(�i)

3
4 + (�i

j)
3
4

)
.

We now divide four cases.
If 0 ≤ �i − �i

j ≤ �i
j , then |�i −�i

j | ≤ C(�i
j)

3
4 , that is,

(5.11) |�i −�i
j |−1 ≥ C−1(�i

j)
− 3

4 .

Thus, by (5.10) and (5.11), we have

∑
i,j

∫ xj+1

xj−1

(
|�i −�i

j |
∫ 1

0

| 1
�θ
ηθ|dθ

)
dx

≤ C
∑
i,j

(∫
[xj−1,xj+1]∩{�θ≤1}

+
∫

[xj−1,xj+1]∩{�θ>1}

)(
|�i −�i

j |
∫ 1

0

�
− 1

2
θ dθ

)
dx

≤ C
∑
i,j

∫ xj+1

xj−1

|�i −�i
j |(�i

j)
− 1

2 dx+ C
∑
i,j

∫ xj+1

xj−1

|�i −�i
j |dx

≤ C

⎛
⎝∑

i,j

∫ xj+1

xj−1

|�i −�i
j |

1
3 dx+

∑
i,j

∫ xj+1

xj−1

|�i −�i
j |dx

⎞
⎠

≤ Ck−
5
6 + Ck−

1
2 ≤ Ck−

5
6 .

If �i
j < �i − �i

j , then �i ≤ 2(�i − �i
j) and hence |�i −�i

j | ≤ C(�i − �i
j)

3
4 , that is,

(5.12) |�i −�i
j |−1 ≥ C−1(�i − �i

j)
− 3

4 .
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Thus, we have

∑
i,j

∫ xj+1

xj−1

(
|�i −�i

j |
∫ 1

0

| 1
�θ
ηθ|dθ

)
dx

≤ C
∑
i,j

(∫
[xj−1,xj+1]×{�θ≤1}

+
∫

[xj−1,xj+1]×{�θ>1}

)(
|�i −�i

j |
∫ 1

0

�
− 1

2
θ dθ

)
dx

≤ C
∑
i,j

∫ xj+1

xj−1

|�i −�i
j |(�i − �i

j)
− 1

2 dx+ C
∑
i,j

∫ xj+1

xj−1

|�i −�i
j |dx

≤ C

⎛
⎝∑

i,j

∫ xj+1

xj−1

|�i −�i
j |

1
3 dx+

∑
i,j

∫ xj+1

xj−1

|�i −�i
j |dx

⎞
⎠ ≤ Ck−

5
6 ,

since �θ = �i
j + θ(�i − �i

j) ≥ θ(�i − �i
j), where we used (5.12).

The cases 0 ≤ �i
j − �i ≤ �i and �i < �i

j − �i can be estimated similarly.
Therefore, by (3.1), we obtain

(5.13)
|A2(ψ)| ≤ C‖ψ‖Cα

0
hαk−

7
8 ≤ C‖ψ‖Cα

0
hα− 7

8 (1 + | lnh|) 7
8

≤ Chα− 8
9 ‖ψ‖Cα

0
for 8

9 < α < 1.

Furthermore, by (5.5) and (5.6),

(5.14) |R(ψ)| ≤ C‖ψ‖∞.

Using (5.7) yields

(5.15) |Σ(ψ)| ≤ C‖ψ‖∞.

Set �̃θ = � + θ(� −�). Then

|S1(ψ)| ≤ |
∫ ∞

0

∫ ∞

1

(∫ 1

0

η�(v + θ(v − v))dθ
)

(� −�)∂tψdxdt|

+|
∫ ∞

0

∫ ∞

1

(∫ 1

0

(
1
�
η(�, �̃θ) + (

�̃θ

�
+ ξ)η�(�, �̃θ))dθ

)
(� −�)∂xψdxdt|

≤ Ck|
∫ ∞

0

∫ ∞

1

(∫ 1

0

1
�
η(�, �̃θ)dθ

)
�
N − 1
x

∂tψdxdt|

+Ck|
∫ ∞

0

∫ ∞

1

(∫ 1

0

(1 + (
�̃θ

�
+ ξ))η(�, �̃θ)dθ

)
N − 1
x

∂xψdxdt|

≤ Ck

∫ ∞

0

∫ ∞

1

(|∂tψ| + |∂xψ|)dxdt ≤ Ch‖ψ‖H1
0 (Ω),

where we used the fact that η(ρ, �̃θ)| ln �|s is bounded for any s ≥ 0 by (5.4). Also,

|S2(ψ)| = |
∫ ∞

0

∫ ∞

1

((η(v) − η(v))∂tψ + (q(v) − q(v))∂xψ) dxdt|

≤ Ch
β

1−|ξ|
1−ξ2

∫ ∞

0

∫ ∞

1

|∂tψ|dxdt+ Ch
β
2

∫ ∞

0

∫ ∞

1

|∂xψ|dxdt
≤ Ch‖ψ‖H1

0 (Ω).
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Therefore,

(5.16) |S(ψ)| ≤ Ch‖ψ‖H1
0
.

Thus, S is compact in H−1(Ω). Using the above estimates, we can apply Lemma 5.2
to get the H−1 compactness. By (5.9), (5.14), and (5.15), we have

‖A1 +R+ Σ‖(C0)∗ ≤ C,

where C depends only on Ω and η.
By the embedding theorem, (C0(Ω))∗ ↪→ W−1,p0(Ω) is compact for 1 < p0 < 2.

Thus

A1 +R+ Σ is compact in W−1,p0(Ω).

By the Sobolev theorem, W 1,p1
0 (Ω) ⊂ Cα

0 (Ω) for 0 < α < 1 − 2
p1

, which implies

|A2(ψ)| ≤ Chα− 8
9 ‖ψ‖

W
1,p1
0 (Ω)

for p1 >
2

1 − α
.

It follows from the duality that

‖A2‖W−1,p2 (Ω) ≤ Chα− 8
9 → 0 as h→ 0, for α >

8
9

and 1 < p2 <
2

1 + α
.

Then A2 is compact in W−1,p2(Ω). Thus, A+R+ Σ = A1 +A2 +R+ Σ is compact
in W−1,p(Ω), where 1 < p ≤ min(p0, p2).

Next, from the uniform bound of v, and the continuity of η and q, we have
∂tη(v)+∂xq(v)−S is bounded in W−1,∞(Ω). Since Ω is bounded, ∂tη(v)+∂xq(v)−S
is bounded in W−1,r(Ω) for r > 1. That is, A+ R + Σ is bounded in W−1,r(Ω). By
Lemma 5.2,

A+R+ Σ is compact in H−1
loc (Π).

That is, ∂tη(v) + ∂xq(v) − S is compact in H−1
loc (Π). Therefore, ∂tη(v) + ∂xq(v) is

compact in H−1
loc (Π) for ξ ∈ (−1, 1).

Combining Theorem 4.1 with Theorem 5.1, we have the following framework for
the approximate solutions vh(x, t) defined in Section 3.

Theorem 5.2. Suppose that (�0(x),�0(x)) satisfies the following conditions:

0 ≤ �0 ≤ C0, |�0(x)| ≤ �0(x)(C0 + | ln �0|)

for some C0 > 0. Then the approximate solutions vh(x, t) satisfy the following:
(1) For any given T > 0, there exists M = M(T ) > 0 such that

0 ≤ �h(x, t) ≤M, |�h(x, t)| ≤ �h(x, t) (M + | ln �h(x, t)|), for 0 ≤ t ≤ T.

(2) The sequence of entropy dissipation measures ∂tη(v) + ∂xq(v) is compact in
H−1

loc (Π) for any (η, q) in (1.9) with ξ ∈ (−1, 1).
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6. Convergence and existence. In this section, we prove the convergence of
the approximate solutions v̄h(x, t) to obtain a global entropy solution to the Euler
equations with spherically symmetric initial data for isothermal fluids.

Theorem 6.1. Suppose that the conditions of Theorem 5.2 are satisfied. Then
(1) There exist a bounded measurable vector function (�(x, t),�(x, t)) and a sub-

sequence (still denoted) vh(x, t) = (�h(x, t),�h(x, t)) such that

(�h(x, t),�h(x, t)) −→ (�(x, t),�(x, t)) a.e.

and, for any given T > 0, there exists M = M(T ) > 0,

0 ≤ �(x, t) ≤M, |�(x, t)| ≤ �(x, t) (M + | ln �(x, t)|), 0 ≤ t ≤ T.

(2) The bounded measurable vector function (�(x, t),�(x, t)) is an entropy solu-
tion of (1.8); i.e., (ρ(x, t),m(x, t)) = (�(x,t)

xN−1 ,
�(x,t)
xN−1 ) is an entropy solution of (1.5)

and (1.7). Furthermore, (ρ(�x, t), �m(�x, t)) = (ρ(|�x|, t),m(|�x|, t) �x
|�x| ) is a spherically

symmetric entropy solution to the multidimensional Euler equations (1.1) for isother-
mal fluids.

To prove this theorem, we need the following lemma, which can be obtained by a
straightforward calculation.

Lemma 6.1. If g(x) has constant left state gl with length h1, intermediate state gm

with length h2, and right state gr with length h3 in the interval [a, a+h], h1+h2+h3 ≤
h, then∫ a+h

a

|g(x) − g|2dx ≥ 1
3
h

(
h1

h

h3

h
(gr − gl)2 +

h2

h

h3

h
(gr − gm)2 +

h1

h

h2

h
(gm − gl)2

)

Proof of Theorem 6.1. We divide the proof into five steps.
1. From Theorems 2.1 and 5.2, we obtain a convergent subsequence (still labeled)

vh such that

(6.1) (�h,�h) −→ (�,�) a.e.

and, when 0 ≤ t ≤ T ,

0 ≤ �(x, t) ≤M, |�(x, t)| ≤ �(x, t)(M + | ln �(x, t)|)
for some M = M(T ) > 0.

2. For every ψ ∈ C∞
0 (Π), there exist L > 0 and T > 0 such that suppψ ⊂

[1, L) × [0, T ). Then∫ ∞

0

∫ ∞

1

(�h∂tψ +�h∂xψ)dxdt+
∫ ∞

1

�h(x, 0)ψ(x, 0)dx

=
∑

ik≤T

∑
1+(j+1)h≤L

∫ xj+1

xj−1

(�i
h
− �i

j)ψ
i dx+

∫ ∞

0

∫ ∞

1

(�h − �
h
)∂tψ dxdt

+
∫ ∞

0

∫ ∞

1

(�h −�h)∂xψ dxdt+
∫ ∞

1

(�h(x, 0) − �
h
(x, 0))ψ(x, 0) dx

= Ih + IIh + IIIh + IV h,
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where ψi(x) = ψ(x, ti). Notice that

|Ih| = |
∑
i,j

∫ xj+1

xj−1

(�i
h − �i

j)ψ
idx|

= |
∑
i,j

∫ xj+1

xj−1

(�i
h − �

i
h)ψidx+

∑
i,j

∫ xj+1

xj−1

(�i
h − �i

j)ψ
idx|

≤
∑
i,j

∫ xj+1

xj−1

hβ‖ψ‖∞dx+ |
∑
i,j

∫ xj+1

xj−1

(�i
h − �i

j)ψ
i
jdx|

+|
∑
i,j

∫ xj+1

xj−1

(�i
h − �i

j)(ψ
i − ψi

j)dx|

≤ ‖ψ‖∞C(1 + | lnh|)
h

hβ + 0 + ‖ψ‖Cα
0
hαCk−

1
2

≤ C
(
(1 + | lnh|)hβ−1 + (1 + | lnh|) 1

2hα− 1
2

)
→ 0 as h→ 0,

for 8
9 < α < 1 and 2 ≤ β ≤ 3, where ψi

j = ψ(xj , ti). Also,

|IIh| = |
∫ ∞

0

∫ ∞

1

(�h − �
h
)∂tψdxdt| ≤ Chβ → 0,

and

|IIIh| = |
∫ ∞

0

∫ ∞

1

(�h −�h)∂xψdxdt| = |
∑
i,j

∫ ti+1

ti

∫ xj+1

xj−1

V2(vh)(t− ti)∂xψdxdt|

≤ k‖V2(vh)‖∞
∫ ∞

0

∫ ∞

1

|∂xψ|dxdt ≤ Ch→ 0 as h→ 0.

Since �
h
(x, 0) = 1

2h

∫ xj+1

xj−1
�h(x, 0)dx for xj−1 ≤ x < xj , then

|IV h| = |
∑

j

∫ xj+1

xj−1

(�h(x, 0) − �
h
(x, 0))ψ(xj , 0)dx

+
∑

j

∫ xj+1

xj−1

(�h(x, 0) − �
h
(x, 0))(ψ(x, 0) − ψ(xj , 0))dx|

≤ 0 + h‖ψ‖C1

∑
1+(j+1)h≤L

∫ xj+1

xj−1

|�h(x, 0) − �
h
(x, 0)|dx ≤ Ch −→ 0.

Thus,

(6.2) lim
h→0

(∫ ∞

0

∫ ∞

1

(�h∂tψ +�h∂xψ)dxdt+
∫
�h(x, 0)ψ(x, 0)dx

)
= 0.

Notice that

|
∫ ∞

1

�h(x, 0)ψ(x, 0)dx−
∫ ∞

1

�0(x)ψ(x, 0)dx| ≤ hβ

∫ ∞

1

|ψ(x, 0)|dx→ 0,

that is,

(6.3) lim
h→0

∫ ∞

1

�h(x, 0)ψ(x, 0)dx =
∫ ∞

1

�0(x)ψ(x, 0)dx.
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By (6.1)–(6.3) and the dominated convergence theorem, we get

(6.4)
∫ ∞

0

∫ ∞

1

(�∂tψ +�∂xψ)dxdt+
∫ ∞

1

�0(x)ψ(x, 0)dx = 0.

3. From (6.4), we conclude

(6.5) �(x, ·) ∗
⇀ 0 as x→ 1.

On the other hand, using the trace theorem in the theory of divergence-measure
fields (Theorem 2.2 in Chen-Frid [7]), the function � has a well-defined trace in L∞.
Combining this with (6.5), we obtain

(6.6) �|x=1 = 0

in the sense of traces introduced by Chen-Frid in [7], which especially implies (1.12).

4. For every ψ ∈ C∞
0 (Π) with ψ(1, t) = 0, there exist L > 0 and T > 0 such that

suppψ ⊂ [1, L) × [0, T ). By the Green formula,∫ ∞

0

∫ ∞

1

(�h∂tψ + f2(vh)∂xψ) dxdt+
∫ ∞

1

�h(x, 0)ψ(x, 0)dx

=
∑
i,j

∫ xj+1

xj−1

(�i
h −�i

j)ψ
idx,

where f2 = �2

� + � and V2 = N−1
x �. Then, since �h = �h, we have

∫ ∞

0

∫ ∞

1

(�h∂tψ + f2(vh)∂xψ + V2(vh)ψ) dxdt+
∫ ∞

1

�h(x, 0)ψ(x, 0)dx

= E(ψ) +R(ψ) + I(ψ) +A(ψ),

where

E(ψ) =
∫ ∞

0

∫ ∞

1

((f2(vh) − f2(vh))∂xψ + (V2(vh) − V2(vh))ψ) dxdt,

R(ψ) =
∫ ∞

0

∫ ∞

1

((f2(vh) − f2(vh))∂xψ + (V2(vh) − V2(vh))ψ + (�h −�h)∂tψ) dxdt,

I(ψ) =
∫ ∞

1

(�h(x, 0) −�h(x, 0))ψ(x, 0)dx,

A(ψ) =
∑
i,j

∫ xj+1

xj−1

(�i
h −�i

j)ψ
idx+

∫ ∞

0

∫ ∞

1

V2(vh)ψdxdt.

Then

|E(ψ)| ≤
∫∫

Ω∩{�h≤hβ}

(
(|�

2
h

�h

− �2
h

�h
| + |�h − �h|)|∂xψ| + N − 1

x
|�h − �h||ψ|

)
dxdt

≤ C

∫∫
Ω∩{�h≤hβ}

(
�h(1 + | ln �h|)2 + hβ

)
dxdt

≤ Chβ(1 + | lnh|)2 −→ 0 as h→ 0,
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|R(ψ)| ≤
∑
i,j

∫ ti+1

ti

∫ xj+1

xj−1

(
k|V2(vh)||∂tψ| + |�h +�h

�h
(�h −�h)∂xψ|

)
dxdt

+
∑
i,j

∫ ti+1

ti

∫ xj+1

xj−1

(
N − 1
x

|(�h − �
h
)ψ|
)
dxdt

≤ C
∑

ik≤T

∑
1+(j+1)h≤L

∫ ti+1

ti

∫ xj+1

xj−1

(
k|V2(vh)| + k|�h +�h|

N − 1
x

|
)
dxdt

≤ Ch −→ 0,

|I(ψ)| = |
∑

j

∫ xj+1

xj−1

(�h −�h)(x, 0)ψ(xj , 0)dx

+
∑

j

∫ xj+1

xj−1

(�h −�h)(x, 0)(ψ(x, 0) − ψ(xj , 0))dx|

≤ 0 + Ch −→ 0 as h→ 0,

A(ψ) =
∑
i,j

∫ xj+1

xj−1

(�i
h −�i

j)(ψ
i − ψi

j)dx+
∑
i,j

∫ ti

ti−1

∫ xj+1

xj−1

V2(vh)(ψ − ψi)dxdt

+
∑
i,j

∫ ti

ti−1

∫ xj+1

xj−1

(V2(vh) − V2(v
i
h))ψidxdt

= A1(ψ) +A2(ψ) +A3(ψ).

By Lemma 5.1, we have

|A1(ψ)| ≤ Ch
∑

ik≤T

∑
1+(j+1)h≤L

∫ xj+1

xj−1

|�i
h −�i

j |dx ≤ Chk−
1
2

≤ Ch
1
2 (1 + | lnh|) 1

2 −→ 0 as h→ 0,

|A2(ψ)| ≤
∑
i,j

∫ ti

ti−1

∫ xj+1

xj−1

V2(vh)
|ψ(x, t) − ψi|

|t− ti| kdxdt ≤ Ch −→ 0 as h→ 0,

and

|A3(ψ)| ≤ C‖ψ‖∞
∑
i,j

∫ ti

ti−1

∫ xj+1

xj−1

|�h − �
i
h|dxdt

≤ C

⎛
⎝∑

i,j

∫ ti

ti−1

∫ xj+1

xj−1

|�h − �
i
h|2dxdt

⎞
⎠

1/2

.

In the rectangle [xj−1, xj+1] × [ti−1, ti), we solve the Riemann problem, i + j
even, with �l, �m, and �r as the left state, intermediate state, and right state of
�(x, t) in the Riemann solution, respectively. Since we choose k = h

10(1+| ln h|) and
λ = �

� ± 1 ≤ M(T ) + β| lnh| + 1, then, when h ≤ h0(T ), the ratio of the interval of
left state and l = 2h, and the interval of right state and l = 2h are both bigger than
1
3 . For any given δ > 0, there are two cases.
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Case 1. The ratio of length of the interval of intermediate constant state and
l = 2h is smaller than δ and
(i) σ1 < 0, σ2 > 0, where σ1 and σ2 are the speeds of 1-shock and 2-shock waves,
respectively. We have ∫ xj+1

xj−1

|�h − �
i
h|2dx ≤ Cδh;

(ii) Otherwise, by Lemma 6.1,∫ xj+1

xj−1

|�h − �
i
h|2dx ≤ 2h

(
δ(�l − �m)2 + δ(�r − �m)2 + (�l − �r)2

)

≤ C

(
δh+

∫ xj+1

xj−1

(�i
h − �i

j)
2dx

)
.

Therefore, we have

∑
i,j

∫ ti

ti−1

∫ xj+1

xj−1

|�h − �
i
h|2dxdt ≤ Cδ + Ck ≤ Cδ + Ch.

Case 2. The ratio of length of the interval of intermediate constant state and
l = 2h is bigger than δ. By Lemma 6.1,

∑
i,j

∫ ti

ti−1

∫ xj+1

xj−1

|�h − �
i
h|2dxdt ≤ C

∑
i,j

k

∫ xj+1

xj−1

∑
|ε(�i

h)|2dx

≤ C
∑
i,j

h

∫ xj+1

xj−1

∑
|ε(�i

h)|2dx

≤ Cδ−1h
∑
i,j

∫ xj+1

xj−1

(�i
h − �i

j)
2dx ≤ Cδ−1h,

where
∑ |ε(�i

h)| denotes the total jump strengths of �h(x, t) across shock waves in
[xj−1, xj+1] × [ti−1, ti). Hence,

|A3(ψ)| ≤ C(δ−1h+ δ)1/2 ≤ Cδ1/2 as h→ 0.

Thus, for any small δ, A(ψ) ≤ Cδ1/2 as h tends to zero.
Furthermore, using the dominated convergence theorem and∫ ∞

1

(
�h(x, 0) −�0(x)

)
ψ(x, 0)dx = 0,

we conclude
(6.7)∫ ∞

0

∫ ∞

1

(
�∂tψ +

(�2

�
+ �
)
∂xψ +

N − 1
x

�ψ

)
dxdt+

∫ ∞

1

�0(x)ψ(x, 0)dx = 0.

5. Now we show the entropy inequality. For every nonnegative function ψ ∈
C∞

0 (Π) with ψ(1, t) = 0, there exist L > 0 and T > 0 such that suppψ ⊂ [1, L)×[0, T ).
For entropy pair (η, q) in (2.7) with ξ ∈ (−1, 1), we consider the identity:∫ ∞

0

∫ ∞

1

(
η(vh)∂tψ + q(vh)∂xψ

)
dxdt = A(ψ) +B(ψ) +R(ψ) + Σ(ψ) + S(ψ),
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where A(ψ), R(ψ), Σ(ψ), and S(ψ) are similar to A(ψ), R(ψ), Σ(ψ), and S(ψ) in
Step 4, respectively, and

B(ψ) = −
∫ ∞

1

η(vh(x, 0))ψ(x, 0)dx.

Since η is a convex entropy for ξ ∈ (−1, 1) and ψ ≥ 0, then Σ(ψ) ≥ 0 and

A(ψ) =
∑
i,j

ψi
j

∫ xj+1

xj−1

(
η(vi

h) − η(vi
j)
)
dx+

∑
i,j

∫ xj+1

xj−1

(
η(vi

h) − η(vi
j)
)
(ψi − ψi

j)dx

≥
∑
i,j

∫ xj+1

xj−1

(
η(vi

h) − η(vi
j)
)
(ψi − ψi

j)dx

≥ −Chα− 8
9 for

8
9
< α < 1.

As the argument in Section 5, we have

S(ψ) ≥ −Ch,
R(ψ) =

∑
i,j

∫ xj+1

xj−1

(
η(vi

h) − η(vi
h)
)
ψ(x, ti)dx+

∑
i,j

∫ xj+1

xj−1

(
η(vi

h) − η(vi
h)
)
ψ(x, ti)dx

≥ −C(1 + | lnh|)hβ
1−|ξ|
1−ξ2 −1

−k
∑
i,j

∫ xj+1

xj−1

(∫ 1

0

∂�η(v
i
h + θ(vi

h − v
i
h))dθ

)
V2(v

i
h)ψidx.

Therefore,

(6.8) ∫ ∞

0

∫ ∞

1

(
η(vh)∂tψ + q(vh)∂xψ

)
dxdt

+
∑
i,j

k

∫ xj+1

xj−1

(∫ 1

0

∂�η(v
i
h + θ(vi

h − v
i
h))dθ

)
V2(v

i
h)ψidx

+
∫ ∞

1

η(vh(x, 0))ψ(x, 0)dx

≥ −Chα− 8
9 − Ch− C(1 + | lnh|)hβ

1−|ξ|
1−ξ2 −1 for β

1 − |ξ|
1 − ξ2

> 1.

Note that

vh(x, 0) → v0(x), vh(x, t) → v(x, t), vh(x, t) → v(x, t) a.e. as h→ 0.

Then we let h→ 0 in (6.8) to conclude the following entropy inequality:∫ ∞

0

∫ ∞

1

(
η(v)∂tψ + q(v)∂xψ + ∂�η(v)

N − 1
x

�ψ

)
dxdt

+
∫ ∞

1

η(v0(x))ψ(x, 0)dx ≥ 0.(6.9)

It is easy to check that (6.4), (6.7), and (6.9) imply (1.10), (1.11), and (1.13).
This completes the proof.



SPHERICALLY SYMMETRIC SOLUTIONS TO THE EULER EQUATIONS 237

7. Global entropy solutions to the Euler-Poisson equations. In this sec-
tion, we develop the shock capturing scheme in Sections 3–6 to construct spherically
symmetric entropy solutions to the Euler-Poisson equations. For concreteness and
from physical motivation, we focus on the domain {(�x, t) ∈ RN × R+ : 1 ≤ |�x| ≤ 2}
in this section; the analysis extends to any domain {(�x, t) ∈ RN ×R+ : 0 < ε ≤ |�x| ≤
L ≤ ∞}.

First, the solution of the Poisson equation is given by

(7.1) φ(x, t) =
∫ x

1

1
sN−1

(∫ s

1

yN−1(ρ(y, t) −D(y))dy + Φ(t)
)
ds+ φ(1, t),

where

(7.2) Φ(t) =
φ(2, t) − φ(1, t) − ∫ 2

1
1

sN−1

(∫ s

1
yN−1(ρ(y, t) −D(y))dy

)
ds∫ 2

1
1

sN−1 ds
,

φ(1, t) and φ(2, t) stand for the applied bias at x = 1 and x = 2. Then system (1.6)
for isothermal fluids becomes

(7.3)
∂tρ+ ∂xm = −N−1

x m,

∂tm+ ∂x(m2

ρ + ρ) = −N−1
x

m2

ρ − m
τ

+ 1
xN−1

(∫ x

1
yN−1(ρ(y, t) −D(y))dy + Φ(t)

)
ρ,

with the following initial-boundary conditions:

(7.4)
{

(ρ,m)|t=0 = (ρ0(x),m0(x)), 1 ≤ x ≤ 2,
m|x=� = 0, � = 1, 2.

As for the Euler problem, we set

� = xN−1ρ, � = xN−1m.

Then (7.3) becomes
(7.5)

∂t�+ ∂x� = 0,
∂t� + ∂x(�2

� + �) = N−1
x �− �

τ + 1
xN−1

(∫ x

1
(�(y, t) − yN−1D(y))dy + Φ(t)

)
�.

Theorem 7.1. Suppose that the initial-boundary data satisfies the conditions:

0 ≤ ρ0(x) ≤ C0

xN−1
, |m0(x)| ≤ ρ0(x)

(
C0 + | ln(xN−1ρ0(x))|

)
,

for some positive C0, and φ(1, t), φ(2, t) ∈ L∞([0,∞)). Let D(x) ∈ L1([1, 2]). Then
there exists a global entropy solution (ρ(x, t),m(x, t)) of the initial-boundary value
problem (7.3)–(7.4) satisfying that, for any T ∈ (0,∞),
(7.6)

0 ≤ ρ(x, t) ≤ M̃

xN−1
, |m(x, t)| ≤ ρ(x, t)(M̃ + | ln(xN−1ρ(x, t))|), 0 ≤ t ≤ T,

for some M̃ = M̃(T ) > 0.

Proof. 1. We first develop the shock capturing scheme in Sections 3–6 to construct
the approximate solutions of (7.3)–(7.4).
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Let h > 0 be the space mesh length so that there exists an integer J such that
Jh = 1. We partition the interval [1, 2] into cells with the jth cell centered at xj = 1+
jh, j = 0, 1, 2, ..., J . To ensure the Courant-Friedrichs-Lewy (CFL) stability condition,
we choose the time mesh length

(7.7) k =
h

10(1 + | lnh|) .

We then set ti = ik.
As for the Euler equations, to ensure the CFL condition, we employ the cut-off

technique so that the approximate density functions stay away from vacuum by hβ ,
starting from the initial data:

�0 = max(�0, h
β), �0 = �0.

Let v0 = (�0, �0). We define

v(x, 0 + 0) =

⎧⎨
⎩

v0
j for xj−1 ≤ x ≤ xj+1, j ≥ 4 even,
v0
2 for 1 ≤ x ≤ x3,
v0

H0−1 for xH0−2 ≤ x ≤ 2,

where v0
j is the average value of the function v0 in each cell:

v0
j =

1
2h

∫ xj+1

xj−1

v0dx, j is even and j ≥ 4,

v0
2 =

1
3h

∫ 1+3h

1

v0dx, v0
H0−1 =

1
1 − (H0 − 2)h

∫ 2

1+(H0−2)h

v0dx,

where

Hi =
{
J if J + i is odd,
J − 1 if J + i is even.

Then we solve the Riemann problem (2.5) in the region R1
j ≡ {(x, t) : xj ≤ x ≤

xj+2, 0 ≤ t < t1}, j ≥ 2, with Riemann data:

vh|t=0 =
{
v0

j , x < xj+1,
v0

j+2, x > xj+1, j = 2, 4, ....

and the lateral Riemann problem (2.6) in {(x, t) : 1 ≤ x ≤ x2, 0 ≤ t < t1} with
Riemann data:

vh|t=0 = v0
2, 1 < x ≤ x2; �|x=1 = 0,

and the lateral Riemann problem in {(x, t) : xH0−1 ≤ x ≤ 2, 0 ≤ t < t1} with
Riemann data:

vh|t=0 = v0
H0−1, xH0−1 ≤ x < 2; �|x=2 = 0,

to obtain vh(x, t), 0 ≤ t < t1.
We set

vh(x, t) = vh(x, t) + Ṽ (vh(x, t))t, 0 < t < t1,
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where Ṽ = (V1, Ṽ2) =
(
0, N−1

x �+ 1
xN−1 (

∫ x

1
(�(y, t) − yN−1D(y))dy + Φ(t))�− �

τ

)
.

Suppose that we have defined approximate solutions vh(x, t) for 0 ≤ t < ti. Then
we set

(7.8) �h(x, t) = max(�h(x, t), hβ), �h(x, t) = �h(x, t), for ti−1 ≤ t < ti.

We define v(ti + 0) as follows: When i ≥ 1 is odd,

v(ti + 0) =

⎧⎨
⎩

vi
j for xj−1 ≤ x ≤ xj+1, j ≥ 3 odd,
vi
1 for 1 ≤ x ≤ x2,
vi

Hi−1, for xHi−2 ≤ x ≤ 2,

and, when i ≥ 2 is even,

v(ti + 0) =

⎧⎨
⎩

vi
j for xj−1 ≤ x ≤ xj+1, j ≥ 4 even,
vi
2 for 1 ≤ x ≤ x3,
vi

Hi−1 for xHi−2 ≤ x ≤ 2,

where vi
j is the average value of the function vh(x, ti − 0) in each cell as follows:

When i is odd,

vi
j =

1
2h

∫ xj+1

xj−1

vh(x, ti − 0)dx, j ≥ 3 odd,

vi
1 =

1
2h

∫ 1+2h

1

vh(x, ti − 0)dx, vi
Hi−1 =

1
1 − (Hi − 2)h

∫ 2

1+(Hi−2)h

vh(x, ti − 0)dx,

and, when i is even,

vi
j =

1
2h

∫ xj+1

xj−1

vh(x, ti − 0)dx, j ≥ 4 even,

vi
2 =

1
3h

∫ 1+3h

1

vh(x, ti − 0)dx, vi
Hi−1 =

1
1 − (Hi − 2)h

∫ 2

1+(Hi−2)h

vh(x, ti − 0)dx.

Then we solve the Riemann problem (2.5) in the region Ri
j ≡ {(x, t) : xj ≤ x ≤

xj+2, ti ≤ t < ti+1} with initial data:

(7.9) vh |t=ti
=
{
vi

j , x < xj+1,
vi

j+2, x > xj+1,

for j ≥ 2 even when i is even and for j ≥ 1 odd when i is odd, and the lateral Riemann
problem (2.6) in {(x, t) : 1 ≤ x ≤ x2, ti ≤ t < ti+1} when i is even with the Riemann
data:

(7.10) vh |t=ti
= vi

2, 1 < x ≤ x2; �|x=1 = 0,

and in {(x, t) : 1 ≤ x ≤ x1, ti ≤ t < ti+1} when i is odd with the Riemann data:

(7.11) vh |t=ti
= vi

1, 1 < x ≤ x1; �|x=1 = 0,

and for the lateral Riemann problem in {(x, t) : xHi−1 ≤ x ≤ 2, ti ≤ t < ti+1} with
the Riemann data:

(7.12) vh |t=ti
= vi

Hi−1, xHi−1 ≤ x < 2; �|x=2 = 0,
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to obtain vh(x, t), ti ≤ t < ti+1.
Then we set

(7.13) vh(x, t) = vh(x, t) + Ṽ (vh(x, t))(t− ti), ti ≤ t < ti+1.

Then vh = (�h(x, t),�h(x, t)) with

�h(x, t) = max(�h(x, t), hβ), �h(x, t) = �h(x, t)

are the approximate solutions.
2. Notice that Ṽ involves the nonlocal term as

∫ x

1
�(y, t)dy.

First, the conservation law of mass in (7.5) and �|x=� = 0, � = 1, 2, implies

(7.14)
∫ 2

1

�
h
(x, ti + 0)dx =

∫ 2

1

�
h
(x, ti+1 − 0)dx =

∫ 2

1

�h(x, ti+1 − 0)dx.

Since �h(x, t) are the cut-off functions of �h(x, t), we have∫ 2

1

�h(x, ti+1 − 0)dx ≤
∫ 2

1

�h(x, ti+1 − 0)dx+ hβ .

For the initial data, we have∫ 2

1

�
0
dx =

∫ 2

1

�0dx ≤
∫ 2

1

�0dx+ hβ .

Therefore,

(7.15)
∫ 2

1

�h(x, ti+1+0)dx =
∫ 2

1

�h(x, ti+1−0)dx ≤
∫ 2

1

�0dx+
T

k
hβ ≤

∫ 2

1

�0dx+C.

Lemma 7.1. Suppose that (�0(x),�0(x)) satisfies the following conditions:

(7.16) 0 ≤ �0 ≤ C0, |�0(x)| ≤ �0(x)(C0 + | ln �0|),
then, for any given T > 0, (�h,�h) are uniformly bounded in the region {(x, t) : 1 ≤
x ≤ 2, 0 ≤ t ≤ T}; that is, there exists M̃ = M̃(T ) > 0 such that

0 ≤ �h(x, t) ≤ M̃, |�h(x, t)| ≤ �h(x, t)(M̃ + | ln �h(x, t)|).

This can be seen as follows. Let w(x, t), w(x, t), w(x, t), z(x, t), z(x, t), and z(x, t)
be defined as in (4.3). For ti ≤ t < ti+1, (7.13), (7.15), and Lemma 2.1 imply that

(7.17)

wh(x, t) = wh(x, t)(1 − t− ti
2τ

) − zh(x, t)
(t− ti)

2τ

+
(
N − 1
x

+
1

xN−1

∫ x

1

�(y, t)dy − 1
xN−1

∫ x

1

yN−1D(y)dy +
1

xN−1
Φ(t)

)
×(t− ti)

≤ sup
x
wh(x, ti + 0)(1 − t− ti

2τ
) − inf

x
zh(x, ti + 0)

t− ti
2τ

+ Ck,

zh(x, t) ≥ inf
x
zh(x, ti + 0)(1 − t− ti

2τ
) − sup

x
wh(x, ti + 0)

t− ti
2τ

− Ck.
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The initial assumption (7.16) implies that there exists α0 > 0 such that

sup
x
w(�0(x),�0(x)) ≤ α0, inf

x
z(�0(x),�0(x)) ≥ −α0.

It is easy to check that, for the Riemann invariants corresponding to the cut off
functions, we also have

w(�0(x),�0(x)) ≤ α0, z(�0(x),�0(x)) ≥ −α0.

For 0 ≤ t < t1, by the properties of Riemann invariants in Lemmas 2.1 and 2.2, we
have

w(�
h
(x, t),�h(x, t)) ≤ α0, z(�

h
(x, t),�h(x, t)) ≥ −α0.

By (7.17), we get

wh(x, t) = w(�h,�h) ≤ α0 + Ck, zh(x, t) = z(�h,�h) ≥ −α0 − Ck.

Then the same procedure yields that, for 0 ≤ t < T ,

wh = w(�h,�h) ≤ α0 + CT, zh = z(�h,�h) ≥ −α0 − CT,

which implies that there exists M̃ = M̃(T ) > 0 such that

(7.18) 0 ≤ �h(x, t) ≤ M̃, |�h(x, t)| ≤ �h(x, t)(M̃ + | ln �h(x, t)|), 0 ≤ t ≤ T.

Again, with the uniform bounds for the approximate solutions in {(x, t) : 1 ≤
x ≤ 2, 0 ≤ t ≤ T}, there exists h0 = h0(T ) > 0 such that, when h ≤ h0, the
CFL condition holds, which implies that the approximate solutions are well-defined
in {(x, t) : 1 ≤ x ≤ 2, 0 ≤ t ≤ T}.

The rest part of the proof is similar to the proof of Theorem 1.1 so that we omit
it here.
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