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ASYMPTOTIC EXPANSIONS OF EXPONENTIAL INTEGRALS
AND NEWTON DIAGRAMS *

STEPHANE ROSSIGNOL'

Abstract. We study the asymptotic expansion, as A — 07T, of integrals of the form JHx(A) =
J exp(H(z)/\).x(z)dz , where H and x are smooth from RP to R, H has a unique (degenerate)
maximum at 0, x has compact support a neighborhood of 0.

If p = 2 or if the Newton Diagram of H contains only one facet, we give an algorithm to compute
explicitely the complete asymptotic expansion of Jgr 4 (A). In the general case, we show how to write
JH,x(X) as a linear combination of simpler integrals, involving only the fundamental part of H. We
give an equivalent of the first term of the expansion of Jy 4 ()), and specify the exact form of this
first term under a simple additional condition.

1. Introduction. Computations involving integrals of the type
T () = / exp(H (2)/N).x(x)dx

as a small parameter \ tends to 0T, appear very often in analysis and in probability.
For x and H smooth, let us recall that Laplace’s method shows that for the asymptotic
expansion of J(\), the major contribution comes from neighborhood of points where
H attains its absolute maximum. We will assume in this article, that there is a unique
such point, which will be 0 to simplify, with H(0) = 0. We have then henceforth,
H(z) < H(0) =0 for all x € RP, H of absolute isolated maximum at 0. x and H will
be in C*°(IR?,R), and x with compact support a neighborhood of 0. H’(0) = 0 and
H”(0) <0.
H”(0) negative definite is the so-called nondegenerate case. Under this hypothesis,
Morse’s lemma is valid, the asymptotic expansion is known and easily computable
(see Combet [3] p.6, or Wong [14] p.495).
If the rank of H”(0) is between 1 and p — 1, one can dissociate a degenerate part and
a nondegenerate part (see Tougeron’s lemma, in Combet [3] p.30-34). That’s why we
will only study the degenerate case with H”(0) = 0.
In Arnold-Varchenko [2] and Varchenko [12], is shown the existence of a complete
asymptotic expansion in powers of A and InA. It is based on toric resolutions of
singularities, but for analytic H only, and especially the proof is not constructive.
The computation of the coefficients then is very difficult. To compute them explicitly,
it seems necessary to avoid desingularisation. It is what Vasil’ev does, he gives the first
term, for analytic functions. Dostal and Gaveau [5] give the first term for a polynomial
function H with negative coeflicients, when x = 1, under the hypothesis that at most
two faces of the Newton polyhedron intersect the axes bissectrice. Kaminski and Paris
[8], using Melling-Barnes integrals, give the expansion for a class of functions if p = 2
or p = 3. Denef and Sargos [4] obtain information related to the Newton Polyhedron
on the poles of [ f3(x)p(x)dx where f§ = max(f*,0), using change of variables and
dissections in IRP.

We provide an algorithm to compute the complete sequence of the coefficients
of the expansion when p = 2 or when the Newton diagram of H has only one facet
(Theorem 3). Otherwise, Theorem 1 shows that the asymptotic expansion of Jg y (A)
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can be obtained from that of simpler integrals involving only the fundamental part of
H. Theorem 2 gives an equivalent of the first term. The coefficient of this first term
is computed under a simple additional condition.

We will assume that x and H are smooth functions from IR? to IR, with x of
compact support a neighborhood K of 0, and H of unique isolated absolute maximum
at 0. The other hypotheses will be relevant to the Newton diagram of H at 0.

Let us recall that if ~H(z) ~ >_ cn» auz” as x — 0 is the Taylor series of H at
0, its Newton polyhedron II(H) is the convex hull of {x € NP \ {0} ;a, # 0} + RY |
its Newton diagram A(H) is the union of the compact faces of II(H).

We show (see Theorem 3) that if H is convenient, of nondegenerate principal part
(in a meaning precise later), then H has the asymptotic expansion, as A — 0T

N(k)

TN ~ Y > aXF.(In 2!
k 1=0

where we explain how to compute explicitly the coefficients ¢y ; if p = 2 or if A(H)
contains only one facet. The coefficients c;; will be functions of x and H, and
especially of the Newton polyhedron of the phase H (I is here an integer, and the
real k form an unbounded increasing sequence). They can be computed by applying
successively Propositions 1 to 7. These propositions provide an algorithm to evaluate
the coefficients.

This algorithm is a multistep process of simplification of the integral Jg ()
when H and y satisfy the Hypothesis H1. It contains 2 main parts:

- First, Propositions 1 to 5 reduce the problem to the study of L(6,~,P) =

Jgr 27 H(In x)v.exp(Pg\I))dx where P is a polynomial of Newton Diagram A(H)
"

(more precisely under Hypothesis HP). These 5 propositions are used to prove Theo-
rem 1.

- Second, Propositions 6 and 7 give the computation of the asymptotic expansion
of L(6,~, P), when (0, , P) satisfies Hypothesis HP, if p = 2 or if the Newton diagram
has only one facet.

In Proposition 1 (truncation), the integral is replaced by one taken over a small
ball B(d) centered at the origin. In Proposition 2 (approximation of the amplitude)
is shown that the amplitude y can be replaced by the first terms of its Taylor series
at 0. Proposition 3 (reduction of the phase) replaces the phase function H by its
principal part H , i.e. the terms of its Taylor series coming from its Newton diagram.
Proposition 4 (extension of the domain) simply removes the bound B(J).

Proposition 5 allows to simplify H by removing the part of H coming from a facet
of A (except for the vertices). Applying Proposition 5 several times leads to integrals
with phases arising from vertices and individual facets of A.

Proposition 6 allows to remove one vertex of the Newton diagram A of P (when
p = 2). More precisely, L(6,v, P) is written as a linear combination of integrals of
the same type, but with Newton diagram A* having one vertex (and one facet) less
than A. This procedure can be reiterated, to remove progressively the vertices, until
having integrals of the type L(0,~, P) with P of Newton diagram with only one facet.

This easy case is solved by Proposition 7 (for any p > 2).

This paper is organized as follows. In Section 2 we give the most important
definitions, we state the theorems and detail in Propositions 1 to 8 the algorithm of
simplification of the integral and of computation of the coefficients of the asymptotic
expansion. The proofs of Propositions 1 to 5 are given in Section 3. Proposition 6
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is proven in Section 4 and Proposition 7 in Section 5. In Section 6 we develop an
example of calculus to make easier the understanding of the algorithm.

2. Statement of the results. In this section we first introduce the most im-
portant definitions. After stating our theorems, we give an algorithm of simplification
of Ju(A), then explain how it is possible to remove progressively the vertices of
the Newton diagram (for p = 2). Finally, we show how to compute the complete
asymptotic expansion when the Newton diagram has a unique facet (for any p).

2.1. Definitions and notations. Henceforth H is a smooth function on IR?,
with H(0) =0, and H(z) <0 for any z € RP. We recall first a few definitions.

2.1.1. Newton polyhedron and Newton diagram. For z = (z1,...,x,) €
RP, = (p1,..., pp) € NP, we set ot = [[0_, «t".
Let B C IN? \ {0}.
- The Newton polyhedron of B is II(B) = Conv(B + R’ ). It’s a convex polyhedron.
- The Newton diagram A(B) of B is the union of the compact faces of II(B).
- A is said to be a Newton diagram if there exists B C IN? \ {0} such that A = A(B).
- Let us put then Sa = {u € IN? ; uu vertex of A} (often denoted simply by S)
- The cone C(B) generated by a part B of IR is the set of linear combinations of
elements of B, with non negative coefficients. The interior of C(B) is denoted by
intC(B).
- A face F of A is the intersection of A with any supporting hyperplane.
If I(n) =5 d;p; = 1 is the equation of such an hyperplane, then for any u € II,
(W)=l peFandi(p) >1 puecll\ F
- A facet is a face of codimension 1.

2.1.2. Newton diagram of a function, convenient functions. Recall H €
C*>*(RP,R), with H(0) = 0, and consider its Taylor series at the origin H(z) ~
2 ey Gt
- The support of H is 3(H) = {p € IN? ;q, # 0}.

- The Newton polyhedron II(H) and the Newton diagram A(H) of H are the Newton
polyhedron and the Newton diagram of the support of H i.e. II(H) = II(X(H)) and
A(H) = A(X(H)).

- H is called convenient (or suitable) if A(H) intersects each coordinate axis.

- If H is analytic and have an isolated maximal point at 0, then H is always convenient
(see Vasil’ev [13] Prop 1.2). If H is non analytic, a counterexample is H(z,y) =
—2%(1 + exp(—1/y?)) smooth but not convenient.

- The polynomial H () => a,xt is called the principal part of the expansion of
H at 0, where A = A(H).

- For any subset B of A, we set Hg(z) = }_ ¢ p auz”

HEA

2.1.3. Index of a point. Let A = A(B) be a Newton diagram. For any facet
F of A, let us define Ap(p) = Y%_, dipt; , where >0 d;p; = 1 is the equation of the
hyperplane including F. The map u — Ap(u) is a linear form.

We set Aa(p) = inf(Ap(p); F facet of A). We will often write A(u) for Aa(u)
where A = A(H).

One can easily show that Aa (u+p') > Aa(u)+Aa(p') and that Aa(tp) = tAA(p)
fort € R4

Definition. Ap(p) is called the index of u with respect to the facet F. Similarly
Aa(p) is called the index of u with respect to the Newton Diagram A. Note that for
w=(1;..;1), Aa(p) is the index [ of the Newton diagram A (see Arnold [1] p.22-23).
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Index of a function. If x is a smooth function on RP, and A a Newton diagram,
we define the index of x with respect to A by
Aa(x) = inf{Aa(p); qu—1 # 0}
where x(2) ~ >_ cnw gua? is the Taylor series of x at 0.
If x(0) # 0, it is clear that Aa(x) = Aa(1)
Remarks. If p € C(F), Ap(p) = g((g;;\‘[)) where {N} = (0, ) N F,
and if 1 € C(A), Aa(p) = 0% where {P} = (0,) N A
d is here any distance.
Ax(p) =1 peA
Aa(p) > 1< pis 7above” A.

2.1.4. Nondegeneracy. (i) The principal part H of H is said to be R-
nondegenerate if VHp # 0 on (R*)?, for every face F' of A (see Arnold [2], Kouch-
nirenko [9]).

(i7) H is said to be extremally nondegenerate (in Vasil’ev [13] meaning), if there exists
¢ > 0, such that, for z in a neighborhood of 0 :

H(z) < —c. Z Tt

For every smooth function H on R?, with H(0) = 0 and H(z) < 0 for every = € R?,
the next lemmas are valid:

LEMMA 1. For every face F' of A, Hp(x) <0, Vax € RP.

LEMMA 2. Every vertex (' of A has even coordinates, and a,s < 0.
The next lemma gives 4 equivalent characterizations of the nondegeneracy.
LEMMA 3. For H principal part of H, let :
(u31) For any face F, Hrp <0 on (R*)P
(iv) For any face F, Hp <0 on (R*)? and H < 0 on (R*)?
Then (i),(i1),(i13) and (iv) are equivalent.

According to Lemma 3, the polynomial H principal part of H will be said to be
non degenerate if one of the equivalent conditions (i),(i%),(#1),(iv) is true.

2.1.5. First term of the expansion of L(f,~v,P). For a polynomial P, we
give in Lemma 4 an estimation of the first term of

L(0,~,P) = /R 271 (Inx)7. exp (P(x)) dx

A
which will be useful subsequently.

Hypothesis HP. We say that (6,~, P) satisfies the HP hypothesis if the following
assumptions hold:

e P is a polynomial which is its own principal part, i.e. denoting by A the
Newton diagram of P, we can write P as P(x) = P(z) = > e apzt'. More-
over we assume that P is non degenerate, P(z) < 0, P(0) = 0, but 0 is not
necessarily an isolated maximum of P, and P may not be convenient.

P
+
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e 0 €]0;+oo[?, with 6 € intC(A) and v € IN?.

LEMMA 4. Let Lp(0,7, P) = [pa°  .(Inz)7. exp ( Pl ) dx, for any Borel set B

of RE, where (0,7, P) satzsﬁes the HP hypothesis. Then
(i) LB(H v, P) is absolutely convergent.
(i) For any ¢ > 0,

Lp(8,7,P) = o(A42@=¢) 45 X —0F
In particular
L(8,7, P) = o(AM)

as soon as Aa(0) > M
(iii) If in addition 0 is in the interior of the cone generated by a facet F of A, then
as A — 0T

LB(e,y,P):CW(F).AAA“)).(lnA)%**%/Bxeflexp (Pr(z)) dz.(1+ o(1))

with Cy(F) = T17_(Ar(e;))" and e; = (1;0..;0),..,e, = (0;..;0; 1)

Remarks. We are mainly interested by L(6,~, P) = Lg(0,~, P) for B =TR".
(i) and (ii) remain true for the integral

L',v,P) = fRi 2?1 |(Inx)|" . exp (P(w)) dr and on the other octans, i.e. for

L7(0,7, P) = fyo lol’ ™" ()" exp (22 ) do

Indez of an integral. We call index of the integral L(6,~, P) the index Aa(f) of
0 with respect to the Newton Diagram A. It gives a useful order of magnitude of
L(0,v,P) as A — 0T.
Similarly, Aa () is the index of L'(6,~, P) and L”(6,~, P)

2.2. The theorems. We will now state our main results. Let us first give the
needed hypothesis on H and .

Hypothesis Hi. We say that x and H satisfy the H1 hypothesis if the following
assumptions are valid:
e x € C*(RP,R), with support K a compact neighborhood of 0
e H € C*(R”,R), of unique isolated maximal point at 0, with H(0) = 0.
Moreover, H is convenient, of non degenerate principal part H.
We will denote by >, e qu@” and 3°, o apa? the Taylor series at 0 of x and
H respectively.
Theorem 1 shows that Jg () has the same asymptotic expansion that a linear
combination of simpler integrals, involving only monomials coming from the vertices
and one facet of the Newton diagram of H.

THEOREM 1. Let x and H satisfy H1. Then for any M > 0, there exist constants
di.o and di g p (only finitely many different from 0), where k € IN, § € IN*P | F belongs
to the set of facets of A, such that as A — 0%

(@) T (A Z)\ kdee/ 2" Lexp (@) dz + o(AM)
b) Ja (A Z)\ kdeeF/ 2 Vexp (M) dz + o(\M)
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Here A is the Newton diagram of H, Hsup(z) = > ,csupau®” and H(z) =
Z[LGA a’#‘ru

Proof of Theorem 1. (a) comes from Propositions 1 to 4 applied successively.
Then, the repeated application of Proposition 5 leads to (b). O

Theorem 2 gives an equivalent of the first term of Jg , (A\), and specifies the exact
form of this first term under a simple additional condition.

Put £ = {6 € N?; gg_1 # 0 and Ax(0) = Aa(x)}. E is the set of monomials of
the Taylor series of y contributing to the leading term of the asymptotic expansion
of Ju (A). It is the part of the Taylor series of x of minimal indices with respect to
A. E is always finite.

Subsequently, we denote (0;...;0) € IN” by 0 and (1;...;1) by 1.

THEOREM 2. If x and H satisfy H1, the first term of the expansion of Ji (\)
as A — 0% can be computed with

(@) TN = > s |

9cE RP

A
2/ v exp <ﬁ> dx+o (/\AA(X))

A
Moreover, if for any 0 € E, the line (0;60) intersects only one facet of A, then

(0) Jrx(N) = X120 3 Zgp s / 27V exp (Hp (1)) da + 0 (X200
6cE R®

Remark. If x(0) # 0, then E = {1}, Aa(x) = Aa(1) and Theorem 2 becomes

(@) Jux(A) =qo /]Rp exp (@) dr +o ()\AA(l))

If the line (0;1) intersects only one facet F' of A, then

(B) Jarp (V) = Ma g, /

exp (Hp(z))dz + o ()\AA(U)
R?

Proof of Theorem 2. (a) is obtained with Propositions 1 to 4, taking M = A (x)
in Proposition 2 and Proposition 3.
(b) is due to Lemma 4 (iii) applied on (a). O

In the bidimensional case (or in the rather simple case of a Newton diagram
limited to a unique facet), the complete asymptotic expansion is given by Theorem 3.

THEOREM 3. Let Ju(\) = [exp(H(z)/A).x(x)dz where x and H satisfy H1
hypothesis. If p =2 or if A contains only one facet, then Ju ,(\) has the asymptotic
exrpansion :

N (k)
Tux(N)  ~ D> e (Ind) as A —0F
kE 1=0

The ¢y, are computed by applying successively to Jg (X) Propositions 1 to 7.
k here belongs to an increasing and unbounded sequence of real numbers, | € IN.
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Proof of Theorem 3. If A contains only one facet, Theorem 3 comes staightfully
from Proposition 7 applied to Theorem 1 (a).

If A contains several facets but p = 2, the repeated application of Proposition
6 to Theorem 1 (b) will allow to remove vertices of A, leading to the same type of
integral with a unique facet. The use of Proposition 7 is then sufficient to end the
proof. O

Note that the existence of this expansion was known for xy and H analytic (see
Combet [3], or Arnold-Varchenko [2], Varchenko [12]), but without real method to
compute the coefficients.

2.3. Algorithm of simplification of Jg , (A). The proof of Theorem 1 is ob-
tained by applying successively Propositions 1 to 5. These 5 propositions form an
algorithm of simplification of our integral Jg ().

For a better understanding of this algorithm, we recommend to follow the detailed
example in Section 6, while reading the propositions.

Subsequently, H and y are assumed to satisfy Hypothesis H1.

We put B(6) = {z € RP; ||z|| < ¢} for any § > 0.

2.3.1. Truncation. Let us first show that, as usual with Laplace’s method, in
[ exp(H(x)/\).x(z)dx the major contribution comes from a neighborhood of 0, the
point where H attains its greatest value:

PROPOSITION 1. For any 6 > 0 such that the ball B(§) is included in the support
K of x, there exists d > 0 such that, as A\ — 0T

/X(x)-exp(H(x)/A)da: :/

x(z). exp(H (x)/N)dx + O (efd//\)
B(6)

2.3.2. Approximation of the amplitude. It is shown that the asymptotic
expansion of Jg , (A\) to order M, is not modified if the beginning of the Taylor series
of x at 0 is put instead of x(x) :

PROPOSITION 2. Let Y 5 nw qox? = Y heN+r qo—12%71 be the Taylor series of x
at 0.
Then for each M € R, for § > 0 small enough, as A — 0T

/B(é) x(z).exp(H (z)/N)dx = Z q9_1/ 2% exp(H (z) /N dx + o(AM)

Aa(0)<M B(9)

where Aa(0) is the index of 6 with respect to the Newton Diagram A of H.

2.3.3. Reduction of the phase. If H # f], we will now prove in Proposition
3, that the phase H can be replaced by its principal part H.

More precisely, in fB(é) 29 exp(H (z)/\)dx = fB(é) 291 exp (w) dzx,

we must keep exp (@) (because H includes the leading terms of the Taylor series

- - k
of H), but we can expand exp (w) =>r % (w) , and forget the

terms corresponding to large k.



420 S. ROSSIGNOL

PROPOSITION 3. If 0 € N*P, M € Ry, there exist polynomials Ry and M' € IN,
such that for § > 0 small enough, as A\ — 0"

_ H(x)

6—1 201 M
x’" . exp E / Ry(x).exp | ——= | dz| + o(A
/B(é) ( )‘k B(9) ( A > W

M’ is the integer part of nio(M — Ax(6)).
Here mno=inf (Aa(p) —Lipe 2(H)\A(H)) >0
Ry (x) = %[EKAA( <M1 auT #F. In particular, Ry = 1.

7)o is the greatest number such that there is no point of the support of H strictly
between A and (1 + 79)A.

Developing Ry, can lead to terms which are o(AM). These terms can then be
neglected. To find these terms, one must evaluate the indices of their corresponding
integrals (see Lemma 4 (ii)).

Moreover, k = 0 gives fB(é) 291 exp (@) dz = o (A2®)=2) for all e > 0.

Ifk>1foralle >0

1 -1 H(x) _(\Aa(O)+kno—e
G /B(é) 2”7 Ry (x). exp (—/\ dr=o0 ()\ ) (1)

2.3.4. Extension of the domain. Proposition 4 allows to remove the bound
B(0) = {x e R [lz|| < 0}

PROPOSITION 4. Let § € IN*P, H the non degenerate principal part of H. There
exists d’ > 0 such that as A — 0%

2971 ex ﬁ(w) T = 2971 ex @ X efd’/)‘
/3(5) .p(}\)d /Rp .p<>\>d+0( )

It is clear now that if we apply successively Propositions 1 to 4, we obtain Theorem
1 (a).

2.3. 5 Simplification @ of facets. We want now to transform
Je 2% exp (H(w)) dx to prove Theorem 1 (b). This transformation will be

useful in particular to state Proposition 6.

If A has only one facet, fRP =1 exp (M) dx is straightly computed with

Proposition 7. If A has several facets, the support X(H ) H) of H includes the set S = Sa
of vertices of A, and possibly other points.

-1 S(H) \ S is empty or included in one facet F, the equation (b) of Theorem 1
is obtained, since here H=H SUF-

- If not, B(H)\ S is included in m different facets of A (and not less) with m > 2.
To obtain Theorem 1 (b), we must diminish this number from m to 1. This is the
use of Proposition 5, which enables us to decrease this number of facets from m to
m — 1 (with A being not modified). It will allow to write our integrals as a linear

combination of the same type of integrals [, 2?1 exp (HBT@)) dx with (Hp) \ S

included in m — 1 facets.
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It means that Proposition 5 allows to "empty” one of the facet of the New-
ton diagram of H. Its repeated application will lead to integrals of the type

Jro 21 exp M dx where F; is one facet of A, 8" € IN*P.

The example studied in Section 6 can help to understand this proposition.

PROPOSITION 5. Let B be a subset of X(H) \ Sa and 0 € N*P.

We assume that B is not included in one facet, i.e. B is included in m different
facets Fy,..., Fp, of A (and not less than m), with m > 2.

Then for any M € Ry, there exists M” € IN such that

/ 2071 exp (LSUB(J:)) dx
RP A

k1

v
=o(A\M) + Z ! i/ 201 Z a,z" exp Hsup, (@) dx
k1=0 Akl e ! A

HEAL

ko

M
1 1 0—1 m HSUBQ('r)
+2Wk_2!/ﬂpx Zaux exp — dx
ko=0 HEAg
k] k2

SRS Hup, (@)
— 0—1 I n SUBg
Z Z \k1+kz ]ﬁ”@!/ x Z apx Z A exp( 3 )dx

k1=0k>=0 RP HEA, HEAS

where Al =BnN (Fz \ Uj;ﬁiFj), 1= 1,2
andBlzB\Al, BQZB\AQ, BOZB\(AluAQ)
M?” is the integer part of %(M — AA(9)) , where n = inf(n1,m2), m >0, n2 >0
are defined fori=1;2 as:
N = inf (AFJ(M) —Liue A; and Fj 7& Fz)
H(x)

Except a term o(AM), fRP 29~ exp (T) dx has been written as a linear com-

bination of the same type of integrals, but with in exponent a polynomial Hgyp,,
where B; is included in at most m — 1 facets. Reiterating this procedure leads to
integrals fRP 2971 exp (HS+M dx where F is a facet of A.

It means that the repeated application of Proposition 5 on

Je 2?7 exp (@) dzx gives Theorem 1 (b).

2.4. Removal of vertices (p = 2). According to Theorem 1, we have just now
to evaluate the expansion of pr 2?1 exp (M) dx , F any facet of A, S the set
of vertices of A. If S C F, Proposition 7 leads to the calculation of the expansion.

For p = 2, if some vertices don’t belong to F' (i.e. A # F') we show now that we
can remove them. It is the matter of Proposition 6, which allows to remove one of the
bordering vertices of A (i.e. belonging to the boundary of C(A)). It is sufficient to
study fRi %=1 exp (M) dx because the behavior of the integrals on the other

octans are of course similar. We will in fact study a more general integral, i.e.

L(0,v,P) = /R 2’ 1(lnx)7. exp (@) dx

where (0,7, P) satisfies the HP hypothesis, with p = 2.
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Section 6.6 gives an example of use of Proposition 6, which can help to understand
it.

PROPOSITION 6. Assume that (6,7, P) satisfies hypothesis HP, and that there
exists a facet F with P(x) =} c s p au@” i.e. the support of P is included in SUF.
Let v be a bordering vertex of A (i.e. v ¢iniC(A)), v ¢ F.

We set P*(x) = 3 ca\ (v} W = X cn- auz” where A™ is the Newton diagram
of P*. Then for each M > 0, there exist constants c; and c;lyl such that, as A — 0T

L(0,7,P) = oA\M) + > AT L(033 75 P) + > X (InA)!
i gl
where the sums have only a finite number of terms, i € IN, [ € IN. A* contains one
verter (and one facet) less than A. (0;;v:; P*) satisfy the HP hypothesis.

Here are the main steps of the calculus:
1) Write L(0,, P) as a linear combination of Mg, where Mp is given in Equation

(12).
2) Put

Mp = /R+ [ - ¢A(w;f)fx(w;t)dt] dw

with ¢ and fy defined in (19).

3) Use the asymptotic expansion of fy as ¢ — +oo in (20) to obtain the decom-
position Mg = I + Iy + I5 given in (22), and the value of as(\; w).

4) Set n = ¢~ + (—B2(v)) R, where R is the integer part of 1+ %ﬁ;g)
I3 = o(AM).

5) Compute I = fR+ [E::—g as(\,w) < (Int)kt7°7% ;g5 >| dw, then come back,
if necessary, to the variable x.

6) Compute the cs(\, w) and then I, = — fR+ [0 es(Aw) <8¢ 19y >] dw

7) Write the final expansion of L(8,~, P).

to have

2.5. Newton Diagram with a unique facet (p > 2). If p = 2, Proposition
6 shows how to remove one vertex v, with v /€F. Its repeated application will
lead to integrals L(6,~, Pr), i.e. where the Newton Diagram has only one facet F'.
Proposition 7 deals with this case for any p.

PROPOSITION 7. Assume that (0,7, P) satisfies Hypothesis HP, and that the
Newton Diagram A of P contains only one facet F (i.e. A = F). Then there exist
constants ¢; such that :

Yi+--+7p
L(0,7,P) = X 3" (A
=0

¢ 1s given by formula (40).
3. Proofs of Propositions 1 to 5.

3.1. Proofs of Lemmas 1 to 3.
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Proof of Lemma 1. Let I(n) = > d;u; = 1 be the equation of a supporting
hyperplane of F'. For any p € I, I(1) > 1 and {(u) =1 <= p € F.
For My large enough, since H is convenient, as z — 0

Dt ol Y )
()< Mo HESA

Now fix 2 € R?, and let ¢ > 0, with ¢ — 0

p P
H (edlml,. ,edpxp) = Z ay, H (Edjxj)w +o0 Z H ij
l(w)<My  j=1 neSA j=1
= Z a, e Mt 4o Z 2lm) e
(1) <Mo HESA
with [(p) > 1if p € Sa,s0oase — 0
H(ehay, .. etray,) = Z a,e'Wat 4 o(e)
I(p) <My
Z au Wk 4 Z aue' Wt 4 o(e)
l(p)=1 1<l(p)<Mo
=eHp(x) + o(e)
From H < 0 we conclude that Hp(x) < 0. O

Proof of Lemma 2. For p' a vertex of II, F' = {p'} is a face of A, then it satisfies
Lemma 1 :
Hp(xz) <0, Ve € R?, ie. aufx”/ <0, Vr € R?.
Thus a,s < 0, and we even have a,» < 0 since ' eIl
Let us show that p! is even.
au-(1,.1,-1,1,..,1)* <0 (here -1 is at the i*" place),
i.e. a,s(—1)* <0, which becomes (—1)#i > 0, thus i} is even. 0

Proof of Lemma 3.

o (i) = (iii) ?
We know that Hr < 0. If Hp vanishes at x € R*?, then VHf vanishes at x.
Then VHfr # 0 on R*™ = Hp never vanishes on IR*?.

o (iii) = (i) ?
F is in the hyperplane Zle dip; = 1.
For € > 0, Hp(eh 2y, .., e 2,) = doueF ap (et ay) . (eray)» = e. Hp(x)
VHp(ehzy, ..,edpmp) = ¢VHp(z) then VHp(x) = 0 =
VHp(ehay, .. etra,) =0
Thus if VHp vanishes on a point of R*P, it vanishes on a curve of limit 0 in
R*? (with Hr(0) = 0). Then Hp(xz) = 0 on this curve.

o (ii) = (iii) ? Setting g(z) = H(zx) + c. > ues e and gr(z) = Hp(z) +
c. ) gnp T, we see that g satisfies the same hypothesis than H, so gr < 0,
where Hp < gr < 0 in a neighborhood of 0 on R*? hence (4i7) is true.

e (iii) = (4i) : just apply in Vasil’ev [13], the Gindikin’s remark in the proof

of Theorem 1.5(2) with f = —H.
(iv) = (%) is obvious.
(#91) = (iv) 7 (it) and (i44) together imply (iv). O
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3.2. Proof of Lemma 4. Before proving Lemma 4, we give a change of variables
that will be useful afterwards.

3.2.1. Facet-system change of variables. A facet-system o = (u(1),.., u(p))
is a system of p independent vertices of a same facet F of A, the p(i) € INP.
Let us define the following change of variables, associated to the facet-system
0= (.u“(l)’ "7:u(p)):

T = (T1,..,Tp) — v(@) = (vgg), . 1}1()0)) or simply denoted by v,
where v; = 250 for z € R with D = det(u(1), .., u(p)) > 0 (otherwise the order
of these points is modified).

An elementary calculation gives the Jacobian J of this change of variables :

g=pr Uz .
[To: % Tlw [T

writing dr = dx1..drp, dv = dv;..dv,
Lemma 5 gives supplementary information on this change of variables, and links
it to the index Ap(u).

LEMMA 5. Let o = (u(1), .., u(p)) be a facet-system, the p(i) in F a given facet
of A.
(i) Then for each p € RP, there exists (p) € RP such that, for any x € RP:

at = P00 = o100 o) with  B() = (B, .., By(1))

and () = Aet(u(1), oo i = Vol + 1), pp)s 11 = 750> 1)1

(it) Moreover, Ap(p) = +5.3 4, Bi(n), ( Ap(p) is the index of p with respect to F).
F is a part of the hyperplane of equation B1(u) + .. + Bp(p) = D so :

forpell, (e F < Ap(pu)=1)and (ue I\ F < Ap(u) >1).

€ Conv(u(1), .., u(p)) <= (Ap(p) =1 and B;(u) = 0,V1)

3.2.2. Proof of Lemma 5. - First we prove (i). We want z* = v®®#) | where
P » .
0909 = T ()50 = [T (b))
j=1 j=1

then we must have
12
B= D Zﬂj(ﬂ)-ﬂ(j)
j=1

i.e. we want that

D.pi; = By ()i (1) + .. 4 Bp(p)-p1s(p), Vi € [1,p],
which is a linear system of p equations with p variables 51 (), .., Bp(1), with solutions

_ det (p(1), ., p(G = 1), Dpp, p(G + 1), -, 1(p))
det (p4(1), -, 1(p))

Bj(p)
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with D =det (u(1),..,u(p)), ie. :

Bi(p) = det (pu(1), o pu(3 — 1), 1, u(§ + 1), 0, 1(p))

- It remains to prove (i7).

uw= % > B;i(p).p(y) applied to the p = p(i) gives that the hyperplane including the
11(7) has the equation 5 3 8;(p) = 1. We have defined Ap(u) as the linear form such
that Ap(u) =1 is the equation of the hyperplane including F'.

Thus Ap(p) = 5 > B8j(n). O

3.2.3. Proof of Lemma 4. 1) Let us first prove this lemma for 8 € int(C(o)),
o a facet-system of a facet F' of A. We apply the transformation z — v(“) for the
facet-system o = (u(1),.., u(p)) of F.
Putting D = det (u(1), .., u(p)) and applying Lemma 5, we obtain :

Lp(0,7,P) = /Bexp % Z a oW | POt ﬁ (ln (vﬁ(ej)»w DP~ 1y
j=1

HEA

We set now u; = )\_%vi . We obtain

thus

Lp(8.7,P) = /\AF(Q)/

exp | 37 @A -1y 8 | 01 <1n (AAle)uﬂ(el)))”l
B

HEA
(1 ()\AF(EP)uB(eP)))% D" du 2)
_ i: i ( Zi )( I ) (mAAF(eﬂ)kl... (1nAAF<%>)k” AAF(©)
k1=0 kp=0 P

/ exp Z au)\AF(”)_lug(“) B0t (lnuﬁ(el))WPICl (lnuﬂ(e”))%ikp DP~tdu
B HEA

where in this last integral, Ap(u) —1=0for p € F, and Ap(u)—1 > 0for u € A\ F.
B3:(0) > 0 for every i since 6 € int(C(0)).
Thus, by dominated convergence, each integral in the right hand side of (2) tends to:

/ exp Z auuﬁ(”) P01 (lnuﬁ(el)yYﬁk1 (1nu5(e”))vpikp D=1y
B per

Let us briefly explain why there is dominated convergence here.
Since P is nondegenerate, there is ¢ > 0 such that

P(z) < —chﬂg —c Z M

pES pneESNF
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Then with our change of variables

p p

Z a#vﬁ(“) < —c Z WP < ,szﬁ(u(i)) - *szz‘D
HEA HESNF i=1 i=1
A RN 1 b - D
—1 L —=
S auAAr 091800 < -2 Z (ADui) - ‘CZ“i
HEA =1 i=1
and
w01 exp Z aug NAF =1y B0 ’(lnuﬁ(el))Mk1 (lnuﬁ(el’))%ikp
pHEA
P _ ok,
< uPOLexp (cZUP> (lnuﬂ(el))w1 " (lnuﬁ(ep)>7p i
i=1
which is clearly integrable on R”} since uPO)-1 = b u?iw), where 3;(6) > 0. Hence

the dominated convergence. An equivalent of L is then obtained by taking in (2) the
greatest possible values for the exponents of In A, i.e. :

P

Lp ~ AAr@) (1 \)nt-+m, H (Ap(e;))” / exp Z auPt | WPfO-1pr=igy
i=1 B ueF
p
= 3480 (1 1 TT (Ap(er)” / exp(Pp(z)).2"~1dz (3)
B

i=1

2) We now prove (i) and (ii) for any € such that (6,~, P) satisfy HP.

If 0 is not in the interior of the cone generated by p vertices of a same facet F' of
A, then 6 is in the intersection of several such cones. We can find 6" and 6” satisfying
this property, with 8 €]0’,6”[, arbitrarily close to 6. Thus

|Lp (0,7, P)| S/ 2?1 [In z|” exp <P§\x)> dr
B

/ P " P
< / 2% Vx| exp (ﬂ) dx —|—/ 2%~ Inz|" exp ( (:c)) dx
B A B A

where these 2 integrals are convergent according to Lemma 4 (i) applied on 6 and 6.
Hence Lp is convergent.
Moreover, for any € > 0,

[Lp(0,7, P)| < / 277 Ina]” exp <#) dx +/ 2”7 Inz|” exp (—Pf\x)) dx
B B

< const. ()\AAW)—% + )\AA(G”)_%)

according to Lemma 4 (ii) applied on 6 and ¢’.

As 0" and 0” can be chosen arbitrarily close to 6 (but not equal to ), then we
can chose them such that AA(0') > Aa(f) — § and Ax(67) > Aa(f) — 5. Hence
Lg(0,7, P) = o(A*2()
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3) Let us finally prove (iii) for 8 € intC(F), but such that there exists no facet-
system o with 6 € intC(o). In that case, there exist ', §” such that 8’ € intC(o’)
and 67 € intC(c”), 0 €]¢',07[, ¢’ and o” are 2 different facet-systems of F' with
Aa(0) = Aa(07) = Aa(0).

Let 0, = 0+ =2 and 9, = g + =00,
We see easily that for any n € IN*, 6/, "e th( ) and 60, € intC(0”), 6 €)6.,,0.],
AA(0)) = AA(Qn) A () and hmn 0! =1lim, 0, =0

Let B {x e Bz (lnz) < 2%(nz)’ < af (lnz) } and By = {z €
B;z? (Inz) < 2/(Inz)" < 2% (Inz)7}.

As 0 €)0,07[,0#0" and 0 £ 0.
We have Lg = Lp, + Lp, (i.e. we can’t have for instance 2 (Inz)” < z¢ (ln )7 <
2%(Inx) )

o <x & gftn@'=0) < g0
ie. 2% <2f o 2 < 2f
thus for any n

B; = {z € B;2%(Inz)" < 2%(Inz)” < a0n (Inx)7}

By = {z € B;2% (Inz)? < 2’(Inz)? < 2% (Inz)7}
which implies that

LB1 (92377]3) < LB1 (Q,V,P) < LB1 (9:”’)/’P)
and LBQ(G:N’Y;P) < LB2(97’77P) < LB2(9;7,”Y’P)

For any n € IN* stated, A > 0,

LB1 (9;”’}/,]3) LB] (0777P) < LB1 (9;7%13)
CE) NSO (INE 7 = O (F)Ma@(In NS 7 = O (F) M@ (In )=

where the left hand side tends to [, |z 001 ePr(®) gy as A — 0F

and the right hand side tends to [, 2|t ePr@dy as A — 0F
according to Lemma 4 (iii) applied to ¢/, and 6, .
So, for any n € IN*,

Lg, (0,v,P)
o —1 PF(ZE) B1\Yy")»
/Bl 1" s I ) A Ol N
Lp, (0,7, P) 0, —1 Pp(z)
AR S G ) MA@ (I N 7 /B [l et da

This is true for any n € IN*, thus since 6/, — 6 and 6, — 0 (as n — +o0):

0—1 P (w) LBl(977aP)
/31 [ e e < I AAS® (I )

Lp, (0,7, P) 0—1 Pp(x)
A SUP ) MG (I ) 7 /B e e d

This implies that

. Lg, (0,7, P) / 0-1 p
1 1 ) — F(gﬂ)d
NI A s, [

The same result holds on By (interverting #/, and 6,) so

: LB(97’Y7P) . 0—1 PF(I)
I ) A2 O (I A% _/ ol e de
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This ends the proof of Lemma 4. a

3.3. Proof of Proposition 1. K \ B(J) is a compact set not including 0, thus
H reaches there its maximum and this one is strictly lower than H(0) = max H = 0.
In other words, there exists d > 0 such that, for z € K'\ B(4), H(z) < —d < 0.
X is continuous on the compact set K \ B(d) hence |x(x)| < My, for a My € R.

—d
< exp (—) / Mydzx
A ) Jr\B(s)

3.4. Proof of Proposition 2. S is the set of vertices of A(H), A(8) = Aa(6)
the index of  with respect to A(H). We want to show that, as A\ — 0T

[ o 5 ] o (P2 s oy

A(O)<M

/ (). exp(H (2) /N dz
K\B(5)

According to the Taylor series of x at 0

x@) = Y g’ = = Y g’ =0 oM

A(6—1)<M A0)<M pes

thus it is sufficient to prove that, for § small enough

H
[t (B )ar =) for s
B(5) A

and that

0—1 H(z) _ M r _
/B(J)x .exp( y )da:—o()\ ) for A0—1)< M < A(H)

Let us apply Proposition 3.

The first term (i.e. the one of least degree in A) of fB(&) oM exp ( H(=) ) dzx (respec-
tively of [ BT 2971 exp (@) dz) in the formulation provided by Proposition 3 is
fB(&) 2 M exp (H(oc)) dx (respectively fB(a) 1 exp (H(x)) dx)
Now, by Lemma 4, it is known that this last integral is o(AM) because for p € S,
A(uM 4+ 1) > A(uM) = M. A(u) = M (respectively A(8) > M). O

3.5. Prgof of Proposition 3. Let M’ € IN. For all y € R, let Sy (y) =
e’ — fcw:/o It

We have [Syr(y)| < Jy|M +telvl

/B(é) 20" exp (@) dr — /B(é) 291 exp (ﬁiﬂ:)) Lexp <H(x) Aﬁ(%)) du
- M .
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(H(m) - ﬁ(m))‘
A

1) Let us first show that the second term in the right-hand side of (4) is o(AM).
Forr > 1,z € R”, let €, (z) = H(x) — X1 < a(u) <, @@

where :

S (H(m) - ﬁ(m))

<

A

. M'+1
<H<x> . H(x))’ o

H(x) = Z a,z” + e (x) = H(z) + e (2)
A(p)=1
We have assumed that H # H, so S(H) \ A(H) # 0.
Set 1o = inf (Aa(p) —1; p € Z(H) \ A(H)). no is clearly positive.
There exists no p in X(H) = {u € N?;q,, # 0} strictly between A and (1+19).A
, 1.e. satisfying 1 < A(p) < 1+ no.

Then for 2 € B(9), |e1(z)| < const. ZA(p):l |x|(1+no)u < const. Z/_LGSA |x\(1+no)u
|(H = H)(@)| = e (2)] < const. Y [a] 700
HESA
< const.( Z M) < const.| H (z)|* 0
HESA

by Lemma 3 since H is assumed to be non degenerate (and every vertex has even
coordinates). From this it follows that :
H(x) — H(x)
A

H H H )ik M1
! / 1 N
< const XM LS o)AMY (Xconst-H(m”HnO)

<
A - A
neSA

then for § > 0 small enough :

i1 o (@) H@) - A@)
/;w)x . €Xp < by >'SAP ( b\ > d

’ 1 ~
/(5) |m971| |t o) (M) oxpy (”\H(x)) dx

1
S COnSt.W Z
HESA

The powers of x are here: 0 — 1+ (1 +n9)(M’ + 1), for p € S C A. Each integral
has the index:

An (0 + (1 +n0) (M + 1)) > Aa(0) + (1 +m0) (M’ + 1) Aa ()
= Ax(0) + (1 +m0)(M"+1)
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According to Lemma 4, the integral on the left hand side of (5) is o(AM) if

Ar@) + (L +n0) (M +1) — (M'+1) > M

ie. if
M- A
M1 M= Aal0)
o
which is true if M’ is the integer part of %f@.
2) Set
]. ik
Ry(z) = H[ Z au "] (6)
1<A(p)<M+1

We want now to prove that these polynomials satisfy

. . k
1 1 H(x) H(z) — H(x)
H/B((;)me .exp< \ )( 3 ) dx
1 i

We know that

H(z)—H(z) 1 3

1<A(p)<M+1

aux” + epr1(x)

k

A~ k
H(x)— H(x 1
( )~ <>> S

1<A(p)<M+1
k—i

ﬁf;(’“) > at] (@)

1<A(u)<M+1

Let us show that the contribution of the second term is o(AM).
It is enough to prove that

1 ; i <
S [t R ey @) exp | S5 ) do ™
A* JB(s) g

is o(AM) as (A — 07), where here A(v(j)) > 1for 1 < j <k —i.

We know that |epr41(2)|" < const. |z(M+D1 |7 thus the index of the integral

. ) nweSa
in (7) is not lower than

AO+ M+ )i +v() + . vk —i)) > AO) + (M +1)i+k —i
=A0)+Mi+k>A0)+M+k>M+k
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which gives that (7) is o AMT¥) A7F = o(AM) as A — 0F
3) We prove now (1).
For k > 1,

1 0—1 H(x)
3 2" Ry(x)exp | —— | da
AP B(6) ) ( A
:;_l_ E const $0—1$y0)+“+14k)exp }{(x) da
AF N
v(1),..,v(k) B(9)

where the v(j) € 3(H) are such that v(j) > 1, i.e. v(j) > 1+ no.

The index of this last inte%ral is
An(0+ 2 v(i) = Aa(0) + 327 Aa(v(i) = Aa(0) + k(L +1m0)
According to Lemma 4 (ii), we have then, for any ¢ > 0,
S Loy 27 Bae) exp (152 ) de = 0 (WA O+ H0mI=0) Aok

=0 ()\AA(9)+kno—s) 0

3.6. Proof of Proposition 4. Let # € IN*P. There exists ¢ > 0, such that

0—1 ﬁ(f) / 0—1 —C L
. — 2 ]dzx < . — kol d
/lxlzé ‘.’E | exp ( /\ T S HxHZ(s ’.’L‘ ’ exp )\ Z X X

HESA

_ —c
:2”/ /L exp - E x| dx
2| >6,z€R”, A

from Lemma 3, because H is supposed to be non degenerate.

— 0—1 - :
Let us show thus that K(6) = flleZ&,zERix .exp (TC.Z%SA xﬂ) dx is

O(e=4).
Since H is convenient, there exist p vertices u(1), .., u(p) of A on the coordinate axes:
p(1) = (D1,0,..,0),..,u(p) = (0,..,0, D)), where the D; € IN*.

P
—c ‘
K(G)g/ 2%~ exp —.inD’ dx
2] >6,2€R. A
P e 2
< / 20 exp | —. 2Pi | dx

0

IN

for d2 > 0 small enough, because for d small enough, \xfj\ < d9 for each j implies
lz]] < 0.
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0, p
A= Ty exp (—c. Zu?) a’tdu

i=1

— \2i D 5 Z/ exp c.ujj-jj) uf—j du;. H/ eXp f)) .u(zﬁldui

< \Zi D o / exp ( € ubi ) exp <_—c.6 ) % du
Z D5, 2 ox"2) T
—+oo
H/ exp —c.au; ) =1 qu,

i#]

+oo
K(0) < A 7 exp (— 62) Z/ exp ( ) 5j_1duj
—+oo
H/ exp —c.au; ) iildui

i#]

= 77 >85,ueR?,

Each integral is convergent, because §; > 1 for each i, since § € IN*P. We thus obtain
K(0)=0(e=¥*) as A — 0 with d €]0; £6,[. 0

3.7. Proof of Proposition 5. We consider

/ exp (—HBUS(x)> e
R? A

where Hpys(z) = Z,ueBUS ayx?, with BN S = 0, B is included in m facets F1,...,
F,, and not less. We denote by A; the set of the elements of B which are only in the
facet Fj, i.e. A; = BN (F; \ U;j%iF;), i = 1;2. Since B is not included in less that m
facets, A, and Ay are non empty. Moreover we have AjnAg = 0.

Let us define

BliB\Al,BQZB\AQ, B():B\(AluAQ)

We have
H =
[ (2) e § S
R k1=0 ko=0
where
k1 ko
7 1 1 N HSUB (Z‘) 60—
Ly, gy = mm/ Z auxt Z a,zh exp (f‘) 20 ldx
1'ka! RP HEA, HEAS
1 1
N oy lhg! AR1TR2 Z Gr(1)-- Gl

v(1),..,v(k1)€A;

H /
Z Ayr (1) Ayl (ky) /Rp exp <SU%O($)> a7 vOF VD gy

vI(1),,v" (k2) €Az
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First, we want to show that if ky > M” and ke > M”, with M” large enough, then
Lk1,k2 = O()\]\/I).

Recall that the index of the integral (see the definition after Lemma 4) gives the
order of magnitude of this integral.

The index of

/ exp <M> -1, O+ V(D) g (8)
RP

is

inf Ap (30 + > V@) +0) =inf [4p (3 v®) + Ar (3 v'0) + 4r(0)]

> iI}f Tp + AA(G)

where

Tr =

ZAF +ZAF ]

For any facet F', Ap(v(l)) > 1 and Ap(v/(1)) > 1 thus T > k1 + ko
By construction of the A;, we have A; N F; = 0 if j # i.
Let n; = inf (Ap, () —1; p € Aj and j #1i), i = 1;2.
For any |l € [1; k1], Ap(v(])) > 1+m if F # Fy
For any [ € [1; ko], Ap(V' (1)) > 14y if F # Fy
Hence TF > k‘l(l + ’171) + kg if F # F1
and TF > kl + kg(l +’I’}2) if F 7é F2
So for any facet F', Tp > k1 + ko + ninf(k1, ko) > 0, where np = inf(n1,72). This
implies that the index of (8) is greater or equal to ki + k2 + ninf(kq, k2) + Aa(6).
Hence, according to Lemma 4, we have Ly, x, = o(AM) if ninf(ky, ko) + Aa(6) >
M, ie. if inf(ki, ko) > n(M Aa(0)). Tt is then sufficient to take M” the integer
part of %(M — AA(9)).
We can write then

/ exp (LSUB@)) 297 Y
- )

M oo o M MM
" . . R
=oQAM) + > D L+ D D Lo = D > L
k1=0 k=0 k1=0 k=0 k1=0 k2=0
M77 kl
Hsup, (v —
Z Z a,z* | exp Hsus, (2) 2z
klwl o )
kl 0 HEAl
k2
e
Hsup, (v —
#3  f (2 o] e () s
z RP HEA
k1
MM
-2 3 e fy, | 2o
J1=0 ka—o 1TVZ R? \ e,
ko

H
Z ayzt exp (SL”;O(I)) 207 d

HEA2



434 S. ROSSIGNOL

4. Proof of Proposition 6.

4.1. First step of the proof of Proposition 6. We will show in this first step
that we just have to study Mp given in (9), and we will state Lemma 7 which will be
useful next.

We study

P / »
L(b',b", P) :/ exp (@) a2 " (Inz)¥ da
]R2

where P(z) =3_ cpugapa’, (V',07, P) satisfying the HP hypothesis.

Fis a given facet of A, S is the set of the vertices of the Newton diagram A of P.
b is in the interior of C(A), b € IN?.

Since v is a bordering vertex of A, one can find a facet-system o = (u(1), 1(2)) of the
2 vertices of a same facet of A such that v is on one side (strictly) of (O, u(1)) and
the other points of the support X(P) of P are on the other side. One makes then the
change of variables 2 — v(?) (defined in Section 3.2.1):

L' ,b", P) = / Z au PPt H (ln(vﬂ(ei)»b”i .D.dv

MGA i=1
with b = ('), where e; = (1;0), and ez = (0;1), and
2 o
b
D[] (m(qﬁ(eﬂ)) =D [ Biteomey) | = 3 bpuv)?
i=1 i=1 \j=1 |B|=b"|

where B € N?, |B| = By + Ba, |b”| = b71 + b73, (Inv)? = H?Zl(lnvi)Bi, the bp are
constants.

LV ,b",P)= > bpMp
|B|=(b"]
setting
Mp :/ exp Za P | P (Inw) Bdv (9)
/LEA

It is then enough to study Mp. Our aim is now to remove the vertex v of A, in Mp.

We split the integrand in two parts to put it on the form of a product ¢.f which
will be integrated (with respect to v2) according to Lemma 7 (given further). v is
the vertex which will disappear. p©(2) and v are on both sides of (O, p(1)) then, with
perhaps a new order of the u(i):

P = vfl(y)vQB?(V) where 81(v) > 0, B2(v) <0
We introduce new notations:

t=vo, , w=wv; and k= By

So

1
MB:/ exp X Z aﬂwﬁl(u)t@(/t) wb1—1'tb2—1(1nw)31 (10)
RL HEA\ (v}

1
(Int)" . exp (Xal,wﬁl(”)tBZ(”)) dwdt
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There exist ¢ €Z and « €]0;1] (uniquely defined) such that:

bg —l=c—« (11)
1
Mp = / exp X Z auwﬁl(u)tﬁz(ﬂ) wb171.tc+ (1nw)B1 (12)
RY PONYDS!

1 1
(Int)* . exp ()\aywﬁl(”)tBQ(”)> dedt

where ¢ = sup(c, 0) and ¢~ = sup(—c, 0)

Now, to complete the proof of Proposition 6, we wish to remove the second
exponential in Mp, but expanding it directly on the form e* = >, ., "Z—T is not
possible because of the ¢ at the denominator (since f2(v) < 0).

We will use two lemmas given in Wong [14] (Lemmas 1 and 2 pages 296 and 297),
that we sum up in Lemma 6.

If f(¢) is a locally integrable function on [0 ; oo, with f(£) ~ > oo, ats
as t — +oo, where a €]0 ;1], we want to compute f0+oo f(t).0(t)dt for ¢ € S, in
terms of the asymptotic expansion of f. For us here, f will be essentially the second
exponential in (12) and ¢ will be the first (for w stated). Recall that S is the space
of rapidly decreasing functions i.e.

peS e peCR,R),Y(pq) € N? 3e,, >0,V € R, |27V (2)] < ¢py

Let
J®) = () =53 — = 2 and fao=fa (13)
R A
In particular,
(-1)"

fun(t) = " Sl ()

(n—1)!

We can now define the following distributions:
+o0o
<fio>= [ fOold and <5565 (1) g0 (0)
0
—+oo
<o = (" [ fualte 0
0

—F0r0<a<1,<t;°‘;¢>:fooo%dtfor¢68.

Since D"'(t‘“).% =t with (a)s = a(a+1)..(a + s — 1) (ordinary deriva-

tive), we can define the distribution ¢7°7% as t7°7% = D*(t“). ((;1)): (distributional

derivative), i.e.

o, L)
<t 9 >= (a)s/o o dt
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-Fora =1, <Inty;¢ >= [ Int.¢(t)dt for ¢ € S.
similarly since D+ (In¢). &2 1) =¢"5"1, we define the distribution ¢t7*7' as t*7! =
D (Ing £). S e,

. -1 [
<t Lo >= ?/ (Int).¢C+ D (¢)dt
: 0

LEMMA 6. Let f be a locally integrable function on [0;+o0].

IfFft) ~ Y2y 7%= ast— +oo, a €]0;1],
then for any ¢ € S, and n € IN*:

n—1 n

<Fe>=) as<t7T%e> =Y o <dCTVig> 4 < frig >
s=0

s=1

-Ifo<a<l, e = fs5(0)
-If a =1, then ¢s = limy_q (fs,s( )+ ((8 )1), Qs—1 lnt)

Proof. See Lemmas 1 and 2 of Wong [14], pages 296-298. 0

Our aim ib now to generalize Lemma 6 to a function f satisfying
ft) ~ Y2y 7%= (Int)* as t — +oo, where k € N

Here
Jal®) = £(8) = |52+ o+ =] () (14)
Let Fy 5,q(t) be the function defined for 0 < o < 1 by :
Flsalt) = (_1)8. (Int)* + k(Int)*~! Z _ (15)
" () st™ —s—l+ta

1
+.+ k! Z (s =11 +a)...(s = I + a)

1<l <. <l <s

k
(Int)"
=(-1°) Kk —
(32 Ktk o) O
where
|
K(k,s,a,r) = Z L ) w

(s—l1+a).(s—lp—r+a) rl(a)s

1<h<..<lg—r<s

An easy calculation shows that D*(Fj a)(t) = (inflk (ordinary derivative), so as
t.°"“ has been defined by t°~% = D*(t ) - 1) (distributional derivative), one can
);

define the distribution (In¢)%¢t7°7* = D*(Fy Oé( )), for a €]0 ; 1], i.e. for any ¢ € S:

< (Int)ki 7% ¢ >= / ) (£) Fr g0 (t)dt
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In the same way :

_(_1)5 (lnt)k"'l 5 1
Fron(t) = = | 5= +(1nt)k<;73_l+l>+.. (16)
1
+(Int).k! 2, DGt D)
k+1
= (-1)*>_ K(k,s,1,7).(Int)" (17)

From Dt (Fy 5 1)(t) = (;‘ﬁk, we denote by (Int)%¢7°"! the (s + 1)** distributional
derivative of the distribution on [0; +o0o[ corresponding to Fy s1. We can now state
the next lemma, which generalizes that of Wong.

LEMMA 7. Let f be a locally integrable function on [0;+oo].

Iff(t)wzziolefﬁ(lnt)k ast — 400, a €)0;1], k€ N

then for any ¢ € S, and n € IN*:

n—1 n
<fio>=) ar <)t 79> =D e <89 >+ < frih>
s=0 s=1

SIf0<a<l, ¢ = fi(0)
- Ifa=1, then cs = limy—o (fs,s(t) + as—1Fk;s-1,1(t))

Proof of Lemma 7. We adapt the proof of Lemma 1 and 2 of Wong ([14], p296).
1) Case 0 < a < 1.
The question is to extend Lemma 6 to functions f satisfying, for 0 < « < 1, f(¢) ~
k
30 0" oy oo
We define Fy, 5 o as in (15). (Int¢)%t7°~* will be the distribution specified by :

Vo € S(R), < (Int)Xt757% ;¢ >=< D*(Fy5.0) ;6 >=< Fi g0 ;6 > .(=1)°
From (14) we have

L(Int)*
Frn () = fut) — 20210

Integrating n times (with value 0 at +o0) :

fn+1,n(t) = fnn(t) - aan,n,a(t)
Multiplying by (—1)"¢(™ and integrating :

—+o0

“+o0
< it > = (—1)" /O Furt (D0 ()it + (1) [ P a0 0

+oo
- H)n/o s (O™ (Bt + an < (0§47 >

“+o0
- / fn+1,n+1(f)¢(n+1)(t)dt>
0

=" ([anairs 0]
+a, < (Int) "¢ >

t
= —fat1041(0) <850 > + < frr1, 6 > Ha, < (L% >
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and setting ¢, 41 = fut1,n+1(0)

< fut1yd > 4an < ()T 0 >=< i, 0 > g1 <650 >

then
<fn+17¢>+zas ll'lt 7¢>
s=0
=< fu, 0 > +Zas (Int)5 4757 ¢ > +eppr < 050 >
s=0
n+1
=..=<fi¢>+> ;<6 >

s=1

2) Case o = 1.
k

We extend Lemma 6 to functions f satisfying f(t) ~ > o0, at(hlf) ,as t — 400

We define Fj ;1 as in (16). (Int)k¢7°"! will be the distribution on IR specified by:
Vo € S(R), < (Int)k 17575 ¢ >= < D (Fyo1); ¢ >=< Fro1; 00T > (=1)5T1
fra() =Fu(t) - 2ol
Integrating n times (with value 0 at 4o00) :

frvrn(®) = fan(t) = anFy 1 (1) (18)

From ( 8), fot1,nt+1(t) + anFk n1(t) is a primitive of f, ,,(¢).
fo frn(T)dT is another one then there exists a constant ¢,41 such that

t
%H+/ﬂmmm:nﬂmﬁwﬂwuﬂw
0

and Cn+1 = limtﬂo (fn+1,n+1(t) + aan,n,l(t>)
From (18) we have for ¢ € S(R) :

+o0 +oo
(4%/ Fun (6™ (1)t = (— w/ (Furin(t) + anFl s (1) 6 (1)t
0 0
= (1" [(fartn1(8) + anFrn s () 6 (0]
+oo
_(—1)n/0 (frt1,n+1(t) + anFrni1(t)) @ ”'H)( t)dt (by parts)
= (-1)"M 16 (0)+ < fui1:¢6 > +(—=1)"a, /000 Fron 1 ()00 (t)dt

ie.:

< fug1; 0 > 4an < (@)t ¢ >=< frid > +enpr <050 >
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then

< frt1:0 > +Z“8 < (In@)ht* o>
s=0
n—1
=< fui0 >+ as < ()50 > ten <850 >
s=0
n+1
=..=<fi¢>+> <6 >

s=1
this ends the proof of Lemma 7. 0O

4.2. Second step of the proof of Proposition 6. We show now that Mp can
be computed, for w stated, with Lemma 7. We will integrate then in w which will
give a decomposition (22) of Mp in 3 terms evaluated further. Let us set :

1
oa(w;t) = exp 3 Z awPr ) 1P2(0) w1t (Inw)B (19)
rEA\{v}
Int)* 1
fia(w;t) = ian+c)* . €xp (Xal,wﬁl(”)tﬁ"’(”)) .

Then Mp = fR+ [fR+ ng)\(w;t)fA(w;t)dt} dw

For A and w stated (w # 0), ¢x(w;t) and fy(w;t) satisfy the hypotheses of
Lemma 7, which will allow us to compute fR da(w;t) fia(w;t)dt
The map t — ¢x(w;t) is indeed in S(R) because Ba(u) > 0 for p € B(P)\ {v} =
{n e A\ {v},a, #0}. Recall that 32(v) <0

Nzata+s (Int)* ast— +oo (20)
s=0

where as(\, w) is a polynomial in w :

1 (a,,wﬁl(")

as(A w) = -

= ) for s =c¢~ +7.(—f2(v)) with 7 € N

as(A\,w) =0 else.
From Lemma 7, for any n > 1:

Jore) n—1
/ Oa(wst) fa(wit)dt = ag(hw) < (Int)k 757 ¢y >
0

=Y esNw) <60 > + < (fa)ns dr > (21)

where < 6¢~1; 6y >= (=1)*127 24 (w, 0)
-If 0 < a < 1, the ¢s(A;w) are defined by cs(A;w) = (fa)s,s(w;0)

- If @ =1, according to Lemma 7

Cs()‘ U)) = hm ((f/\)s s(w t) + as— 1()\ w)st 1; l(t))
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To complete the proof of Proposition 6, we will study successively the asymptotic
expansions of the three terms in

Mp=hL+1I+1I3 (22)
where

n—1
o, Bt et
Ry

s=0

I, = —/ lz cs(A,w) < 6C7Y L gy >] dw
R+

s=1

13=/R < (f)n 165 > du

4.3. End of the proof of Proposition 6. We will now study each of these
three integrals, to state there exist constants c; and ¢ ; such that

I = ZCQ/\_i-L(Gi,Wi7 Pay)
i
ILy=> cN.(In\)
4.l
I3 =o(AM) as A\ — 07 for n sufficiently large.
where the sums have a finite number of terms, i € IN, I € IN. We will see in (39) that

to have I3 = o(AM), it is sufficient to take n = ¢~ + (—32(v)) R where R is the integer

M—Ap- (b))
part of TAa)-T T 1

4.3.1. Study of I;. The case a €]0;1][ is first considered. Fix w # 0.

—S—« S > 88
<)kt gy >= (=1)* [ Frsalt). affj
0

(w; t)dt

where F, 5 o(t) is defined in (15). According to (15), we have

k
< (ke gy >= > K(k,s,0,7) 1o, (23)
r=0

where, for r € {0;..; k}

_ - r 079 . ﬁ
Is,rf/o (Int)". 5 (w,t)ta

Computation of 8;5? (w;t)

From (19) :

1
O (w;t) = exp 3 Z a, w2 () w1 (Inw) B
neA\{v}
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Derivating s times with respect to ¢ :

o N B % s \ o)
7=0
o7 1
B0 exp X Z auwﬁl(“)tﬁ““)
peA\{r}
where
s—j (et +31 ,
o) _ ()" et =s+3)  for chF>s5—3j

ots=i (et —s+j)!
=0 for ct<s—j

It remains to evaluate 8% (exp (% ZﬂeA\{V} auwﬁl(u)t&(#))) for1<j<s

Let us recall that if u € 3(P) \ {v} we have B2(u) € IN. Then:

0 1
= - B (1) 482 ()
i Rl By E a,w TR

peA\{v}

1
( > Ba(w).auw W) exp 3 S a0
nEAr} pEA\{r}

>/I>—‘

Likewise:

;L (exp 1 ™ (1) 4520)
A et

> =

( a, wPr (1) ¢B2(1) Z Ba (). (Bo(p) — 1).a,, wPr (1) ¢B2(pn)—2
peA\{v} neA\{v}
1

/\2 Bs (ﬁ(l))ﬂg(ﬁ@)).aﬁ(l).aﬁ(g).wﬂl(ﬂ(l))+ﬁl(ﬁ(2))
u(l)vu(Z)EA\{V}
(B2 (1) +B2((2)— 2)}

and finally by induction on j:

7 1

57 exp 5 Z auw&(u)tﬁz(u) (25)
HeA\(v}
_ Z S const L B @i g | L S g
= VA . -exp | 3 "
p=1 €S, ,B2(n)>j neA\{r}

where S, = {fi; p = > _¢_, u(i) where the (i) € S(P)\{r}, B2(fa(i)) > 1}. Moreover
we set S, = {0} if p = 0.
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Equations (24) and (25) finally give:

s 1
8¢>‘(11);t):e:)<:p X Z a“wﬁl(#)tﬁ2(“) w7 (Inw) B

ots
pEA\{v}
i Z hs(p, 7o) i wh () tﬁz(ﬁ)—&-C*—s (26)
) s(p )5 )
p=0 €S,
where
hs(p, i) = 0 if Bo(f1) < s — ¢ (27)

p =0 is possible if ¢t — s > 0.
I, defined in (23) becomes:

Z > hslp. lnw) By, B1 () +b1—1

p=0pes,

*° 1 - dt
. / (nt).exp [ £ D auuwhhi0 | ghlret=s = (9g)
. ) o
neA\{v}
where each integral in (28) is convergent because according to (27),
Ba(fi) +ct —s—a>s—ct+ct —s—a>—-a> -1

To compute I; one must integrate with respect to w (we will justify later the integra-
bility with respect to w)

I = Z/ as(A\, w) lnt) T 00 > dw
where

/ as(\,w) < (Int) 57 ¢y > dw
Ry

1
ﬂ
-
o

K(k,s,a,r) /R I (w).as(\, w).dw (29)

(because I, = I, -(w) in (23))
By (28) and (29), there exist constants (s, r, p, i, k, &) such that:

I, = Z/ as(A, w) lnt) T % o > dw
Ry

1 _
= Z 6(s,r,p,ﬂ,k,a).v/2 as(A, w).wPr M +o1=1 (1 ) B (30)
8,70, R+
In£)" gF2( et —s Iy By | g
(Int)". . exp ay,.w e dw

neA\{v}



ASYMPTOTIC EXPANSIONS AND NEWTON DIAGRAMS 443

where: 0<s<n-1, 0<r<k, 0<p<s,

ji= (1) + ..+ flp), if p > 1, the (i) € S(P) \ {v}, and i =0 if p = 0.
Let us recall that w? = z#(M) | tP = 22 and wf (W ¢f2(0) = g1 Coming back to z:

1 3
L= 6<s,r,p,ﬂ,k,a>.;/2 ar (A 2"8")
R

ERaY-NT
xh. [ln( (T } In(x “5 yx%(ct"l_s_“) (31)
bllL(l) ( ) dx
(7)ot

where P*(z) =3_ c A\ () @@ = 32 en- apa?, A™ is the Newton diagram of P*.

Recall that ag is the polynomial defined from (20) :

1 a, wf @) r _ s—c~
as()\,w):;(f> fOTTZWE]N

as(A\,w) =0 else.

thus
I 1 -
as()\, 'lU) = Qg4 ()\7:[%) — )\r (:4 xﬁ'ﬁl(l’)l‘«(l)
Expanding in (31), there are constants bf, such that
, B ) ,
] [ ] = 3t (32)
|Z|=B1+r

where ¥ € IN?| |¥| = ¥y + %9, (Inz)* = [[,(Ina;)™

It is clear that as =0if s < c¢™.
By (31), (32) andas ¢ +1—s—a=c" —s+by—c=by+c¢ —s (from (11)), there
exist constants ¢'(7, r, p, fi, k, a, X) such that :

Z 5/(777 7, paﬂvkaaaz))‘ifip‘/ ol g DA D)
Fios RY

— P* d
x%vblﬂ(l)z@(bfrc 75).(1113;)2 eXp( )El’)> foz

s—c_

where ¥ € IN, 7 = “Ho)

b= 3 b DA [ a0

2
finite ]R+

(In)exp <P*)Ex)) demz

And since 5 (bypu(1) + bopu(2)) = V' (see Lemma 5 with b; = 3;(b'))

L= 8@ rp kAT [ ol g B G007 gy emeT)
R3

finite
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where

(1) 1(2) -

D Ai(v) 7( —c7)

M0 510) + L u@)rBa(v) - ;g@ww = vF
then

— _ =. ’ P*
I = Z 8 (Fyr, p, iy ky E).)f”*”/ 2P a™ g~ (Ing)® exp( (m)) dz

finite R?i— A
=Y 8T ik, 0, 2)NTTPL( 4 b + 7y, 8, PT) (33)
finite

We will show that each term here has the same form than our integral L(d',b”, P) but
with a Newton Diagram including one vertex less. We had:

L(',b", P) :/ exp (@) 2 YInz)" da
RY

where (b',0”, P) satisfies Hypothesis HP.

Here L(fi + b + 7v, %, P*) will be of the same form than L(V',b”, P) with P*(z)
instead of Pa(z). We have ¥ € IN>. We want that (i + b’ + 7v, %, Pa\vy) satisfies
Hypothesis HP.

The only thing we must check is that

f = ji+b + 7. is in the interior of C(A*) (34)

where A* is the Newton Diagram of P*(x) = Pa\ 1 (%).

We know that &' € intC(A). o = Y2, fi(i), where the ji(i) and v are in C(A)
then fi € intC(A). It remains therefore to prove that fi is on the right side of the line
(0; 4(1)) separating v from A*, i.e. is it true that Ba(f) >0 ?

Ba () = det(u(1), 1) = B2(V) + B2(12) + 7.B2(v)
> Bo(B)+ (s —ct)+7.B3(v) =by+s—ct —(s—c7) (from (27))
=by—c=1—a>0 (from (11) and because 0 < a < 1)

and we just obtain what we wanted.

We have then in (33) integrals L(fi, %, P*) of the same form that the initial
integral L(b',b”, P) but with a vertex less and a facet less (this proves also that
they are quite convergent). We have thus showed that in the expression (22) i.e.

Mp = Iy + I + I3, the first term Iy is a linear combination of integrals of the form
of L(b',b”, P), but with a vertex less than L(b',b”, P).
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Sketch of the case o = 1.
s s o 05Ty
< BT 6y > (—1)H] / Frs1(t)- =gt (w 5t)dt

I, » becomes I , = fom(lnt)r.%(w;t)dt, red{l;.;k+1}

In (26) and after, one must then evaluate %(w; t)dt instead of a;ﬁk (w; t)dt
We obtain a finite sum of integrals L(fi, X, Pa\y,}) with:

Ba(fi) = Bo(f1) + B2(V') +7B2(v) = (s +1) —c" +bp — (s —¢7)
=s+1l—-ct+c—s+c =1>0

The remainder of the proof is similar to that of the case a < 1.

4.3.2. Study of I,.

n

I = —/ lz cs(Aw) < 8¢ Vg5 > | dw
Ry

s=1

I5 is convergent because in (22), Mp, I; and I5 are convergent. This is true for all n €
IN*, then by subtracting the values in (n + 1) and in n, one finds that fR+ cs(\w) <

66~V ¢y > dw is convergent.

S s— 8571¢A
<8 gy >= (—1)" A (w3 0)
where a;;ji* is evaluated with (26).
AN 1
] = 51 B2 (p
51 (w ;t) = exp 3 Z a,w (1) 4B2(1)
peA\(v}
s—1
S5 hei(p ). (nw) Pr Ao Wb =L s 1A ()
p=0 eSS,

For t = 0, all the terms vanish except those for which the power of ¢ is null, i.e. when
Bao(i1) + ¢t —s+1=0. Since B2(fi) > p, one must have p < s —1—c™.
In the exponential, B2(u) > 0 except for p = u(1).

as—1¢ 1
atsflk (w;0) = exp (Xau(l).wﬁl(ﬂ(l))> (35)
s—1—cT
> > har(p, 71)- (I w) B A=Pop P ()11

p=0  [ES,, fa(m)=s—ct 1

(itisnullif s—1—ct <0because 0 < p<s—1—ct)

/ cs(Aw) < 667V ) > dw (36)
Ry
s—1—cT
:/ (—1)51 Z Z hs_l(p’ﬁ)_(lnw)B.)fpwﬁl(ﬂ)erlfl
Ry p=0 R@ES,, B2(H)=s—ct—1

wP
¢s(A, w) exp (au(l).T> dw
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Computation of c,(\;w).
We assume here that 0 < o < 1.

ceOe) = ()eawi0) = 0 [T 773 (). e

where according to (14) and (20).

(P, = fotwr) = |20 SO e (37)

_ (lnT)jc exp (a_/\uwﬁl(y)Tﬂz(y)> _ Z % (G'Tl’wﬁl(l/)7—52(l/))i

Ta+c

s—c_

_1)\s © (InT k:Ts—l
) = 0

(s—1)! Tater

m@)Taz(u)) -y l(%wﬁl<»>Tﬂ2<u>)i r

exp (a—”w
A 1!

0<i<r

Set u = %wﬁl(”)T[’?(”), where G2(v) < 0, w stated.

= () () [ e 2]

exp (a,u) — Z %(ayu)i du

0<i<F

There are constants d; ; such that

wh®) ) o)

cs(/\;w):(—l)s< X > d (A (Inw)’

i+ji<k

Thus

n Wwh N\ T RO _
=YY Y mabm[ (U50) T tawmacesees
Ry

s=1 p p,B2(p)=s—ct—1

: 1
Z d (In \)*(Inw)? | exp <)\au(1)wD) dw

i+j<k

It is then sufficient to put w’ = wA~YP to obtain the expansion expected.

Remark. The study of Iy in the case a = 1 is dealt exactly in the same way.
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4.3.3. Study of I3. Assume 0 < o < 1.

I = /]R < (f)ni b3 > du

< (fa)n;oa >=(—1)" /]R (Fa)nn(w,t) 6;? (w, t)dt (for any w)
where
_1\n +o00o
(Pnn(w:0) = sy [ (B =0 ar

< (fa)ns oA >= ﬁ /Ooo [/too(fk)n(w,T)(T — t)nfldT .8;:5?‘ (w, t)dt

from (37)

B (InT)* ay
f/\(w7T) - 7_OLT-eXp (Tw

1 /a, 5 i D))o
= > = (y,wm >) FotiBWN =" (In )k 4 (fa)n(w, 7)

51(1/)7_52('/))

where we put R = ( 3
Moreover, since a, < 0

exp (%wﬁ1(V)Tﬂz(V)) -y 1 (“_;.wm(u)Tm(u))i < ‘(%wm(mm(v))”%

hence

(o)

[ |1nT| Rﬂl(u) o 8n¢)\
/ / s (o=t ar | T w1 dt

‘1nT|k y B1(v),B2(v) R ‘h’l’r'k
. < _ 1 2 o
(i )| < —prs | (Srw e | = 20T

| < (f3)n; dr > | < const

wRﬁl (v) S SIS n—1 an¢)\
< const. NG / / '(IHT)k AT 5n (w,t)| drdt
R’Bl(y 1117‘ k 8”@
= const. / / Tu+1 T 5 (w, t)| drdt

where ft (1:111 dr = Fy1,4(t) (see (15) with s = 1)
And since Fj1.4(t) = %'Zfzo const.(Int)" to study | < (fa)n ;¢r > | means to
study expressions :

whhL ) /°° 1 0" o
A fy ot

(Int)". 5n (w,t)‘dt for0<r <k
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Integrating with respect to w gives :

wﬁﬂl (l/)
I

2
+

(w,t)‘ .%dw

0" o
T otn

(Int)"

From (26) it means that :

B 1
|I5] < Z const./}R2 |(Inw)|”* |(Int)|" . exp X Z awP (W s2
+ pneA\{r}

.7)\/’3‘15” P FRBLY) ypbr=1 yBa(B) e —n—a gy, it

finite

where fi € S,, B2(ji) > n — ¢, and coming back to z as in (31) and (33) we obtain

1 . S R b1 Pa\(ny (@)

< _ Z v, , AN\

[I3] < Z const.)\HR /}R2 " |(Inz)|~ 2™ exp \ dx (38)
finite +

where Pa\(,y(7) = P*(x) of Newton diagram A*. We need an order of magnitude of

each of these integrals. According to the remark following Lemma 4, (i) and (ii) of

Lemma 4 is valid for

L'(0,~,P) = / 2% Inz|” exp (lP(x)) dx
R2 A
ie. L'(0,7,P) = o(A\*a@=¢) as X\ — 07, for any & > 0, if (,~, P) satisfies the HP
hypothesis.

To apply this here, we must just check that ji = ji+ R.v+b" belongs to intC(A*),
i.e. that B2(f1) > 0.

Ba(71) = det(u(1), i) = Balb) + Bo(B) + ReBo()

> Bo(V)+n—ct+RB(v)=Fo2(b)+n—ct —n+c”

=by—c=1—a>0

It remains to evaluate Aa-(fi).
fi = i+b' +R.v thus Aa- (1) > Aax (i) +Aa (V) +R.Ax« (V) > p+Ap- (V) +R.Apn-(v)
because A~ (1) > >4 Aa-((i)) > p.

Then Aa-(ft) > p+ Aa- (V') + R.Aa-(v)
Hence finally I3 satisfies, for A small enough, for any ¢ > 0:

|I5| = < Z const \~P~E)\Aax (i) —<

finite

/ < (fk)an))\ > dw
Ry

< const \Aa* (O +E(Aax(v)=1)—e

where Ax-(v) > 1. Thus I3 is o(AM) for n large enough. More precisely, I3 = o(AM)
as soon as Aa« (V) + R.(Aa~(v) — 1) > M i.e. with R > %ﬁ(j), ReN

It is then sufficient to take
M — Aa~ (V)

n=c~ + (—p2(v))R where R is the integer part of An () 1

+1 (39)

The case a = 1 must be dealt in the same way.

This ends the proof of Proposition 6.
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5. Proof of Proposition 7.
L(6,7,P) = [g» exp (% > e a#x“> 2%~1(Inx)Ydxr where A is just the facet F. We
+

introduce the change of variables = — v(?) where o is a facet-system of p independent
vertices of F'. From Lemma 5:

1 P Yi
L(0,v,P) = / exp | 3 Z a P | PO=1 pr=t H (lnvﬁ(ei)> dv
RY ueF i=1

and setting u; = A\~ Du; as in the proof of Lemma 4, we obtain:

L(0,7,P) = A+ (@ / exp | Y a, My S 0 (40)
R% jEF
p i
H (]n )\AF(ei),Uﬂ(Ei)> .Dp_ld’u,
i=1
Ar(8) N S ga! 7 d Ar(en) ™
J— F p rles
I\ Z-~-Z(k1 )( k,, ) (i)
ki=0  kp=0 i=1

P ks
/ exp Z a;ﬂtﬂ(“) aPO-1, H <ln uﬁ(e"))% . D" ldu
R i=1

P
+ pneFr

since Ap(p) =1 for p € F.
6. Study of an example.

6.1. Introduction. Throughout this section, to show the working of our algo-
rithm, we will follow a simple example of an integral of the type Jg,()\). For this
example, we take H from IR? to R, defined by:

6, .22 6 4 4, .3 4
H(zy,29) = — (2f + z{a3 + 25 + 2122 + 2125 + 2723)

and x smooth of compact support K, such that

x(x1,22) = 2225 + 2723 in a neighborhood of 0

We want to compute the asymptotic expansion of order M = % of Jrr (A).
The principal part of H is

H(z) = — (af + 2325 + 28 + ajzy + 2125)
The Newton diagram A of H has two facets F; and Fy with

1 1 1 1

Ap, () = g+ Gpo and Ap, () = i + gp

e F = Ap () =1, and p € F» = Ap, (1) = 1. Moreover

Aa(p) = inf [Ap, (1))
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0 2 4 6
Newton polygon of H

According to Proposition 1
/ (). exp(H(z)/A\)dz = / x(@). exp(H (x)/N)da + O (=)
B(5)

6.2. Approximation of the amplitude. With our example, to apply Proposi-
tion 2, we must evaluate Aa () for 8 = (2;4) +(1;1) = (3;5) and 0 = (7;3) + (1;1) =
(8;4).

AA(3;5) = inff, [AF,(3;5)] = inf [?1 g] = % < %
Aa(8;4) = infp, [AF,(8;4)] = inf [70 %] = % > 32
Proposition 2 gives then, for M = g

/x(x).exp(H(a:)/)\)dx = /B(é) a:fx%.exp(H(a:)/)\)dx—Fo()\g)

6.3. Reduction of the phase. Now, we want to apply Proposition 3 to our
example. It will allow to simplify the phase, putting H instead of H.

7o > 0 is such that there is no point of the support of H strictly between A and
(14 n9)A. More precisely, ng = inf (Aa(p) — 1;u € Z(H) \ A(H)).

(3;4) is the only point of X(H) \ A One ﬁnds AA(3;4) = infp, [AF,(3;4)] =
inf [, 4] = 2. So, we can take no = 2. As M = 2 and 0 = (2;4) + (1; ):(3,5
we have M_:OA(O) = 258 =1, 50 we set M =1. Proposition 3 gives then Ry(z) =

3
—z3x3, and

.’133.734 5
/X(x).exp(H(x)//\)dm = /13(5) rixs. [1 - 1)\2} exp(H () /\)dz 4 o(\?)
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6.4. Extension of the domain. Proposition 4 gives

/ (). exp(H (2)/N\)dz = /R afa. [1 - i’;g] exp (Hi“”)> dz + o(A?)

6.5. Simplification of facets. We must then apply Proposition 5 to
Jro T125 exp (H(‘T)) dx with M =5/2 and to [, #3525 exp ( (= )) dr with M =7/2,
i.e. for 6 = (3;5) and 6 = (6;9).

We have here S = {(6;0), (2;2), (0;6)} and Z(H) = S U {(1;4), (4;1)}
We apply Proposition 5 with B = {(1;4), (4;1)}, Ay = BN (F1 \ F) = {(1;4)},
Ay = Bﬂ(Fz\Fﬂ ={(4 1)}, Bi =2 ={(41)}, By = A1 = {(1 4)}, Bo = 0.
1nf(AF2( ) 1; MEAI) AF2<1,4 —1:§ ?
772=iﬂf(AF1(M)—1;M€A2) Ap(41)—1=5-1=3

which implies that n = %

/ 20T exp (LSUB(Q:)) dx
]R2 )\

1 H 1
Z )\kl k! / - (—xw%)k exp (7&? (m)> dx

k1=0

1 1 -1 4 ko HSUB (l’)
+ Z N Tl /1sz (—ziwa)” exp <_)\2 ) de
ko=0
M M7

_ k1 ko Hsyp, ()
- Z Z /\k1+kz kl'k'g / ot (_xlﬁr%) (_‘rzllmQ) exXp (%) dx

k1=0 k2=0

MIO!

where M” is the integer part of %(M —AA(0)) =2(M — Aa(9))

1) 0 = ( ;5) and M = 3 leads to Aa(f) = % M?” is the integer part of
5-2(8)=3ie M =1

2)0=(6 ;9) and M = I leads to Aa(0) = inf(Z;4) = I so M” is the integer part
of 7—2()=01ie M” =0.

Finally
3.4 ]ﬁ](x)
2,4 |1 _ T1P2
/]R2 T1Ty [ | <P \ dz
4
=o0(\3?) +/ xiry (1 - xle) .exp (M) dx
R2 )\ A
4
N / 2248 (1 _ w) exp (M) i
R2 )\ A

4 4 5.5
rixe  mas | xiTd Hs(z)
_/R2gc1;z:2 (1— DY —+ )\Q)exp( 3 )dm
1 Hgup, (z) 1 Hsup, ()
=3 /]R2 525, exp (% d:r—X/R2 525, exp U—/\2 dx

1 Hs(z)
+X /11{2 2025, exp <)\> dx
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We have then 11 integrals of the same type to evaluate. Henceforth, we will limit
our example to the study of the simplest one (on IRi), ie.

1
L, = / x5, exp (—— (x? +airl + xg)) dz
R2 A

6.6. Suppression of vertices.

6.6.1. First step. We have

Li=LU,b,P)= / 2" ~1(Inz)? exp <P(;)> da
R

2
+

with &' = (3;5), " = (0;0), P(z) = — (2§ + 2323 + 25)
ie. L1 = L((3;5),(0;0), P)
We have Ax(b) = Ap, (V') = 4 and Ap, (V) = 2.

We want to remove the vertex v = (6;0). Let (1) = (2;2) and u(2) = (0;6).

6 g 1(2)
b/
4 o)
2
1
(1) B

14

0 2 4 6

Newton diagram of P

According to Lemma 5, the change of variables associated to the facet system
(1(1), 1(2)) is given by zt = vf1<“)u§2(“>, where (1(u) = det (u, pu(2)) = 6u1 and
Bap) = det (u(1), 1) = 2(pz — 1), Le. = ooy 27,

In particular, v12 = 2222, 012 = 2§ and 27 = 2325 = v180}

We obtain with D = det (p(1), u(2)) = 12

L, =12Mp

where
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: 1
Mp = / v}%ﬁ exp ()\ [viz + 1%2 + U%GUQ_H}) dv
R2
+

by = 4 so (11) becomes here « =1 and ¢ =4 (i.e. ¢t =4, ¢~ =0). We set w = vy,
t = vy. Equation (12) is now

Mo = [
R

= da(w;t). fio(w; t)dwdt
Ry

1 1 1 _
t*w' exp <)\ [w12 + tu]) 3 exp <)\ [w36t 12]) dwdt

2
+
where following (19), ¢ and fy are defined by

o 4, 1T L 1o, 12
da(w;t) =t w " exp Y [w'? + "]

H(w;t) = %exp (}\ [w36t12})

6.6.2. Second step. According to (20), fx(w;t) has the asymptotic expansion
as t — +oo

7=0
and
Pty 3 2o
5=0
so
as(\,w) = % (—%.w%)r for s =127, with ¥ € IN

as(A\,w) =0 else

Moreover we have a decomposition Mp = I + I + I3 as in (22).

6.6.3. Third step. We take n = ¢~ +(—B2(v)).R = 12R, where R is the integer
M—Ap=(b)
part of F-T T 1.
Here A* = F, since if we remove v, the facet Fy disappears. So
M —Ap-(0) 24 2

6 _ 2
Ap-(v) -1 2—-1 3

thus R =1 and n = 12.
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Study of I .

11
L :/ [Z as(\,w) < (Int) 57 195 >| dw
Ry

s=0

where k =0 and o« = 1.

By definition < t7°71; ¢y >= =L [FInt. 28> (w; )dt.
But ag(A,w) =1 and a;(\,w) =01if 1 < s < 11.
So

11:/ <t7'ipn > dw
Ry
1 1
= — /R2+ wl” exp (—me) .lnt.% (t4 exp (—Xtm)) dtdw
17 L 12 3 L1
= wexp | ——w toexp | —=t dtdw
R A

A
(integrating by parts)
Let us remark that if we come back to z, we can write

1
I, = / x2x5. exp (—— (x? + x?m%)) dx
R2 A

T

2
+

which means that 1217 is the first term of the expansion of L; according to Lemma
4.
However, it is simpler to set w’ = wA\~1/12 and ¢ = tA\~/12 thus

18+4

L=\t / w " exp (—w''?) "% exp (—t'*?) dt' duw’
R2

T

1
_y\11/6 It

Study of I.

12
I, = —/ lz cs(A\,w) < §6=D . gy >] dw
Ry

s=1

with < 66~1 ;) >= (—1)5_18;;—1}?(111;0)
so since ¢y (w;t) = w'” exp (—%wlz) ttexp (—%tlz) we have
<06 Vg >=0ifse€[1;12] and s £ 5

12
< 667D gy >= 240" exp (_w)\) for s = 5.

This implies that

w'?
I, = —24/ cs(\, w)w'” . exp (——) dw



ASYMPTOTIC EXPANSIONS AND NEWTON DIAGRAMS 455
where
(\w) = Tim (f)ss(w;t) + 55 nt)
C5(A, W _tl—% X)5;5 (Ws 24n

with a4 = 0 and

O A VHE exp(—+20) - ! ar

24

That leads to

and finally

and u = w3 A7 712 gives

L\ _1y3 99 w'? > —4/3
I =—A\ w*.exp [ ——— | dw. u [exp(—u) — 1] du
12 o A 0

and with w’ = w\=1/12

oo +oo
I = f)\13/6/ w' . exp (—w'?) dw’./ w43 (1 — exp(—u)) du
0 0

— _\!3/6 ip(?) e w43 (1 — exp(—u)) du
= T2l (5) p
0

The asymptotic expansion of Li. Finally we find that L = 12(1; 4 I) + o(\%/?)
becomes

131
Ly = \V6 2z
1= A0S TEITG)

1.5 [+
—)\13/6.EI‘(§)/ w43 (1 — exp(—u)) du + o(X*/?).
0
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