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GENERALIZED QUOTIENTS WITH APPLICATIONS IN ANALYSIS ∗

PIOTR MIKUSIŃSKI†

Abstract. Starting from a nonempty set X and a commutative semigroup G acting on X
we construct a new space B(X, G) whose algebraic character is similar to a quotient field. The
construction of the quotient field from an integral domain is a special case of our construction.
Other interpretations of the construction include the space of Schwartz distributions of finite order,
tempered distributions, Radon measures, and Boehmians.

In this paper we describe the construction of B(X, G), discuss some general properties of B(X, G),
and present some applications of the construction.

1. Introduction. Rational numbers are usually defined as the field of quotients
constructed from the ring of integers Z. We would like to consider a somewhat different
point of view. Let N denote the multiplicative semigroup of natural numbers acting
on Z by multiplication. Then every n ∈ N is identified with an injective mapping
n : Z → Z. The set of rational numbers Q can be thought of as the minimal extension
of Z such that every n ∈ N has an extension to a bijection n : Q → Q.

In this paper we are interested in a general framework in which a similar extension
is possible. In the construction of Q we make use of the fact that multiplication by
a natural number is injective and commutative. It turns out that these two condi-
tions are sufficient. More precisely, if X is a nonempty set and G is a commutative
semigroup acting on X injectively, then an extension is possible.

If G fails to act injectively, then we introduce a modification of the construction
so that an extension with similar properties is possible. In this case G is replaced by
GI , where I is an index set. If α ∈ GI , then α : X → XI and it is possible that α is
injective even if none of the component functions is.

In the general construction no structure is assumed on X. If X has an algebraic
structure or a topology, then these induce an algebraic structure or a topology on the
extended space.

In Section 3 we present some concrete interpretations of the construction in anal-
ysis.

2. Generalized Quotients. Let X be a nonempty set and let G be a commu-
tative semigroup acting on X injectively. This means that every g ∈ G is an injective
map g : X → X and (g1g2)x = g1(g2x) for all g1, g2 ∈ G and x ∈ X.

Let A = X ×G. For (x, f), (y, g) ∈ A we write

(x, f) ∼ (y, g) if gx = fy.

It is easy to check that this is an equivalence relation in A. Finally, we define

B = B(X,G) = A/∼,

the set of generalized quotients.
The equivalence class of (x, f) will be denoted by x

f . This is a slight abuse of
notation, but we follow here the tradition of denoting rational numbers by p

q even
though the same formal problem is present there.
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Elements of X can be identified with elements of B via the embedding ϕ : X → B
defined by

ϕ(x) =
fx

f
,

where f is an arbitrary element of G. Clearly, ϕ is well-defined, that is, it is indepen-
dent of f .

Now we consider the case when G fails to act injectively on X. Let I be a
nonempty index set and let

∆ ⊂ GI

be a semigroup acting on X injectively. The operation in ∆ is defined in the obvious
way: if α, β ∈ ∆, then (αβ)(i) = α(i)β(i), i ∈ I. If α ∈ ∆, then the action of α on
x ∈ X is defined as (αx)(i) = α(i)x, so that

∆ � α : X → XI .

We assume that these maps are injective.
A ∆ like that may not exist. An obvious necessary condition is that G is a total

set, i.e., if x, y ∈ X and x �= y, then there exists a g ∈ G such that g(x) �= g(y). In
what follows, we assume that a semigroup ∆ with the desired property exists.

Suppose X ⊂ XI satisfies the following conditions:
(a) αx ∈ X for all α ∈ ∆ and all x ∈ X,
(b) αξ ∈ X for all α ∈ ∆ and all ξ ∈ X .

Here, for ξ ∈ X and α ∈ ∆, we define (αξ)(i) = α(i)ξ(i), i ∈ I. The above conditions
are trivially satisfied if we take X = XI , but there are important applications where
it is essential that X is a proper subset of XI .

Let

A = {(ξ, α) : ξ ∈ X , α ∈ ∆, and α(i)ξ(j) = α(j)ξ(i), i, j ∈ I}.
Note that, by (a), (αx, α) ∈ A for all x ∈ X and α ∈ ∆. Moreover, if (ξ, α) ∈ A,

then (βξ, βα) ∈ A for all β ∈ ∆, by (b).
For (ξ, α), (ζ, β) ∈ A we write

(ξ, α) ∼ (ζ, β) if α(i)ζ(j) = β(j)ξ(i) for all i, j ∈ I

It can be shown that ∼ is an equivalence in A. Now we define

B = B(X ,∆) = A/∼.
As before, the equivalence class of (ξ, α) will be denoted by ξ

α and called a generalized
quotient.

Note that the construction for the case when G is a semigroup acting on X
injectively is a special case of the above one. Indeed, it suffices to take I = {1},
X = X, and ∆ = G.

Lemma 2.1. If (ξ, α), (ζ, β) ∈ A, then (ξ, α) ∼ (ζ, β) if and only if βξ = αζ.

Proof. Clearly (ξ, α) ∼ (ζ, β) implies βξ = αζ. Now assume βξ = αζ, that is,

β(i)ξ(i) = α(i)ζ(i)
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for all i ∈ I. Then, for any i, j, k ∈ I we have

β(i)α(j)β(k)ξ(i) = α(i)α(j)β(k)ζ(i)

and, since (ξ, α), (ζ, β) ∈ A,

β(i)α(i)β(k)ξ(j) = α(i)α(j)β(i)ζ(k).

Injectivity of α and β implies

β(k)ξ(j) = α(j)ζ(k)

for all j, k ∈ I, which means (ξ, α) ∼ (ζ, β).

Note that, for any x ∈ X and any α, β ∈ ∆ we have (αx, α) ∼ (βx, β). Hence
elements of X can be identified with elements of B via the embedding ϕ : X → B
defined by

ϕ(x) =
αx

α
,

where α is an arbitrary element of ∆.
The action of G on X can be extended to B. Indeed, for any g ∈ G and ξ

α ∈ B
we can define

g
ξ

α
=
gξ

α
.

It is also possible to extend the action of ∆ to B so that

γ
ξ

α
= γ

ζ

β
implies

ξ

α
=
ζ

β

whenever γ ∈ ∆. One should be careful with interpreting expressions of the form γ ξ
α .

If γ ∈ ∆ and ξ
α ∈ B, then γ ξ

α is an element of BI defined by
(
γ
ξ

α

)
(i) =

γ(i)ξ
α

.

Consequently,

γ
ξ

α
= γ

ζ

β

is equivalent to

γ(i)β(k)ξ(j) = γ(i)α(j)ζ(k)

which implies β(k)ξ(j) = α(j)ζ(k) and thus ξ
α = ζ

β .
Since B and ∆ satisfy the conditions necessary for the construction of generalized

quotients, it is natural to ask whether by repeating the construction we can obtain a
still larger extension of X. The following two theorems address this question.

Theorem 2.2. If G acts on X injectively, then B(X,G) = B(B(X,G), G).
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Proof. We show that Φ : B(B(X,G), G) → B(X,G) defined by

Φ
( x

h

g

)
=

x

gh

is a bijection. Note that

x1
h1

g1
=

x2
h2

g2

implies g2 x1
h1

= g1
x2
h2

, and hence, h2g2x1 = h1g1x2, which means x1
g1h1

= x2
g2h2

. There-
fore Φ is well defined. Since

Φ

(
hx
h

g

)
=
hx

hg
=
x

g
,

Φ is surjective. Now assume

Φ
( x1

h1

g1

)
= Φ

( x2
h2

g2

)
.

Then x1
g1h1

= x2
g2h2

and consequently g2 x1
h1

= g1
x2
h2
. But this means that

x1
h1

g1
=

x2
h2

g2
,

proving that Φ is injective.

Theorem 2.3. If for any αn ∈ ∆, n ∈ I, there exists a κ : I → I such that
(αn(κ(n))) ∈ ∆, then B(Y,∆) = B(X ,∆) where Y = B(X ,∆)I .

Proof. Suppose F
β ∈ B(Y,∆), where F (n) = ξn

αn
and αn, β ∈ ∆. Then

β(n)F (m) = β(m)F (n)

for all m,n ∈ I. Hence, for all i, j,m, n ∈ I,

β(n)αn(i)αm(j)F (m) = β(m)αm(j)αn(i)F (n)

and

β(n)αn(i)ξm(j) = β(m)αm(j)ξn(i), (2.1)

since αk(l)F (k) = ξk(l) for any k, l ∈ I. Let κ : I → I be such that (αn(κ(n))) ∈ ∆.
If we take i = κ(n) and j = κ(m) in (2.1), we obtain

β(n)αn(κ(n))ξm(κ(m)) = β(m)αm(κ(m))ξn(κ(n)),

for all m,n ∈ I, which means that

ξn(κ(n))
β(n)αn(κ(n))

∈ B(X ,∆).
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We will show that the map Φ : B(Y,∆) → B(X ,∆) defined by

Φ
(
F

β

)
=

ξn(κ(n))
β(n)αn(κ(n))

is a bijection.
First note that (2.1) implies that Φ is independent of a particular κ. If F (n) = ξn

αn
,

G(n) = ζn

δn
, and F

β = G
γ , then

γ(m)δm(i)αn(j)F (n) = β(n)αn(j)δm(i)G(m)

for all i, j,m, n ∈ I. But this means that

γ(m)δm(i)ξn(j) = β(n)αn(j)ζm(i) (2.2)

for all i, j,m, n ∈ I. Let ι, κ : I → I be such that (αn(ι(n))), (δn(κ(n))) ∈ ∆. From
(2.2) we obtain

γ(m)δm(κ(m))ξn(ι(n)) = β(n)αn(ι(n))ζm(κ(m))

for all m,n ∈ I, which implies

ξn(ι(n))
β(n)αn(ι(n))

=
ζn(κ(n))

γ(n)δn(κ(n))
.

Therefore Φ is well-defined.
Now take F (n) = ξn

αn
and G(n) = ζn

δn
and assume that

Φ
(
F

β

)
= Φ

(
G

γ

)
.

Then

ξn(ι(n))
β(n)αn(ι(n))

=
ζn(κ(n))

γ(n)δn(κ(n))
,

for some ι, κ : I → I. Hence, for all m,n ∈ I, we have

γ(m)δm(κ(m))ξn(ι(n)) = β(n)αn(ι(n))ζm(κ(m))

and

γ(m)δm(κ(m))αn(ι(n))F (n) = β(n)αn(ι(n))δm(κ(m))G(m).

Since (αi(ι(i))), (δi(κ(i))) ∈ ∆, we obtain

γ(m)F (n) = β(n)G(m),

which means that F
β = G

γ . This proves that Φ is injective. Finally, for any ξ
α ∈ B we

have

Φ

(
β(n)ξ

α

β(n)

)
=
β(n)ξ(n)
β(n)α(n)

=
ξ(n)
α(n)

,
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which proves that Φ is surjective.

The condition in the above theorem is satisfied in Examples 3.5 and 3.6 in the
next section. It is clear that it is always satisfied if I = N and ∆ is defined as

∆ = {α ∈ XI : Λ(α(i)) → 0 as i→ ∞},

for some Λ : X → [0,∞). More examples of this kind can be found in [6]. In Examples
3.4 and 3.7 the condition is not satisfied, but the conclusion of the theorem remains
true in both cases (see [3] for more on Example 3.4 and [5] and [6] for Example 3.7).
The author is not aware of an example for which reapplication of the construction
produces an essentially larger space.

Now we assume that X is a multiplicative group and G is a semigroup of injective
commuting homomorphisms from X to X. For x

f ,
y
g ∈ B define

x

f

y

g
=
g(x)f(y)

fg
.

It is easy to check that this is a well-defined group operation in B. If 1X is the identity
element in X, then f1X

f = 1X

f is the identity element in B. Moreover, the embedding
ϕ : X → B defined by ϕ(x) = fx

f is a group homomorphism.

The same idea works in the general case: for ξ
α ,

ζ
β ∈ B, we define

ξ

α

ζ

β
=
β(ξ)α(ζ)
αβ

.

Then B becomes a group and the embedding ϕ : X → B defined by ϕ(x) = αx
α is a

group homomorphism.
It is easy to see that, if X is Abelian, so is B. More generally, if X is a Λ-module

such that

g(x+ y) = gx+ gy and g(λx) = λ(gx),

for all x, y ∈ X, g ∈ G, and λ ∈ Λ, then B is a Λ-module with

ξ

α
+
ζ

β
=
βξ + αζ

αβ
and λ

ξ

α
=
λξ

α

and ϕ is an isomorphism of X with a submodule of B.
Now let X be a topological space and let G be a commutative semigroup of contin-

uous maps acting on X, equipped with a topology. On X and ∆ we put the topologies
induced by the product topologies on XI and GI , respectively. The topology of A is
induced by the product topology on X ×∆. Finally, we put the quotient topology on
B.

Theorem 2.4. The embedding ϕ : X → B is continuous.

Proof. Fix an α ∈ ∆. Then ϕ is the composition of two continuous maps: the
map x �→ (αx, α) and the quotient map (αx, α) �→ [

αx
α

]
.
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3. Examples. Concrete realizations of the construction produce familiar objects
and create some new possibilities.

Example 3.1. If X is an integral domain and

G = {x ∈ X : x �= 0},
then G acts on X injectively and B is the field of quotients.

Example 3.2. Let X be a nonempty set with an injection g : X → X and let
G = {1X , g, g

2, g3, . . . }. Then B is the minimal extension of X such that g−n : B → B
is well defined for all n ∈ N.

For example, let X = Z. If g : Z → Z is defined by gx = 2x, then B is the set of
all rational numbers of the form p

2n . This is the minimal set that contains all integers
and such that division by 2 is always possible.

Example 3.3. Let X = C(RN ), the space of all continuous functions on RN , and
let

(Λkx)(t1, . . . , tN ) =
∫ tk

0

x(t1, . . . , sk, . . . , tN ) dsk,

for k = 1, . . . , N . Note that these maps are injective. Let G be the semigroup
generated by Λ1, . . . ,ΛN . Since Λ−1

k corresponds to ∂
∂tk

, B is the minimal extension
of C(RN ) where differentiation is always possible. This space B can be identified with

the space of all distributions of finite order on RN . The action of
[

x

Λ
k1
1 ...Λ

kN
N

]
∈ B on

a test function ϕ can be defined by

〈
x

Λk1
1 . . .ΛkN

N

, ϕ

〉
= (−1)k1+···+kN

∫
RN

x(t)
∂k1+···+kN

∂tk1
1 . . . ∂tkN

N

ϕ(t) dt, (3.1)

where t = (t1, . . . , tN ).
A function x ∈ C(RN ) is called slowly increasing if

|x(t1, . . . , tN )| ≤ C(1 + t21 + · · · + t2N )n

for some C > 0 and n ∈ N and all (t1, . . . , tN ) ∈ RN . If we replace C(RN ) by the
space of slowly increasing functions and use the same G, then the obtained B can be
identified with the space of tempered distributions, again by (3.1).

Example 3.4. Let X = C(R) and let G be the convolution semigroup generated
by characteristic functions of bounded intervals. An element of G can be written
in the form ϕ1 ∗ ϕ2 ∗ · · · ∗ ϕm, where ϕ1, ϕ2, . . . , ϕm are characteristic functions of
bounded intervals in R. We let G act on X by convolution. Note that the mapping
x �→ ϕ ∗ x is not injective.

Let ω be the characteristic function of the interval [− 1
2 ,

1
2 ]. For n ∈ N, let ωn

denote the convolution of n copies of ω, i.e., ω1 = ω and ωn = ω ∗ ωn−1 for n > 1.
Let I = (0,∞),

∆ = {ϕ : ϕ(ε)(t) = εψ(εt) where ψ = ωm, m ∈ N, ε ∈ I}
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and X = XI . It is not as obvious as in Example 3.3, but it can be shown that in this
case B can be identified with the space of all distributions of finite order on R (see
[3]). If we replace C(R) by the space of continuous functions with compact support,
then the obtained B can be identified with the space of distribution with compact
support. It is not clear if the construction in Example 3.3 can be modified to produce
distributions with compact support.

Example 3.5. Consider a sequence of spaces

· · · ⊂ X−2 ⊂ X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ · · ·
with commuting projections

πn :
⋃
k∈Z

Xk → Xn.

Let

X =
⋃
k∈Z

Xk, G = {πn : n ∈ Z}

and

∆ = {(πkn
) : kn → ∞}, X = XI .

The obtained space B consists of objects that can be projected on every Xn and are
determined by these projections.

An important example of the above is multiresolution analysis. Let ϕ ∈ L2(R).
For m,n ∈ Z define

ϕm,n(t) = 2m/2ϕ(2mt− n).

Assume that ϕ is such that {ϕ0,n : n ∈ Z} is an orthonormal set in L2(R) and define

Xm =

{∑
n∈Z

cnϕm,n : (cn) ∈ l2(Z)

}
.

Then Xn ⊂ L2(R) for all n ∈ Z and Xm ⊂ Xn when m < n. Let X =
⋃

m∈Z
Xm and

let πm denotes the orthogonal projection on Xm.

Example 3.6. In [2] an example of B isomorphic to the set of all positive Radon
measures on RN is given. Here we present a modification of that construction that
produces all Radon measures on RN .

Let

Iī,k =
[
i1
2k
,
i1 + 1

2k

)
× · · · ×

[
iN
2k
,
iN + 1

2k

)
⊂ RN ,

for ī = (i1, i2, . . . , iN ) ∈ ZN and k ∈ N0 = {0, 1, 2, . . . }, and let Ω(̄i, k) denote the
characteristic function of Iī,k. For k ∈ N0 we define

Xk =

⎧⎨
⎩
∑

ī∈ZN

αī Ω(̄i, k) : ī ∈ ZN

⎫⎬
⎭ and X =

⋃
k∈N0

Xk.
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For k ∈ N0, let Ak : X → Xk be the projection defined by

Ak f =
∑

ī∈ZN

(
2Nk

∫
Iī,k

f

)
Ω(̄i, k), (3.2)

and let

G = {A0, A1, A2, . . . }.
Then G is a commutative semigroup acting on X. We take I = N0 and let

∆ = {(Apk
) : pk → ∞} .

Finally, let

X =
{
(fn) ∈ XI : A0|fn| ≤ C for some C and all n ∈ N

}
.

Note that X satisfies (a) and (b). We will show that in this case B is the collection
of all Radon measures on RN .

Let K be the space of all real-valued continuous functions on RN with compact
support. A sequence of functions ϕn ∈ K converges in K if it converges uniformly
and suppϕn ⊂ K for some compact K and all n ∈ N. Note that (3.2) can be used to
define mappings Ak : K → Xk.

Consider fn

Apn
∈ B and ϕ ∈ K. Let ε be a positive number. Since ϕ is uniformly

continuous, there exists an l ∈ N0 such that

||ϕ−Apl
ϕ||∞ < ε.

For any m,n ∈ N we have∣∣∣∣
∫
fmϕ−

∫
fnϕ

∣∣∣∣ ≤
∫

|fm − fn||ϕ−Apl
ϕ| +

∣∣∣∣
∫

(fm − fn)Apl
ϕ

∣∣∣∣ ,
and ∫

(fm − fn)Apl
ϕ =

∫
(Apl

fm −Apl
fn)Apl

ϕ

=
∫

(Amfpl
−Anfpl

)Apl
ϕ = 0

for all sufficiently large m and n. Let E be a finite union of Iī,0’s containing the
support of ϕ. Then∫

|fm − fn||ϕ−Apl
ϕ| ≤ ε

∫
E

|fm − fn|

≤ ε

∫
E

(|fm| + |fn|)

= ε

∫
E

(A0|fm| +A0|fn|) ≤ εc,

where c is a constant that is independent of m and n. This shows that
(∫
fnϕ

)
is a

Cauchy sequence. Moreover, different representatives of F produce equivalent Cauchy
sequences. Consequently, every F = fn

Apn
∈ B defines a functional on K via

ΛF (ϕ) = lim
n→∞

∫
fnϕ.
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The functional is obviously linear. Since,∣∣∣∣
∫
fnϕ

∣∣∣∣ ≤ ||ϕ||∞
∫

E

A0|fn| ≤ Cλ(E)||ϕ||∞,

where λ(E) is the Lebesgue measure of E and C is a constant independent of n, we
have

|ΛF (ϕ)| ≤ Cλ(E)||ϕ||∞.

Thus ΛF is a bounded linear functional on K and, by the Riesz Representation The-
orem, there exists a Radon measure µ such that ΛF (ϕ) =

∫
ϕdµ for all ϕ ∈ K.

Now assume that µ is a Radon measure on RN . Define

fn =
∑

ī∈ZN

2Nnµ(Iī,n)Ω(̄i, n).

Then F = fn

An
∈ B. Moreover, the Radon measure corresponding to ΛF is µ.

Example 3.7. In this example we recall the construction of Boehmians (see, for
example, [5] or [7]). This example is what motivated the construction discussed in
this paper.

Let X = C(RN ) and let G = D, the space of all compactly supported smooth
functions on RN , acting on X by convolution. Let I = N,

∆ =
{

(ϕn) ∈ DN : ϕn(x) = nNψ(nx) where ψ ∈ D and
∫
ψ = 1

}
,

and X = XI . The obtained B is a space of generalized functions containing all
Schwartz distributions as a proper subspace. One can use other function spaces
and different sets ∆ and obtain different spaces of generalized functions, shar-
ing the common name of Boehmians. For examples of such spaces of Boehmians
see [1], [4], [8], [9]. An extensive list of papers on Boehmians can be found at
http://math.ucf.edu/∼piotr/boehmians.html.
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