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We want to draw attention to three ideas in the paper of Chipman, George and Mc-

Culloch (henceforth CGM). The first is the importance of an adaptive variable selection

criterion. The second is the development of priors for interaction terms. Our perspec-

tive is information theoretic rather than Bayesian, so we briefly review this alternative

perspective. Finally, we want to call attention to the practical importance of having a

fully automatic procedure. To convey the need for automatic procedures, we discuss the

role of variable selection in developing a model for credit risk from the information in a

large database.

Adaptive variable selection

A method for variable selection should be adaptive. By this, we mean that the prior,

particularly ^(7), should adapt to the complexity of the model that matches the data

rather than impose an external presumption of the number of variables in the model.

One may argue that in reasonable problems the modeler should have a good idea how

many predictors are going to be useful. It can appear that a well-informed modeler

does not need an adaptive prior and can use simpler, more rigid alternatives that reflect

knowledge of the substantive context. While domain knowledge is truly useful, it does

Dean P. Foster and Robert P. Stine are Associate Professors, Department of Statistics, The
Wharton School of the University of Pennsylvania, Philadelphia, PA 19104-6302, U.S.A; emails: fos-
ter@diskworld.wharton.upenn.edu and stine@wharton.upenn.edu.



Discussion 125

not follow that such knowledge conveys how many predictors belong in a model. The

problem is made most transparent in the following admittedly artificial setting.

A small error in the choice of the basis in an orthogonal regression can lead to a

proliferation in the number of required predictors. Suppose that we wish to predict

future values of a highly periodic sequence, one dominated by a single sinusoid with

frequency ω. If we approach this as a problem in variable selection and use the common

Fourier basis to define the collection of predictors, the number of predictors is influenced

by how close the frequency of the dominant cycle comes to a Fourier frequency. Fourier

frequencies are of the form ωj = 2τrj/n, indicating sinusoids that complete precisely j

cycles during our n observations. If it so happens that ω = ω ,̂ then our model will

likely need but one sinusoid to model the response. If ω is not of this form, however,

our model will require many sinusoids from the Fourier basis to fit the data well. For

example, with n = 256 and ω = 2π5.5/n, it takes 8 sinusoids at Fourier frequencies

to capture 90% of the variation in this signal. The optimal basis would need but one

sinusoid. Adaptive thresholding — the empirical Bayes approach — is forgiving of such

errors, whereas dogmatic methods that anticipate, say, a single sinusoid are not.

Information theory and the choice of priors

A difficult choice in the use of Bayesian models for variable selection is the choice of a

prior, particularly a prior for the subspace identifying the predictors. We have found

coding ideas drawn from information theory useful in this regard, particularly the ideas

related to Rissanen's minimum description length (MDL). The concreteness of coding

offers appealing metaphors for picking among priors that produce surprisingly differ-

ent selection criteria. In the Bayesian setting, calibration also offers a framework for

contrasting the range of variable selection criteria.

The problem we consider from information theory is compression. This problem is

simple to state. An encoder observes a sequence of n random variables Y = (YΊ,..., Yn),

and his objective is to send a message conveying these observations to a decoder using

as few bits as possible. In this context, a model is a completely specified probability

distribution, a distribution that is shared by the encoder and decoder. Given that both

encoder and decoder share a model P(Y) for the data, the optimal message length (here,

the so-called "idealized length" since we ignore fractional bits and the infinite precision

of real numbers) is

If the model is a good representation for the data, then P(Y) is large and the resulting

message length is small. Since the encoder and decoder share the model P(Y) they can
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use a technique known as arithmetic coding to realize this procedure. But what model

should they use?

Common statistical models like the linear model are parametric models P$q) indexed

by a g-dimensional parameter θq. For example, suppose that the data Y are generated

by the Gaussian linear model

Y = θxXγ + Θ2X2 + + θqXq + e, e ~ 1\Γ(O, σ 2) .

To keep the analysis straightforward, we will assume σ2 is known (see Barron, Rissanen

and Yu 1998, for the general case). Given this model, the shortest code for the data is

obtained by maximizing the probability of y, namely using maximum likelihood (i.e.,

least squares) to estimate θq and obtain a message with length

where RSS(θq) is the residual sum of squares. This code length is not realizable, however,

since PQ is not a model in our sense. The normal density for Y with parameters θq =

θq(Y) integrates to more than one, Cn^q = Jγ PQ rγ\{Y)dY > 1.

Once normalized with the help of some benign constraints that make the integral

finite but do not interfere with variable selection (see, e.g., Rissanen 1986), the code

length associated with the model P$ jCnΛ is

The need for such normalization reminds us that coding does not allow improper priors;

improper priors generate codes of infinite length. We can think of the first summand in

(1) as the length of a code for the parameters θq (thus defining a prior for θq) and the

second as a code for the compressed data. This perspective reveals how coding guards

against over-fitting: adding parameters to the model will increase Cn^q while reducing

the length for the data.

So far, so good, but we have not addressed the problem of variable selection. Suppose

that both the encoder and decoder have available a collection of p possible predictors

to use in this ςr-variable regression. Which predictors should form the code? In this

expanded context, our code at this point is incomplete since it includes θq, but does not

identify the q predictors. It is easy to find a remedy: simply prefix the message with

the p bits in 7. Since codes imply probabilities, the use of p bits to encode 7 implies a

prior, p\ say, for these indicators. This prior is the iid Bernoulli model with probability

= 1) = i for which the optimal code length for 7 is indeed p,
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Since adding a predictor does not affect the length of this prefix - it's always p bits - we

add the predictor Xq+1 if the gain in data compression (represented by the reduction in

RSS) compensates for the increase in the normalizing constant Cn,q. Using a so-called

two-part code to approximate the code length (1), we have shown (Foster and Stine

1996) that this approach leads to a thresholding rule. For orthogonal predictors, this

criterion amounts to choosing those predictors whose ^-statistic Zj = θj/SE(θj) exceeds

a threshold near 2. Such a procedure resembles the frequentist selection procedure AIC,

which uses a threshold of \/2 in this context.

Now suppose that p is rather large. Using the p bits to represent 7 seems foolish if

we believe but one or two predictors are likely to be useful. If indeed few predictors are

useful, we obtain a shorter message by instead forming a prefix from the indices of the

those 7j = 1. Each index now costs us about log2p bits and implies a different prior for

7. This prior, p 2 say, is again iid Bernoulli, but with small probability Pr(7i = 1) = 1/p;

the optimal code length for 7 under p 2 is

log2 l/p2(7) = glogp - (P - q) log(l - q/p) ~ qlogp ,

for q = Σj jj <C p. Notice how this code assigns a higher cost to adding a predictor to

the model. Adding a predictor does not affect the length of the prefix given by Pi(j).

With P2(τ) as the prior, however, adding a predictor adds both a coefficient as well as

its index to the message. The prefix grows by an additional log2p bits. For orthogonal

regression and two-part codes, this approach implies a threshold for Zj near \/21ogp

which also happens to correspond roughly to another frequentist procedure. This is the

well-known Bonferroni method which retains predictors whose p-value is less than a/p

for some 0 < a < 1.

Both of these codes have some appeal and correspond to frequentist methods as well

as Bayesian priors, but neither is adaptive. The prior for the first code with a fixed

p-bit prefix expects half of the predictors to be useful. The second has a prior that

expects only one predictor to enter the model. As codes, both are flawed. The gold

standard in coding is to compress the data down to the limit implied by the entropy

of the underlying process, whatever that process may be. Both £1(7) and P2(7) only

approach that limit when they happen to be right (e.g., when in fact only one predictor

is needed in the model). Alternatively, so-called universal codes exist for representing

binary sequences, and these compress 7 almost as well as if the underlying probability

were known. Assuming that the elements jj are iid (one can drop this condition as well),

a universal code represents ηq using about pH(q/p) bits, where H denotes the Boolean

entropy function

H(u) = u log2 - + (1 - u) log2 , 0 < u < 1 .
u 1 — u
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Universal codes are adaptive in that they perform well for all values of q/p, doing almost

as well as either of the previous codes when they happen to be right, but much better in

other cases. Returning to the setting of an orthogonal regression, a universal code also

implies a threshold for adding a predictor. The threshold in this case now depends on

how many predictors are in the model. One adds the predictor Xj to a model that already

has q predictors if its absolute ^-statistic \θj/SE(θj)\ > y/2logp/q. This is essentially the

empirical Bayes selection rule discussed by CGM in Section 3.3. The threshold decreases

as the model grows, adapting to the evidence in favor of a larger collection of predictors.

Again, this procedure is analogous to a frequentist method, namely step-up testing as

described, for example, in Benjamini and Hochberg (1995).

Coding also suggests novel priors for other situations when the elements of 7 are

not so "anonymous". For example, consider the treatment of interaction terms. In the

application we discuss in the next section, we violate the principle of marginality and

treat interactions in a non-hierarchical fashion. That is, we treat them just like any

other coefficient. Since we start with 350 predictors, the addition of interactions raises

the number of possible variables to about p = 67,000. Since they heavily outnumber

the linear terms, interactions dominate the predictors selected for our model. Coding

the model differently leads to a different prior. For example, consider a variation on the

second method for encoding 7 by giving the index of the predictor. One could modify

this code to handle interactions by appending a single bit to all indices for interactions.

This one bit would indicate whether the model included the underlying linear terms as

well. In this way, the indices for Xj, X^ and Xj * Xk could be coded in 1 4- log2p bits

rather than 31og2p bits, making it much easier for the selection criterion to add the

linear terms.

An application of automatic, adaptive selection

Methods for automatic variable selection matter most in problems that confront the

statistician with many possibly relevant predictors. If the available data set holds, say,

1000 observations but only 10 predictors, then variable selection is not going to be very

important. The fitted model with all 10 of these predictors is going to do about as well as

anything. As the number of predictors increases, however, there comes a point where an

automatic method is necessary. What constitutes a large number of possible predictors?

Probably several thousand or more.

Such problems are not simply imaginary scenarios and are the common fodder for

"data mining". Here is one example of such a problem, one that we discuss in detail

in Foster and Stine (2000). The objective is to anticipate the onset of bankruptcy
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for credit card holders. The available data set holds records of credit card usage for a

collection of some 250,000 accounts. For each account, we know a variety of demographic

characteristics, such as place and type of residence of the card holder. When combined

with several months of past credit history and indicators of missing data, we have more

than 350 possible predictors. The presence of missing data adds further features, and

indeed we have found the absence of certain data to be predictive of credit risk. Though

impressive at first, the challenge of choosing from among 350 features is nonetheless

small by data mining standards. For predicting bankruptcy, we have found interactions

between pairs or even triples to be very useful. Considering pairwise interactions swells

the number of predictors to over 67,000. It would be interesting to learn how to apply a

Gibbs sampler to such problems with so many possible features.

Though challenging for any methodology, problems of this size make it clear that

we must have automated methods for setting prior distributions. To handle 67,000

predictors, we use adaptive thresholding and stepwise regression. Beginning from the

model with no predictors, we identify the first predictor XjΎ that by itself explains the

most variation in the response. We add this predictor to the model if its t-statistic

^ii = βj\yιl
se{βj\,ι) 0 n absolute value) exceeds the threshold y/2\ogp. If βjΎi\ meets

this criterion, we continue and find the second predictor Xj2 that when combined with

XjΎ explains the most variation in Y. Rather than compare the associated ί-statistic

tj2)2 to the initial threshold, we reduce the threshold to >/21ogp/2, making it now easier

for Xj2 to enter the model. This process continues, greedily adding predictors so long as

the ^-statistic for each exceeds the declining threshold,

Step q: Add predictor Xjq <ί=>- l*jff,gl >

Benjamini and Hochberg (1995) use essentially the same procedure in multiple testing

where it is known as step-up testing. This methodology works in this credit modelling in

that it finds structure without over-fitting. Figure 1 shows a plot of the residual sum of

squares as a function of model size; as usual, RSS decreases with p. The plot also shows

the cross-validation sum of squares (CVSS) computed by predicting an independent

sample. The validation sample for these calculations has about 2,400,000 observations;

we scaled the CVSS to roughly match the scale of the RSS. Our search identified 39

significant predictors, and each of these — with the exception of the small "bump" —

improves the out-of-sample performance of the model. Although the CVSS curve is flat

near p = 39, it does not show the rapid increase typically associated with over-fitting.

Gibbs sampling and the practical Bayesian methods discussed by CGM offer an

interesting alternative to our search and selection procedure. They have established

the foundations, and the next challenge would seem to be the investigation of how

their search procedure performs in the setting of real applications such as this. Greedy
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Figure 2: Residual and cross-validation sums of squares for predicting bankruptcy.

selection methods such as stepwise regression have been well-studied and probably do

not find the best set of predictors. Once XjΎ becomes the first predictor, it must be

in the model. Such a strategy is clearly optimal for orthogonal predictors, but can be

'tricked' by collinearity. Nonetheless, stepwise regression is fast and comparisons have

shown it to be competitive with all possible subsets regression (e.g., see the discussion

in Miller 1990). Is greedy good enough, or should one pursue other ways of exploring

the space of models via Gibbs sampling?
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