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The Quality Measurement Plan (QMP) is a new kind of
control chart based on a hierarchical Bayes model QMP
has been successfully implemented at AT&T and Bellcore
Two features of QMP are potential limitations: (i) all
past observations in an arbitrary moving window are
treated equally and (ii) conditional on the hyper-
parameters (process average and variance), the serial
correlation is zero. The Primal State model avoids
these limitations. The basic idea is that for each
period, the true defect rate does not change with
probability (1-P); but with probability P, the defect
changes to a random Primal State We present a
recursive adaptive filter for this model and make
comparisons to QMP A fascinating result is that for a
very large set of real control chart data, QMP forecasts
as well as the Primal State model. This indicates that
QMP is good enough for practical purposes .

1. Introduction and summary.

The Quality Measurement Plan (QMP) (Hoadley, 1981) was implemented

throughout AT&T Technologies (formerly called Western Electric) in 1980 and Bell

Communications Research in 1984. QMP is a statistical method for analyzing

discrete time series of quality audit data consisting of defects and their
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expectancy (expected number of defects given standard quality). The process

model for QMP is Bayes empirical Bayes or hierarchical Bayes; i e , the time

series of true quality parameters is i i.d with unknown process average and

variance, which have a known joint prior distribution. The graphics for QMP

form a very effective control chart, which provides point and interval estimates

of quality as well as traditional tests of the "In Control" hypothesis. In

addition, one is provided with graphical displays of estimated process average,

process variance, and sampling variance. The estimate of current quality is a

shrinkage of the current sample estimate towards the estimated process

average. The proportion shrinkage is an adaptive estimate of the ratio of

[sampling variance] and [(sampling variance) + (process variance)].

Bell Communications Research (Bellcore) has also implemented a version

of QMP (Hoadley, 1984) for both their factory quality audits and their BELLCORE-

STD sampling plans (Brush, 1984 and Guyton, 1985). These sampling plans invoke

QMP for computing the Process Control Factor (PCF), which is the probability

that the next lot will be substandard. The sample sizes are proportional

to /PCF. QMP is also used to compute the Allowance Number (AN) for lot or

system Rejection.

QMP works well for most applications, but has some alleged

deficiencies. One is the arbitrary fixed window length for the data. Another

is the assumption that the true defect rates for successive lots are

uncorrelated, given the process distribution. This leads to equal treatment of

past data. These difficulties seem to be most noticeable for data with small

expectancy such as 0.15. Such examples arise when applying the BELLCORE-STD

sampling plans. These properties of QMP have motivated further research in this

area. An extension of QMP is the Quality Evaluation Plan (QEP) (Phadke, 1982).

The QEP model features: (i) a square root transformation to stabilize the

variance and obtain an approximate Normal distribution and; (ii) a random walk

model with unknown drift variance for the process average. This model results

in an adaptive recursive Kalman filter for which the drift variance and the

process variance are estimated adaptively. QEP solves some of the deficiencies
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of QMP, but there is a drawback. The model breaks down for small expectancy

such as 0.15. In this case the square root transformation does not stabilize

the variance and the sample index is too discrete to be considered normally

distributed.

The Primal State model provides an alternative approach to adaptively

filtering time series of defect rates, and does not have the above

deficiencies. The basic idea is that the defect rate at time t is equal to the

defect rate at time t-1 with probability (1-P). But with probability, P, the

defect rate changes and is chosen at random from a distribution called the

Primal State. The change probability and the Primal State distribution are

unknown. So QMP is a special case with P=l

In this paper we derive an approximate recursive adaptive filter for

the Primal State model. We then compare this filter with QMP with particular

focus on the above deficiencies. We offer encouraging evidence that the Primal

State filter provides a robust estimation oriented control chart, which allows

for sudden changes in quality, drifts in quality, and QMP like stationary

process variation. However, from a forecast point of view, Primal State offers

no advantage over QMP when applied to a large real data set (See Section 3.3).

In any case, more research is needed, and should include: (i) a Monte Carlo

study of estimation error for various process models, and (ii) a Monte Carlo

study (like Roberts, 1966) of expected waiting time to detect a shift in the

process

In Section 3.1, we explore the issue of lot rejection for lot-by-lot

acceptance sampling with a small expectancy of 0.15. Our rule is to reject the

lot if the posterior probability of substandard quality exceeds 0.85. We find

that the rejection decision depends heavily on both the process model and the

prior distribution of the process parameters

2. The Primal State.

For time period (or lot or system) t, t-1,2,..., let
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n
t
 = Sample size

x
t
 = Defects observed in the sample

λ = True defect rate in defects per unit

We assume that the sampling distribution of x^ given λ is: Poisson (n λ ) . We

transform to a scale using λ = standard (or objective) value of λ . Let

e
t
 - E(x

t
|λ

t
 - λ

Q
 = n

t
λ

Q
) = Expectancy

I
t
 = x

t
/e

t
 = Sample quality index

Θ = λ /λ = True quality index.

The expectancy, e. , plays an important role. Notice that

x |Θ is Poisson(e Θ );

so, expectancy is the carrier of the sample size information, when working on an

index scale.

The Primal State process model is:

Θ
t-1 with probability 1-P,

Primal State, with probability P,

where the Primal State is an independent Gamma random variable with unknown mean

2 2
and variance,© and γ . We assume that (Θ ,P,Θ,γ ) have a joint distribution.

Note that if P=l, then this model reduces to the QMP model. Also note that

2
given (P,Θ,γ ), the serial correlation of Θ and Θ is (1-P). The motivation

for the Primal State model is to allow for sudden changes in quality, serial

correlation, drifts, and QMP like stationary process variation.

2.1 Notation and Preliminaries .

We use two notational conventions that could cause confusion. The

symbol e is used for expectancy and exp is used as the base of the natural

logarithm. The symbol E is used as the expectation operator whenever it is

followed by a parentheses or bracket; otherwise, E is used as a variable.
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2.1.1 Gamma Distribution.

Let g(Θ|x,e) « Θ
X
~

1
(e)

X
exp{-eΘ}/Γ(x) denote the Gamma density with

Θ > 0, shape parameter x, and scale parameter 1/e. The associated mean,

variance and second moment are x/e, x/e and x(x+l)/e If we let n and v

denote the mean and variance respectively, then x = n /v and e = n/v. Also let

S(y|n,v) denote Pr{Θ > y}, where Θ is the Gamma random variable.

2.1.2 Negative Binomial Distribution.

If x|Θ is Poisson (eΘ) and Θ has density g(Θ|x,E), then x|x,E is

Negative Binomial with probability mass function

Two useful properties of the Negative Binomial random variable, x, are:

(Nl) V(x) = e
2
X/E

2
 + eX/E

(N2) V[x(x-1)] = v(eX/E,l/X),

where

v(z,y) = 2z
2
(l + y){l + 2z(l + 2y) + z

2
y(2 + 3y)}

These results can be derived from the following facts. Let

M
v
 - x(x-l)...(x-v+l). In Haight (1967) it is shown that E(M

v
) =

 e

V
E ( 0

V
) . From

Kendall (1958), p.64, it follows that

V(x) = E(M
2
) + E(M

χ
) - [E(M

X
)]

2

)] = 2E(M
2
) + 4E(M

3
)
 4 2

And from Wilks (1962), p.171, we have E(Θ) = X/E, E(Θ
2
) - [X/E]

2
(1+1/X),
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E(Θ
3
) = [X/E]

3
(1+1/X)(1+2X), E(Θ

4
)

2.1.3 Gamma - Conditional Gamma Bayesian Model.

In Appendices D and E of Hoadley (1984), we derive the following

result. Let R.,ω be a statistic, parameter for which R.|ω ^ Gamma with

mean = 1/ω and shape parameter a^. Let ω be distributed as a Conditional

Gamma φ|(φ < 1), where φ^ Gamma with mean = 1/RQ
 anc
*

 s
^

a
P

e
 parameter a^.

Then E(ω) = 1/[R
0
F(a

0
,R

Q
)] and E ί ω ^ ) = l/[RF(a,R)], where a = a

Q
 + a

χ
, and

R = (a
Q
R

0
 + a ^ J / a , F(a,R) = G

a
(aR)/G

a+1
(aR) and G

a
(y) = /

Q
g(x| a, l)dx.

Computational formulas for F(a,R) are given in Hoadley (1984), Appendix D.

2.1.4 Beta density.

Let b(P|A,B) - Γ(A+B)P
A
"

1
(1-P)

B
"

1
/Γ(A)Γ(B) denote the Beta density

with 0 < P < 1, and parameters A, B. The associated mean, variance and second

moments are A/(A+B), AB/(A+B)
2
(A+B+1), and [A/(A+B)]

2
[1+B/A(A+B+1)]. If P has

the above Beta distribution and m » E(P), r = [E(P) - E(P
2
)]/V(P), then A = rm,

B - r(l-m) .

2.1.5 Notation for manipulating conditional probabilities .

Let ρ(Θ | ), p(P|.), denote posterior densities of parameters given

events or data. When conditioning, we use the symbol
 !
t

f
 to mean Mata through

period t
f
 Some events of interest are C

t
 = { process changed at period

t} and C = {process remained the same at period t}. So for example,

p(Θ |t,C ) is the posterior density of Θ given all the data through period t

and the process did not change at period t. Also for example, Pr{x |t-l,C } is

the probability of observing x
fc
 given all the data through period t-1 and the

process does not change at period t.

2.2 Heuristic recursive adaptive solution to the primal state model.

The exact solution to the Primal State model is intractable and non-

recursive; so in this Section, we present a heuristic, recursive, adaptive
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algorithm for approximating the results of interest. The heuristic argument

itself will be presented in Section (2.3).

Input Data:

Fixed Parameters:

δ ,δ : Smoothing constants used to estimate the Primal mean and variance

Θ
n
,v

n
: Prior estimates of the Primal mean and variance

b: Bad quality level used for the probability that future quality will be

bad.

Initial Values of Sufficient Statistics:

V
 Q
V V

 Q
V V V V V V V

These statistics are defined in the recursive algorithm later in this Section.

Derived Initial Values:

P
o
 = A

0
/(A

0
 + B

o
) , Xl

0
 = Θ

2

0
/V

0
, El

0
 = Θ

Q
/V

Q
.

Recursive Algorithm:

For each period t, after the input data (x
t
,e ) are observed, the

following 42 step recursive algorithm gives the results of interest, which are

Prίcjt}, E(P|t), V(P|t), E(Θjt), V(Θ
t
|t), and Pr{Θ

t
>l|t}. These are computed

in steps (S22), (S23), (S25), (S33), (S34), and (S37) respectively.

(51) I
t
 = x

t
/e

t
 = Sample index

1/2
(52) K

t
 = |l

t
 -

 F

t
-.il/[

0
r/

e
 J - Relative forecast error

(53) L
t
 » L

t
_

1
 + K

t
 = Cumulative relative forecast error

(54) M
t
 = ̂ t ^ " ̂

v e r a
S

e
 relative forecast error

2

(55) G = x (x -l)/e = Estimate of the Primal second moment for period t

(56) ql
t
 = v

0
 + θ

o
/e

t
 - V(I

t
|θ = Θ

o >
 γ

2
 = v

Q
)

(57) q2
t
 = v(e

t
θ

0
, v

o
/Θ^)/eJ - V C G J Θ = θ

Q
, γ

2
 =

 V ( )
)
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(58) Wl = ql./(ql. + Ql. , + <$ ) = Weight on I , in the smoothing of I
t u t t J. ί t~x t

(59) W2
t
 = q2

t
/(q2

t
 + Q2

t
_

1
 + «

2
> = Weight on G ^ in the smoothing of G

t

(510) Ql
t
 - (1-Wl

t
)ql

t
 « V(θ|t)

(511) Q2
t
 = (1-W2

t
)q2

t
 - V(0

2
 + γ

2
|t)

(512) I
t
 - (Wl

t
)I

t - 1
 + (l-Wl

t
)I

t
 « E(θ|t) - Smoothing of I

fc

(513) G
t
 - (W2

t
)G

t
_

1
 + (1 - W2

t
)G

t
 = Smoothing of G

t

(514) a
t
 = [v

Q
 + Θ

2
]

2
/Q2

t

(515) R
t
 = G

t
/I

2

(516) v = (G )F(a ,R ) - I = Estimate of Primal variance

(517) VO = v + Ql = Adjusted estimate of Primal variance

Λ
2

(518) XO =
 1

t
/
vo

t
 = Shape parameter of the estimated Primal Gamma distribution

(519) EO = I
t
/VO = l/(Scale parameter) for above distribution

(520) f
t
 - n(x

t
|e

t
,XO

t
,EO

t
) = Likelihood of change to the Primal State

(521) g - n(x |e ,X1 ^El j) = Likelihood of no change

(s22) pt - v ^ A ^ " ρ r { c J t }

( S 2 3 >

A t
( S 2 4 ) s t = P I - £ ( A t - i + " ^ t - i + V i + 2 ) J

V l 2 ( Bt-l+ 1 )

E ( P 2 | t )

(S25) u t - s t - P2 « V(P|t )

P - s
(S26) r = = Variable used to compute A and B

(S27)
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(528) B
t
 = r

t
(l - P

t
)

(529) X2 = XO + x = Shape parameter for posterior distribution of Θ

given change to Primal State

(530) E2 = EO + e » l/(scale parameter) for above posterior

(531) X3 = XI + x = Shape parameter for posterior distribution of Θ ,

given no change

(532) E3 = El + e = 1/(Scale parameter) for above posterior

X2 X3

(533) Θ
t
 = P ^ ^ ] + ( l - V ^

1
 "

 E ( Θ

t
l

t )

X2 (X2 + 1) X3 (X3 + 1)
 9

(534) V. - P . [ — ~
7
 ] + (1-P.M— ^ ] - ̂  - V(Θ It)

t t
 (E2)

2 t
 (E3 y

 Z ϋ

Λ
2

(535) XI = Θ /V » Shape parameter for the posterior distribution of Θ

(536) El =
 Θ

t
/

V
t *

 ι
/(

Scale
 parameter) for above posterior

(537) S
t
 = S(l|Θ

1
,V

t
) - Pr{Θ

t
 > l|t}

(538) Q5
t
%: Defined by S(Q5

t
%|θ

t
,V

t
) = 0.95

(539) Q95
t
%: Defined by S(Q95

t
%|θ

t
,V

t
) - 0.05

(540) F
t
 = P

t
I

t
 + (1 - P

t
)θ

t
 « E(θ

t + 1
|t)

(541) Y
t
 = P

t
(VO

t
) + (1 - P

t
)V

t
 + P

t
(l - P

t
)(ΐ

t
 - \ )

2

(S42) Z = S(b|F ,Y
t
) «

 P r
t

Θ

t + 1

 >
 b|t}.

2.3 Explanation of the heuristic.

(SI) - (S4): These steps are used to compute an average relative

forecast error for comparison with other algorithms. In (S2),

1 /2
[Θ./e ] « SD(I |θ - Θ ) is used to normalize the error so as to keep the

normalization simple and constant for all algorithms

(S5) - (S19): These steps are designed to estimate the Primal mean

and variance. Note that E[G
t
|P,Θ,γ

2
] - E[E[G |θ ]|P,Θ,γ

2
]. Using results in

Haight (1967), this becomes E[Θ
2
|p,Θ,γ

2
] = γ

2
 + Θ

2
. Similarly,

2
E[I |P,Θ,γ ] = Θ. So I

t
 and G

t
 are estimates of the Primal mean and second

moment
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The method used in QMP for estimating the process average and variance

is to construct approximate Bayes estimates using data in a moving window of

periods. As discussed in Section 1, there are disadvantages to the moving

window approach. So for the Primal State algorithm, we first smooth I
t
 and G

t

using (S12) and (S13) . These smoothers are simple Kalman filters derived, e.g.

in the I
t
 case, from the model: I

fc
 | y

fc
 ~ N(μ

t
,ql

t
>, y

fc
 11

J

1
___

1
 ~ N (

t̂
_
1
> δj) and

U
π
 ~ N(I ,Q1

Λ
). Of course we do not have Normal distributions here, but the

smoothers are reasonable. The formulas in (S6) and (S7) follow from Section

2
(2.1.2) and the assumption that P = 1, Θ = Θ , and γ = v

Q
.

A simple estimate of the Primal variance is G - I but this can be

negative. So we inflate G by the inflation factor F(a
t
,R

t
), which is motivated

by the results in Section (2.1.3). The results are applied with R- = G /I ,

2 2 2
ω = θ /(θ + γ ), a = a , a -• 0, R -• 0. Then the Bayes estimate

of Θ
2
/(Θ

2
 + γ

2
)is I

2
/F G

t

2
, which motivates (S16). In the theory of Section

(2.1.3), a. » E (R |ω)/V(R.|ω). Assuming I is constant, this becomes

a
χ
« E

2
(G

t
|ω)/V(G

t
|ω). Then we assume E (Gjω) « v

Q
 + Θ

2
, V(G

t
|ω)»Q2 . Of

course, for the Kalman filter, Q2 is approximately V(Θ + γ 11). Here,

we are using the fact that posterior variances often approximate sampling

variances. In any case, we are only trying to inflate G in a reasonable way.

The motivation for (SI7) is to account for the additional uncertainty

in the Primal State due to estimation of the Primal mean. Formulas (S18) and

(S19) follow from Section (2.1.1).

(S20) - (S22): Assume that approximately,

(Al). p(P|t) = b(P|A
t
,B

t
)

Note that

(1)

Pt = PrίCjt} - Pr{Ct|t-l,xt}

Pr{CJt-l}Pr{xJt-l,C }

5 1 ί —
Pr{C

t
|t-l}Pr{x

t
|t-l,C

t
} + Pr{C

t
|t-l}Pr{x

t
|t-l

>
C

t
}
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By (Al), Pr{C
t
|t-l} = V-l^t-l^t-l*' Prttjt-l} = ̂ -i^t-l^t-l*

 B v t h e

definition of the Negative Binomial distribution, Pr{x |t-l,C } • f , and

Prix |t-l,"C }
 β
 g . Formula (S22) follows by plugging these into (1).

(S23) - (S29); Note that

(2) p(P|t) - Pr{C
t
|t}p(P|t,C

t
) + Pr{c"

t
 | t}p(P| t ,c"

t
) .

And

p(P|t,C
t
) - p(p|t-l

f
C

t
) «p(P|t-l)Pr{C

t
|t-l,P}.

A -1 B -1
By (Al) this is « P

 c
 (1-P)

 τ
 P; hence, p(P|t,C

t
) = b(P|A

t - 1
 + 1, B ^ )

and similarly p(P|t,C" ) « b(P|A
 β l

>B , + 1). Plug these into (2) and formulas

(S23) and (S24) follow. Formulas (S25) - (S28) follow from Section (2.1.4) and

(Al).

(S29) - (S39): For this derivation, we assume that the Primal State

is known and equal to the estimates derived earlier. We also assume

(A2) P(θ
t
|t) - g(θ

t
|xi

t
,El

t
).

Note that

(3) P(θ
t
|t) - Pr{C

t
|t}p(θ

t
|t,C

t
)

The Primal State density is g(.|X0
t
,E0

t
) so by the simple Poisson-Gamma

Bayesian model (see Hoadley, 1984, Appendix B), p(θ
t
|t,C^) - g(θ |X2 ,E2 ).

Using (A2), a similar argument yields p(θ |t,c") » g(θ |X3 ,E3 ). Plug these

into (3) and formulas (S33) and (S34) follow. Formulas (S35) - (S39) follow

from Section (2.1.1).

(S40) - (S42): Note that

lt}E[θ Jt,C J + Pr{C
fχl
|t}E[θ
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Formula (S40) follows.

Let i
t+
i be the indicator random variable of change to the Primal

State at period t+1. Then

v(θ
t + 1

|t) -E[v(θ
t + 1

|t,i
t + 1

|t] +v[E(θ
t + 1

|t,i
t + 1

)|t]

(5)

Formula (S41) follows by algebra and observing that

V

Finally, (S42) follows by assuming that Θ .|t is approximately Gamma

3 Examples.

Throughout this Section we use the same fixed parameters and initial

sufficient statistics for the Primal State Algorithm. The fixed parameters are:

0.01, Θ
Q
 - 1, v

Q
 - 0.55, b - 3.

The initial sufficient statistics are:

, Q1
O
=3.O5, G

0
=1.55, Q2

0
=l, θ

Q
=l, V

Q
=3.6, A

Q
=1, B^l, F

Q
=1, L

Q
=0.
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Also throughout this Section, we use the standard parameters for the

implementation of QMP described in Hoadley (1984), which are

V 1 ' v o = 2 5 > V ° 55'

For the application of QMP in the BELLCORE-STD Sampling plans, the window length

(T) depends on the expectancies. The window lengths for examples 3.1 and 3.2

are 16 and 6 respectively.

3.1 Small expectancy, flurry of defects.

QMP and MIL-STD-105D (Duncan, 1974, p.209) behave differently with

respect to rejecting lots when the expectancy is 0.15. The purpose of this

Section is to explore this whole issue by comparing the behavior of the Primal

State model vs. QMP and MIL-STD-105D for a specially designed example.

The input data for this example is e
t
=0.15, t=l,...,43; x ΞO,

t=l,...,17,32, ...,43; and for t=18,...,31, the defect pattern is:

t

x
t

18

1

19

0

20

2

21

0

22

1

23

0

24

3

25

0

26

1

27

0

28

2

29

0

30

0

31

1

Figure 1 is a plot of Pr{©
t
 > l|t} for QMP vs. Primal State.
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Figure 1. Posterior probability of being substandard for QMP vs. Primal State.

For the Normal State of MIL-STD-105D, the Allowance Number is zero; i.e., a lot

with one defect is rejected. The producer's risk is 0.14. For BELLCORE-STD

sampling plans, the rejection criterion is: Pr{Θ > l|t} > 0.85; so that the

Bayes producer's risk is less than 0.15. A comparison of the Accept(A)/

Reject(R) decisions for the various plans is shown below:

Lot (t)

MIL-STD-105D

QMP

PRIMAL SΓATE

18

A

A

A

19

A

A

A

20

R

A

R

21

A

A

A

22

R

A

A

23

A

A

A

24

R

R

R

25

A

R

A

26

R

R

R

27

A

R

A

28

R

R

R

29

A

R

A

30

A

R

A

31

R

R

R

For lot 18 (the first defect), MIL-STD-105D Accepts because all of the

preceding zero defect lots put the plan into the Reduced State QMP and Primal
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State also Accept with Pr{θ
t
 > l|t} being 0.46 and 0.70 respectively. For all

lots except lot 22, Primal State agrees with MIL-STD-105D. For lot 22,

Pr{θ
t
 > l|t} = 0.78 for Primal State - not quite large enough for Rejection.

However, the behavior of QMP is completely different. QMP Accepts through lot

23 and then Rejects the rest - even when there are zero defects.

To see why this is true, consider lot 25, which has zero defects, but

was preceded by a flurry of defects. For lot 25, a comparison of QMP vs. Primal

State reveals:

QMP

Primal

E(θjt)

2.56

2.20

SD(θ
t
|t)

.82

1.97

Pr{Θ >l|t}
t

.93

.68

Decision

R

A

The difference in decision is mostly due to the different posterior standard

deviations. These are in turn mostly due to the difference between the QMP

process variance (.73) and the Primal State variance (3.37). These are

different because the simple Kalman filter used for smoothing {G } is

initialized with prior information that is much more diffuse than the comparable

QMP prior information on process variance. The idea is that the Primal State

distribution describes what happens when the process changes from a state of

statistical control to something else, which could be dramatically different.

The QMP process variance models lot to lot variation which is typically small.

The Primal variance is intended to model dramatic change in the process, and is

therefore more uncertain.

We have shown that for small expectancy the Accept/Reject decision for

a lot depends heavily on both the process model and the prior distribution of

the process parameters. This serves as a warning to exercise great care in the

model specification. The standard solution to this Accept/Reject decision

problem is MIL-STD-105D. This solution is approximately consistent with the

Primal State solution presented herein. However, if the QMP model or the Primal

State model with a different initialization is more realistic, then MIL-STD-105D
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is not the solution. Implicit in MIL-STD-105D is some model; and we say, let it

be revealed.

3.2 An example with real data.

Preliminary applications of the Primal State algorithm to real data

are very encouraging The kind of example for which the Primal State algorithm

works very well (in a forecast error sense) is shown in Figure 2. For this

example, the expectancies range from 1.0 to 3.6. The data for periods 1 through

16 are a copy of the data for periods 17 through 32. The solid and dashed

curves are E(Θ |t) (called the filter) for QMP and Primal State respectively.

The solid and dashed inverted
 f
T

τ
 symbols are the fifth posterior percentiles

(Q5
t
%) for QMP and Primal State respectively.

Notice that for Primal State, E(Θ |t) is quicker to change and quicker

to level off - a pattern which is consistent with the underlying model. The

fifth posterior percentiles are quite different for a period like 25, where

there appears to be a drift. The ratio of the average absolute forecast errors

(averaged over periods 17 through 32) for Primal State vs. QMP, is .84.

X

ΐ
r*

4

3

17
! •

" /'•••„...• •

1

o
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1
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1

•

QMP

FILTER

PRIMΔI

FILTER
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INDEX

•

OMP

FIFTH

PERCENTILE

±

PRIMAL
FIFTH

PERCENTILE
1

Figure 2. QMP vs. Primal State filters for some real data.
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3.3 Forecast error comparison.

In this Section we compare the forecast errors of Primal State vs. QMP

(with a 6 period window). Our data base is 1,467 real time series with 16

periods each. Most of the expectancies are between .2 and 10 with an average of

3.8. For each time series, the Primal State Average Relative Forecast Error

(ARFE) is defined in (S4) of the recursive algorithm in Section 2.2. For QMP,

the ARFE is defined similarly using the process average as the forecast. The

arithmetic means of the two sets of 1,467 ARFEfs are .8932 and .8914 for Primal

State and QMP respectively - a ratio of 1.0020 - signifying no important

difference. This suggests that QMP, which is conceptually very simple, is quite

adequate for most applications
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