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Several inequalities and monotonicity results have been obtained in the study of selec-

tion and ranking problems; these, in fact, are germane to the development of the theory.

Basic to the setup of these problems is the assumption regarding some order relations such

as stochastic ordering and the monotone likelihood ratio property. These and other related

ideas, along with some basic inequalities that arise under these assumptions are reviewed.

Further, some important inequalities relevant to selection from restricted families of distri-

butions defined by some partial order relations (such as IFR and IFRA families) are also

discussed. Several specific results relating to multivariate normal, multinomial and gamma

distributions are also reviewed.

1. Introduction. Inequalities play a fundamental role in nearly all branches of

mathematics—especially so in probability and statistics. The impact of basic inequalities

such as those that carry the names of Cauchy-Schwarz, Chebyshev, Cramer-Rao, and Bon-

ferroni in statistics is well known. Inequalities have been profitably used to obtain bounds

for probabilities that are more tedious to compute or analytically impossible to handle.

Especially in reliability problems, the limited assumptions that could be made about the

nature of the life distributions of the components of a system as well as the structure of

the system itself render inequalities not merely useful and desirable but essential. Since

interest in inequalities pervades through nearly all branches of mathematics, significant

contributions have been made by a very large number of researchers whose efforts span

well over a century. From time to time, books and monographs have been written which

are completely devoted to inequalities. The classic book of Hardy, Littlewood and Pόlya

(1934) is a remarkable collection of mathematical inequalities. Some important works that

followed are Beckenbach and Bellman (1961), Godwin (1964), Kazarinoff (1961), Mar-

shall and Olkin (1979), Mitrinovic (1964, 1970), Pόlya and Szego (1951), Shisha (1967),

and Tong (1980). Of these, the monographs of Marshall and Olkin (1979) and Tong (1980)

contain the recent developments in the area of multivariate probability inequalities; this

topic has seen a major growth in the last ten or fifteen years. In this connection we also

refer to a recent review paper by Eaton (1982).

In selection and ranking problems, inequalities and monotonicity properties have a vital

role to play. Consider the classical formulations of these problems in which one proposes

a procedure which will guarantee a minimum probability of correct selection (PCS). This

amounts to evaluating the PCS, determining the parametric configuration for which the

PCS is minimum, and then determine the constants defining the procedure so that this mini-

mum is at least a specified level P*. Determining this configuration, known as a least favor-
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able configuration (LFC), is a vital part of the analysis. Obviously, this involves establish-

ing an inequality that the PCS for a certain parametric configurations does not exceed the

PCS for any other configuration. In some situations, this can be established by demonstrat-

ing a monotonic behavior of the PCS. There are a number of problems in which the LFC

cannot be analytically established; in such cases, recourse has been taken to obtain a good

lower bound for the PCS first and then seek the LFC for this lower bound. Even when the

LFC for the PCS can be analytically established, inequalities are further useful in obtaining

conservative but easier-to-compute values for the constants of the procedure. Similar situa-

tions arise when we consider the worst configuration for any suitable performance charac-

teristic such as the expected number of nonbest populations included in the selected subset.

Additional uses of inequalities arise due to specific assumptions regarding the families of

distributions under consideration; for example, distributions having an increasing failure

rate (IFR) and increasing failure rate average (IFRA). For a general view of selection and

ranking problems and the various formulations and goals that have been studied, we refer

to Gupta and Panchapakesan (1979).

In this paper, we restrict our attention mainly to some inequalities and monotonicity

properties that have typically arisen in the development of the selection and ranking theory.

Basic to the setup of these problems is the assumption regarding some order relations such

as stochastic ordering and the monotone likelihood property. These and other related ideas,

along with some basic inequalities that arise under these assumptions are discussed in Sec-

tion 2. In reliability models, partial order relations such as convex ordering, star ordering

and tail ordering play an important role, Section 3 deals with restricted families of distribu-

tions defined by such partial order relations and some important inequalities obtained in

the investigation of selection problems for such families. Interesting inequalities appear

in the study of selection rules for normal, multinomial and gamma distributions. These are

discussed in Section 4.

2. Ordered Families of Distributions. Inherent to a selection and ranking problem is

the choice of a ranking parameter, say, θ. The natural setup consists of k populations that

are described by their associated probability distributions Pθ, i = 1, ... , k, where θ,eΩ,

a subset of the real line. In other words, these populations belong to a family CP = {Pθ}

indexed by ΘeΩ. A reasonable procedure can be proposed if we have some knowledge of

the structural properties of this family. For example, if Xx, ,.. , Xk are observations from

the k populations, we would like to say that large values of X generally go with large values

of θ. Such statements bring in order relations for distributions belonging to the family. We

will now formalize such concepts and state some monotonicity results.

2.1. Stochastic Ordering and Monotone Likelihood Ratio Property. Let X be a real valued

random variable with distribution P θ , ΘeΩ. Then the family^ - {Pθ}> ΘeΩ, is said to be

stochastically increasing (SI) in θ if for θi < θ 2 , the distributions PQχ and PQ2 are distinct,
and for any real number a,

(2.1) PQι[X>a}^Pe2[X>a].

It is well known that a stronger property is that of monotone likelihood ratio (MLR) in-

troduced by Karlin and Rubin (1956) and this is equivalent to the frequency function having

total positivity of order 2 (TP2). The concept of total positivity is, however, more general

and is not restricted to frequency functions (see Karlin, 1968).
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A basic result of Lehmann (1959, p. 112, Problem 11) can be stated as follows.

THEOREM 2.1. Let {P&}9 ΘeΩ, be an SI family of distributions and let ψ(jc) be a real valued

function nondecreasing in x. Then Zsθ[ΨWl is nondecreasing in θ.

A straight forward generalization of this theorem independently obtained by Alam and

Rizvi (1966) and Mahamunulu (1967) is given below.

THEOREM 2 . 2 . Let { P e } , ΘeΩ be an SI family ofdistributions. LetXlf ... , Xk be indepen-

dent random variables. X, having the distribution Pθ, θ,eΩ, i = 1, ... , k. Then

E θ ψ ( X j , ... , Xk) is nondecreasing in each component of Q = ( θ i , ... , θ*) if\\ι(x\, ... ,

xk) is nondecreasing in each of its arguments.

Theorem 2.2 has been successfully applied to many selection problems. For suitably

chosen ψ(jcj, ... , xk), the expectation Eθ\\f(X], ... , X*) becomes the PCS. The monotonic-

ity property of the expectation enables one to obtain the LFC.

Another generalization of Theorem 2.1 in a different direction is due to Gupta and Pan-

chapakesan (1972) who considered a class of subset selection rules defined through a class

of functions h. For evaluating the infimum of the PCS, we need to minimize over θ the

expectation £θ[ψ(X,θ)]. The following theorem of Gupta and Panchapakesan (1972) gives

a sufficient condition for the monotonicity of EQ[\\f(X, θ)].

THEOREM 2.3. Let F( ,θ), ΘeΩ, be a family of absolutely continuous distributions on the

real line 7? with continuous densities/(* ,θ) and let ψ(jc, θ) be a bounded real valued function

possessing first partial derivatives \\fx and ψθ with respect to x andQ, respectively, and satis-

fying certain regularity conditions C. Then EQ[ty(X,Q)] is nondecreasing in θ provided that

forallQeΩ,

(2.2) /(jc,θ)ψθ(jc,θ)- [(d/dθ)F(x,ff)]ψx(x,θ) ^ 0 a.e. x,

where the regularity conditions C are: (ι)for all ΘeΩ, ψ^(x,θ) is Lebesgue integrable on

7?; and (u)for every [θj, θ2] (Z Ωand θ3eΩ, there exists g(x) depending only onQly θ2,

θ3 such that

|ΨΘ(JC,Θ)/(JC,Θ3)- [(a/a(9)FU,θ)]ψΛ(jc,θ3)| ^ g(x)

for all θe[θ] ,θ2] andg{x) is Lebesgue integrable on Ί?.

Remark 2.4. (1) If ψ(jc,θ) = ψ(jc) for all ΘeΩ, the sufficient condition (2.2) reduces

to [(d/dθ)F(x,θ)]\\ιx(x) ^ 0, which is satisfied by the hypotheses of Theorem 2.1 since {Fθ}

is SI and ψ(x) is nondecreasing in x.

(2) For the class of procedures defined by Gupta and Panchapakesan (1972), ψ(;c,θ) =

F(A(JC);Θ) and (2.2) becomes

(2.3) f(x;θ)[(d/dβ)F(h(x)M-h\x)fψ(x);ΘWldθ)F(x,θ)] > 0

where hr (x) = (d/dx) h(x).

(3) This condition has been specialized to the cases of (i) location parameter, (ii) scale

parameter, and (iii) convex mixtures of distributions by Gupta and Panchapakesan for the

purposes of specific applications.

(4) An analogue of this theorem for discrete distributions is given by Panchapakesan

(1969), who has given in another paper (1978) sufficient conditions for monotonicity when

Ω is a countable set.
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(5) The monotonicity of Eθ[ψ(jc,θ)] in θ is strict if strict inequality holds in (2.3) on a set

of positive Lebesgue measure.

(6) Obvious modifications in Theorems 2.1 through 2.3 give monotonicity in the opposite

direction.

For subset selection rules the expected subset size has been used as a performance charac-
teristic. We naturally want to know the worst configuration in the sense that it maximizes
the expected subset size. The following theorem (discussed and proved without a formal
statement) of Gupta and Panchapakesan (1972) gives a sufficient condition for the expected
subset size to be maximized at an equi-parameter configuration.

THEOREM 2.5. LetXλ, ... ,Xkbe independent random variables, X, having an absolutely

continuous distribution F( ,θ,), θfeΩ, with continuous density / ( Ά ) . Let ψ(jt,θ) be a

bounded function possessing the first partial derivatives ψΛ and ψθ with respect to x and

θ, respectively, and satisfying the regularity conditions of Theorem 2.3. Define

* ( θ I f ... , θ*) = Xk

i=ιEQlUk

r=ι ψ(X,0Γ)] Then
r ι
rΦi

(2.4)

provided that, for all θ, ̂  θ, and a.e. x, the following holds:

(2.5) [{dldθWxAMX'Oj)~ [{dldxmxtθj)}[{dldx)F(xfθi)] > 0.

Remarks 2.6. As in the case of Theorem 2.3, Gupta and Panchapakesan (1972) have
specialized this for (i) location parameter, (ii) scale parameter, and (iii) convex mixtures.
For their class of procedures, Ψ(JC,Θ/) = F(Λ(JC);Θ/), / = 1, ... , k. For location and scale
parameter cases, the usual choices are h(x) = x + b, b^O, and h(x) = axf a ^ 1, respec-
tively. In these cases, the left-hand side of (2.3) is zero for all x; thereby showing that
£fl[ψ(X,θ)] is independent of θ. Further, the condition (2.5) in these cases reduces to the
monotone likelihood ratio property, a result directly proved by Gupta (1965). •

Now, we note that Theorem 2.2 is a simple generalization of Theorem 2.1 to !7?k, the
^-dimensional Euclidian space. We now consider various generalizations of the concepts
of stochastic ordering and monotone likelihood ratio to distributions in higher dimensions.
To this end, we introduce the following definitions.

Definition 2.7. A function ψ is defined on J<k is said to be increasing with respect to a

partial order relation "+<" ifx i -*«£ x 2 implies ψ(x ι) ^ ψ(x2)/<?r allxλ,x2eJ^.

Definition 2.8. A set S in 9?k is said to be an increasing set if its indicator function is

increasing, that is, ife S and\\ -^ x 2 , then x 2 € S.
Let X be a A -dimensional random vector with distribution P θ

 m 3?k

9 where θ = ( θ ! , ... ,

ΘJ. LetPθ(S) = PQ(X e S) for any measurable setS.

Definition 2.9. A distribution PQ is said to have stochastically increasing property (SIP)
in θ if PQ}(S) ^ PQ2(S) for every monotone increasing measurable set S and for every d\
-<Θ2.

The following lemma is due to Lehmann (1955).

LEMMA 2.10. A family of distributions Pθ has SIP in θ if and only ifEθψ(X) ^ Eθ2Ψ(X)
for all increasing integrable functions ψ(X) and θι*<θ2.

The following theorem follows easily from Lemma 2.10.
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THEOREM 2.11. Let the distribution ofX have SIP in θ and let ψ(x,θ) be increasing in

x and θ. Then £"θψ(X ,θ) is increasing in θ.

When we have independence, it is easily verified that the MLR property implies SIP

(Lehmann, 1955). When we deal with correlated random variables Xl9 ... , Xk, it is

natural to look for a generalized concept of MLR in higher dimensions. For a density

f(x,θ) in the one-dimensional case, the MLR property says that

(2.6) /(*i,0i)/(*2,02) -/(*iΛ)/(*2,0i) ̂  0

for every xλ ^ x2 and θ] ^ θ2. We can rewrite (2.6) in the form

(2.7) y(x,θ)^/(x,(l,2)θ)

where /(x,0) = Π;= 1/(jc/ ;0 t), θ = (0χ,(02), and (1,2)0 is the vector obtained from 0 by

interchanging 0i and 0 2. This provides the motivation for the following definition of

Property M by Eaton (1967).

Definition 2.12. A family of real valued density functions {/*α(x;θ)}, α € 37, is said to have

Property M if, for each a € JI and for each pair ( /j) , 1 ̂  i ¥ j^k, the following holds:

(2.8) Xi ^ xj and θ, ̂  θ, =>/α(x;θ) ^ / α ( x ; (i,j)θ).

Eaton (1967) has given a necessary and sufficient condition for a class of densities to

possess Property M. Bechhofer, Kiefer and Sobel (1968, p. 41) in their monograph on

sequential identification and selection rules define a rankability condition which is the same

as Property M. Hollander, Proschan and Sethuraman (1977) have defined a concept of de-

creasing in transposition (DT) which is also same as Property M; however, their motivation

comes from finding classes of functions which share certain properties of Schur functions.

In fact, when g(x,θ) = Λ(χ—θ), g is DT on CR2k if and only if h is Schur-concave on Jϊk.

Finally, Marshall and Olkin (1979, p. 160) have also used DT functions but they call them

arrangement increasing (AI) functions.

It is important to note that, unlike in the case of one-dimensional distributions, Property

M does not imply SIP. The following simple example of Hsu (1977) illustrates this point.

Example 2.13. X = (*i A ) n a s the following probability distribution f{ΘM(xux2) for

four permissible values ofθ — (0i,02);

/ ( 1 , 2 ) ( 5 , 6 ) = l - / ( 1 , 2 ) ( 6 , 5 ) = 0.9,

/(2j )(5,6)=l-/ f 2 , 7 /6,5j = 0.1,

/ ( 4 , 3 ) (5,6)=l-/ ( 4,3)(6,5) = 0.4,

Further, we can have SIP without Property M; this is true in one-dimension also. Finally,

it is possible to have both SIP and Property M as it is the case with the multinomial distribu-

tion.

Another generalization of MLR is given by Gupta and Huang (1980) who obtained for

a family of densities having this generalized MLR property an essentially complete class

of multiple decision rules.

Definition 2.14. A probability density fix Q) is said to have a generalized monotone

likelihood ratio (GMLR) in x, if for every i and all fixed xjf j = 1, ... , k, j Φ i,

/(x;0i)//(x;02) is nondecreasing inxr where

0m = ( 0 m l , ... ,θmk),m= \,2yβlj = β2jforallj=t i,andQu>Q2i.

What we have discussed so far are some basic assumptions that are usually made regard-

ing the underlying family, and the monotonicity behavior of the expectations of certain
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functions. Also of relevance here is the concept of stochastic majorization and inequalities

obtained by majorization. One definition of stochastic majorization is to say that X is

stochastically majorized by Y if £(ψ(X)) ^ £(ψ(Y)) for all Schur-convex functions ψ; of

course, there are other possible definitions (see Marshall and Olkin, 1977, chapter 11).

Majorization techniques can be used to show that £[ψ(X)] ^ £[ψ(Y)] for several other

families of functions ψ. The relevance of these results to selection problems is obvious,

when ψ(X) is the indicator function of the event "a correct selection is made." For several

useful inequalities in this direction, we refer to Chapters 12 and 13 of Marshall and Olkin

(1977).

3. Restricted Families of Distributions. By restricted families of distributions, we

mean a family of distributions ^each member of which is partially ordered in a sense with

respect to a given distribution G. Such families do arise naturally in reliability studies. More

commonly known families of this type are those with increasing failure rate (IFR) and in-

creasing failure rate on the average (IFRA) and naturally those with corresponding decreas-

ing properties. In dealing with such classes we do not know the exact forms of the distribu-

tions that belong to C79 but we do know the nature of the partial order relation and the distri-

bution G. Precisely this knowledge enables one to find bounds for quantities of interest

such as the probability of survival and mean life in terms of G. Inequalities are thus very

important in reliability studies. As a matter of no surprise, significant contributions to in-

equalities for restricted families have been made by researchers in mathematical reliabil-

ity—Barlow, Marshall and Proschan, to mention a few. Typical of these problems is the

use of order statistics. Many important order statistics inequalities that arise in inference

problems of reliability are reviewed by Gupta and Panchapakesan (1974).

Selection procedures for restricted families of distributions were first studied by Barlow

and Gupta (1969). When we have k populations from 7, we can generally evaluate (under

some additional assumptions) the infimum of the PCS in terms of the known G by establish-

ing appropriate inequalities. We describe in this section such inequalities and explain the

contexts of the selection problems. For the purpose of describing these results, we need

to introduce some definitions.

Assuming that all our distributions are absolutely continuous, we now define some of

the special order relations of interest to us. F and G denote distribution functions.

Definitions 3.1. (i) F is said to be convex with respect to (w.r.t.) G (written F - ^ G) if

and only ifG~ιF(x) is convex on the support ofF. (ii) F is star shaped w.r.t. G <G) if

and only ifF(0) = G(0) = 0 and G~ιF{x)lx is increasing in x ^ 0 on the support ofF.

(Hi) F is tail ordered w.r.t. G(F-<G) if and only ifF(0) = G(0) = Vi, and G~xF{x) - x

is nondecreasing on the support ofF.

If G(x) = l-e" x, x ^ 0, then (i) defines the class of IFR distributions studied by Barlow,

Marshall and Proschan (1963) while (ii) defines the class of IFRA distributions studied by

Birnbaum, Esary and Marshall (1966). Convex ordering was studied by van Zwet (1964).

Doksum (1969) has used the tail ordering. It is easy to verify that the above order relations

are all partial order relations. One can also easily see that convex ordering implies star or-

dering. Without the assumption of the common median zero, the definition (iii) has been

used by Bickel and Lehmann (1979) to define an ordering by spread with the germinal

concept attributed to Brown and Tukey (1946) by them. This kind of ordering has also been

perceived by Saunders and Moran (1978) in the context of a neurobiological problem and

is called ordering by dispersion by them. We now give a formal definition below.
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Definition 3.2.G is more dispersed than F(FycG) if

(3.1) G-\$)-G-\oL)^F-\$)-F^\a) forall 0<α<β<l.

By setting x = / ^ ( β ) and y = F~\a), it is easy to see that (3.1) is equivalent to saying

that G~λF(i) - t is increasing in t. However, (3.1) presents the idea more clearly, that is,

any two percentage points of G are at least as far apart as the corresponding percentage

points of F.

Finally, we define a general partial order relation through a class of real functions in-

troduced by Gupta and Panchapakesan (1974). The star and tail orderings can be obtained

as special cases.

Definition 3.3. Let Jf = {h(x}} be a class of real valued functions h(x) defined on the

real line. Let F and G be distributions on the real line such that F(0) = G(0). We say that

FisJf-orderedw.r.tG(F-<G)if

(3.2) * G-λF(h{x))^h(G-λF{x))

for all h e Jίand all x on the support ofF.

All the order relations we have defined so far can easily be verified to be partial order

relations in that they satisfy only reflexivity and transitivity. It can be seen immediately

from the above definition that, if Jf = {ax, a ^ 1} and F(0) = G(0) = 0, we get the star

ordering and that the tail ordering is obtained by taking Jf = {x+b, b^O} and F(0) = G(0)

= Vi. Also, if we do not include F(0) = G(0) in the definition, then the dispersion ordering

become a special case.

The next theorem gives the basic inequality of Gupta and Panchapakesan (1974) and

some related inequalities.

THEOREM 3.4. LetX0,Xu ... ,Xp(Y0,Yl9 ... , Yp) be independent and identically distri-

buted, each with distribution function F(G), and letF-<G. Then the following inequalities

hold. 7 /

(a)

(b)

(c)

(d)

Proof We will prove (a). The other inequalities can be established similarly. Let<ρ =
G~λF. Then

= P[φ(h(X0))^φ(Xi)9i=\, ... ,p],sinceφisnondecreasing

>P[h(φ(X0))^φ(Xi)9i=l, ... ,p], sinceF-<G

= P[h(Y0) ^ Yh i = 1, ... , p], since φ(Xt) is stochastically equal to Yh / = 0 , 1 , ... , p. •

The inequalities (a) through (d) of the above theorem can be rewirtten respectively as

(3.3) //*(*(*)) dF(x) ̂  f (F{h(x)) dG(x),

(3.4) jFP(h-\x))dF(x) < SG>(h-\x))dG(x),

(3.5) I[\-F(h(xWdF(x) ^ f[l-G(h(xWdG(x),

and

(3.6) SH-F(h-\xWdF(x) ^ S[\-G{h-\xWdG(x),
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where h~ι is assumed to exist and the integrals extend over the supports of the relevant dis-

tributions. Gupta (1966) obtained essentially these inequalities for any p > 0 under a set

of hypotheses which amounts to ̂ -ordering. Also, in selection and ranking problems, we

typically get the probabilities,

These are same as the left-hand side probabilities in (a) and (d) of Theorem 3.4 if we assume

that h(x) ̂  x. This is satisfied for natural choices of h(x) in the procedures. It should be

noted that h(x) ̂  x in the special classes of ̂ yielding star and tail ordering.

Interesting special inequalities are obtained by considering special pairs of F and G in

Theorem 3.4. We mention here a few of them relevant to selection rules, thus generally

applying inequalities (a) and (d) of Theorem 3.4.

SupposeXu ... , Xn are i.i.d. with distribution F and Y\, ... , Yn are i.i.d. with distribu-

tion G. Let F-<G. Let F ^ and G w denote the cdf s of the7th order statistic of the X, and

the Yirespectively. Define

Bj,n(x) = [nl/(j-l)\(n-jγ.]ίS^-}(l-ur-Jdu

so that

(3.7) Fφ) = Bln(F(x)) = BlnF(x).

Since

(3.8) G'^Fφ) = [BMG]-ιBjtnF(x) = G~ιF(x),

we see that order statistics preserve JY-ordering. So we get

(3.9) SFWh(x))dFυ]{x) ^ jGfo(*(x))dGφ)

and

(3.10) ί[\-FU]{h-\x))YdFφ)^^^GU]{h-\xWdGυ]{x).

Barlow and Gupta (1969) studied subset selection procedures for selecting the distribu-

tion with the largest (smallest) α-quantile from k = p+1 distributions that are star ordered

w.r.t. G. In their procedures, h(x) = ox, α ̂  1. With this choice of h(x), the right-hand

sides of (3.9) and (3.10) become the infimum of PCS in these two cases. Specializing these

inequalities further to the case of IFRA distributions, we get the following corollary.

COROLLARY 3.5. Let F^ denote the cdfofthejth order statistic in a random sample of
n observations from an IFRA distribution F. Then

(3-11) /-oFfoiax)dFφ) ^ ΓoGUflx)dG{φ)

and

(3.12) ΓoV-FφlaWdFφ) 3= ΓoU-Gm<<xla)γ dGiφ),

where

(3.13) Gφ) = ϊ?=j(n

t)[l-e-χYε^x = Bj^l-e-').

Barlow, Gupta and Panchapakesan (1969) have tabulated the values of a~λ for which

the right-hand sides of (3.11) and (3.12) are equal to P* (the guaranteed minimum PCS)

for selected values of p, n, j and P*. Gupta and Panchapakesan (1975) studied a similar

quantile selection procedure for selecting the largest quantile for distributions that are star

ordered w.r.t. the standard normal distribution folded at the origin. In this case, the inequal-

ity (3.11) holds with Gυi(x) = BJn(2φ(x)~l)9 where φ(jc) is the standard normal cdf. The

values of a'1 for which the right-hand side of (3.11) is equal to P* are tabulated by Gupta

and Panchapakesan (1975) for selected values of p, n, j and P*.
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It is easy to verify that the folded normal distribution is an IFR and therefore an IFRA

distribution. So we can obtain further inequalities by taking F^{x) = Z?7 n(2φ(jt)-l) in the

above corollary.

We can get similar inequalities for F and G such that F-<G. We have to take h{x) =

x+b, b > 0, in (3.5) and(3.6). More inequalities can be obtained by considering F ^ and

Gy] with special choices of G. Thse inequalities occur in selection procedures of Barlow

and Gupta (1969) for selection in terms of medians for a class of distributions (not defined

in this paper) and the procedures of Gupta and Panchapakesan (1974) who have used the

logistic distribution for G.

Remarks i.ό.Suppose we take Jf= {ax, a ^ 1} in Theorem 3.4. Then, letting Zλ =

max{X,/X0, ...
W2 = mm{Yι/Y0,

(3.14)

In other words, we have inequalities for the distribution functions (and hence for quantiles)

of the maximum and the minimum of certain correlated ratios of variables with distributions

FandG.

In the case of Jί = {*+fc, b^O}, we let Z{ = max{X,-X0, •• ,XP-Xo}, Z2 =

min{X,- Xo, ... ,Xp-X0}, W{ = maxί^-lΌ, ••• » V y o } and Wi = m i n ^ - I Ό , ••• , V y o }

Then, we get

(3.15) P[Z{ ^-b] ^ Pr[W{ ^-b]9

We will come back to these inequalities in Section 4.3.

4. Inequalities for Specific Distributions. We are mainly interested in certain in-

equalities relating to multivariate normal, multinomial and gamma distributions that occur

in ranking and selection problems. Of course, these are of interest otherwise too.

4. / Inequalities for Multivariate Normal Distribution. A probability expression that oc-

curs frequently in selection problems is P[Xλ ^ au ... , Xk ^ ak] where Xλ, X2, ... , Xk

are identically distributed but correlated. Most familiar of these and perhaps most often

used in practice are the cases where Xv ... , Xk have a joint &-variate normal and t distribu-

tions. Evaluation of these probability integrals are difficult to accomplish as k gets large

when there is no special pattern of the associated covariance matrix Σ. In such cases, in-

equalities which give good bounds become more attractive. There are numerous results in

the literature in this direction. We will mention here only two results, namely, those of

Anderson (1955) and Slepian (1962). For a detailed account of these and other related in-

equalities and references, the reader is referred to the book of Tong (1980) and the recent

survey paper of Eaton (1982). To state Anderson's theorem, let us define a partial ordering

^ for covariance matrices of the same order by ψ ^ Σ if Σ — ψ is positive semidefinite.
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THEOREM4.1 (Anderson, 1955).LetX = (Xu ... ,Xk)andY = (Yu ... ,Yk)bek-variate

normally distributed random vectors with common mean vector zero and covariance mat-

rices Σ and ψ respectively and let E be a convex set symmetric about the origin. Then

ψ T&X impliesP[\eE] >P[XeE].

As we have pointed out earlier, inequalities have been used in selection problems typi-

cally to obtain the infimum of the PCS or a lower bound for it. One result that has been

used very often at some stage of the problem is the Slepian inequality stated below.

T H E O R E M 4 . 2 . (Slepian Inequality). IfX = (Xu...,Xk) has the k-variate normal dis-

tirubiton with nonsingular covariance matrix Σ = (σfy), with σu•= 1, ι = l , ... , k, then

for any constants cu ... , ck, the probability P[Xλ ^cu ... , Xk ^ ck] is strictly increasing

as a function of each σyfor i φ j . In particular, i/σ^ > 0, i, j = 1, ... , k, then

Motivated by a design problem with a selection and ranking goal, Rinott and Santner

(1977) obtained an inequality that combines the aspects of the results of Anderson and Sle-

pian; namely, for d > 0.

(4.1) ffφn(d+x+ay) φm(d+x)dφ(x)dφ(y) ^ fφn+m(d+x)dφ(x)

where φ(jc) is the standard normal cdf, m and n are integers such that m+1 ^ n ^ 1, and

all integrals are from — o° to <». It can also be shown that the left-hand side of (2.8) is de-

creasing in |α| for any d^O.

4.2 Inequalities for Multinomial Distributions. Let X = ( X ] , ... , Xk) have the multino-
mial distribution given by

(4.2) f

where

Define

(4.3) C(θu •• ,ΘJ = P [ X / ^ c / f i = l , ... ,m]

where ^T=\ci ^ w and m ^ min(fc-l,«). The results of Alam (1970a) are summarized in

the following theorem.

THEOREM4.3. C(0 1 ? ... , θ w ) is nondecreasing in θ,, ι = l , 2, ... , m. Further, for ct =

Cj,

(4.4) CyXΘ,, ... , θ J ^ C(θ,, ... , θ J ^ C0<θ,, ... , θ J

where C^θu •• , β m ) is obtained from C(θl9 ... , θm) by replacing 6t and θj with their
average, and Cijt^dλ, ... , θ m ) is obtained from C ( θ i , ... , θ m ) by substituting tfor θ, and

Let us assume here and in what follows on multinomial distribution that &χ ^ θ 2 ^ ...

θ*. From Theorem 4.3, we have

.. ,Xk^c\βu ... , θ , , θ * ]

c, ... , X Λ ^ c | θ ! , ... ,ΘJ

where c ^ n/k, θ* = l-(Jt-l)θ, and θ = Σθ,/A;.

Using a representation of P[XX ^ c, ... ,Xk^c\Qu ... , ΘJ in terms of the Dirichlet integ-

ral, the inequalities in (4.5) can be obtained as a special case of Theorem 1 of Olkin (1972)
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which shows the Dirichlet integral to be a Schur function. More general results are available

in Marshall and Olkin (1979, p. 306).

Bechhofer, Elmaghrabi and Morse (1959) considered a single sample selection proce-

dure to select the most probable cell with a minimum guaranteed probability P* that the

selected cell will be the one associated with θ* whenever Q/JQk-i ^ δ > 1. The rule R pro-

posed by Bechhofer, Elmaghrabi and Morse takes a sample of N observations and selects

the cell that yields the largest number of observations using randomization to break ties.

The PCS is given by

(4.6) PCS = P[Xk > Xp j-Φ k] + ViX^ kP[Xk=Xh Xk > Xjt j Φ i]

= ψ(θ,,θ 2, ... ,θ*), say.

The following result of Kesten and Morse (1959) gives the LFC.

THEOREM 4.4. With the above assumptions and notations,

(4.7) ψ(θ,, ... ,θΛ |θ J t/θΛ_1

whereof = ... = Q*k-\ = (δ+fc-lΓ1 andb\ =
Cacoullos and Sobel (1966) used an inverse sampling rule for the same selection prob-

lem. Observations are obtained sequentially until one of the k cells has a prespecified count

N. This particular cell is then identified as the most probable cell. In this case, the PCS

can be written as a Dirichlet integral and the LFC is the same as that of the single sample

procedure of Bechhofer, Elmaghrabi and Morse (1959). Alam (1971) considered a differ-

ent stopping rule, namely, the observations are taken sequentially until the difference be-

tween the highest and the next highest cell counts is equal to r. For k=2,

(4.8) PCS = λ 7 ( l + λ r )

where λ = θ2/θ!. For k > 2, there is no exact result. Alam (1971) gives a lower bound,

namely,

(4.9) PCS ̂  1-Σfc1, λϊ/O + λί)

where λ, = θ/θ*, i = 1, ... , k-\. An improved bound, namely, Θ£/Σ*= iθf, is recently given

by Levin and Robbins (1981).

Going back to the single sample procedure of Bechhofer, Elmaghraby and Morse (1959)

for selecting the most probable cell, the LFC is sought subject to §jJbk-\ ^ δ > 1. If we

are interested in selecting the least probable cell, then the analogous problem will be to

get the LFC whenever Θ2/Θi ^ δ > 1. The analogous procedure will select the cell with

the least count using randomization to break ties. In this case, a minimum P* for the PCS

cannot be guaranteed for all P*. This is shown by Alam and Thompson (1972) who pro-

posed a modified indifference-zone. Their rule is still to select the cell with the least count.

Let ψ'(θ], ... ,θ*) denote the PCS for this rule. Then their LFC result can be stated as fol-

lows:

(4.8) ψ'(θ,, ... ,θ* I θr-θ^c^ψ' ίθf , ... fit)

where0<c<{k-\γ\id? = [l-(k-l)c]/k, andQ$ = ... = θ** = (1+c)/*.
We get additional probability inequalities via subset selection rules. Gupta and Nagel

(1967) discussed single sample subset selection rules for selecting the most (least) probable

cell. If we denote the cell counts by Xu ... , Xk, their rules R! and R2 for the most and

the least probable cell, respectively, are as follows:

Select the cell with count X, if and only if
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R2:

where c and d are nonnegative integers chosen suitably to guarantee the specified minimum

PCS.

The PCS for R j is given by

(4.9) P(CS\Rι) = F(k,n,d;Qι, ... , θ*) = Σ(v, .".. v*)Π f=,ΘΓ

where the summation is over all fc-tuples (vu ... , vk) such that the vz are nonnegative ΣΪ>

= n and v, ^ v*+d, / = 1 , ... , k-\. In the case of R2, P(CS\R2) = G(ifc,n,c;θi, ... , θ*)

is given by the summation in (4.9) extending over fc-tuples (vu ... , vk) such that the v,

are nonnegative, Σ v / = wand v l ^ v ] - c , i = 2 , ... ,k.

We now summarize the inequality results of Gupta and Nagel (1967) in the following

lemmas and theorems.

LEMMA 4.5. F(k, n, d; θ j , ... , θ*) satisfies the following inequalities:

(1)For 1 ̂  i <j < k, andty< e ^ β , ,

F(k,n,d;Qu ... , θ*)

(2)For 1 ̂  i < k, andO < € ̂  ΘΛ,

F(k,n,d;Q\, ... , ΘΛ)

It should be noted that Lemma 4.5 is true even if the order is disturbed in the configura-

tions on the right hand side of the inequalities. The next theorem on the LFC is a conse-

quence of Lemma 4.5.

THEOREM 4.6. Let r be the smallest integer for which θ, > 0 and let s be the largest integer

such that %j < θ*. For a configuration minimizing F(k,n,d; θj, ... , θ*) we have r ^ s.

Furthermore, ifr = k-\, then r> s.

In other words, Theorem 4.6 says that the worst configuration is of the type (0, ... ,0,

α , β , ... , β ) , α ^ β .

LEMMA 4.7. G(k, n, c; θ i, ... , θ*) satisfies the following inequalities:

(\)For 1 < ί <j^ k} andO < e ^ θf ,

(2) For y

Gίfcπ.c θj, ... , θ ^ ) ^ G ( ^ n , c ; θ , + € , ... ,θ y-€, ... ,ΘΛ).

As in the case of Lemma 4.5, here also the statements are true even if the order is dis-

turbed in the configuration. The following theorem is a consequence of Lemma 4.7.

THEOREM4.8. G(k,n,c; θ ^ ... , θ*) is minimized at a configuration of the type §x

= ... = θ * _ , ^ θ * .

Now, let us consider s independent multinomial distributions each with k cells. Let

0. = (0.1? ... 9 β.k) be the vector of the cell probabilities of π f, the fth distribution, / =

1, ..., s. We also assume that, for each i, 0Π < ... < ΘΛ.

Definition 4.9. We say that θ, majorizes θyίθ, > θ,) ί/Σ«= rθ ι α ^ Σα=rθyα/<9r r = 1, ... ,

fc with equality holding for r = 1.

Definition 4.10. If a function φ satisfies the property that φ(x) ^ φ(y)(φ(x) ^ φ(y))

whenever x>-y, ίΛen φ w called a Schur-concave (Schur-convex) function.
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If θ, >-θy, it implies that 7/(θ,) ^ 7/(θ,), where 7/(6,-) = -Σk

a=ιθia log θia is the Shannon

entropy function associated with ir,.

Suppose we take n independent observations from each multinomial distribution. Let

xioL denote the number of outcomes in the cell with probability θ ι α in πif a = 1, ... , k;

i = 1, ... , s. Define

(4.10) Qj(nXs;θu ... , θs)

= P{φ(Xnln, ... , Xjkln)>mMsφ{XJn, ... ,XJn)-d }J = 1, ... ,s,

where φ is a Schur-concave function and d > 0.

Gupta and Wong (1976) investigated a subset selection rule for selecting the population

whose cell probability vector majorizes that of any other, assuming that one such exists.

The special case of k = 2 multinomial distributions with the Shannon entropy function as

a particular choice of φ was earlier considered by Gupta and Huang (1976). The following

theorem relates to the properties of the procedure of Gupta and Wong (1976).

THEOREM 4.11.7/θ, >• θ, , then Q^nXs; θu ... , θs) ̂  Qj(n,k,s; θu ... ,θs). Further,

% ^nXs^,, ... , θs) > Qj(n,k,s; θt = ... = θs).

4.3. Inequalities for the Gamma Distribution. Let

(4.11) y(m,x) = J$r-ιe-*Λ

and

(4.12) Γ(m,jc) = Γ(m) - y(m,x),m>0.

Of course,

(4.13) fix m) = [ Π m ) ] " ' ^ ^ , x ^ 0, m > 0,

is the gamma density where m is the shape parameter. For 0 < m < 1, continued fraction

expansions can be obtained (see, for example, Khovanskii, 1956) for x^"^7(m,jc) and

xrmexT(mfx). Let Pn(m,x)/Qn(m,x) and P'n(mfx)/Q'n(m,x) be the Λth convergents of these

two expansions respectively.

In the case of y(m,x), Gupta and Waknis (1965) obtained the system of inequalities:

(4.14) 7>n(m,jc)/Qn(m,x) < exχ-my(mfx)

<Pπ(m,Jc)/ρ/ ι(m,Jc)+JcΛ(rt+l+m)/(n+m)n + 1(n+l+m-jc),rt= 1,2, ... ,

where x<n+m+lisa. necessary restriction only on the inequalities on the right-hand side
of (4.14) and where (n)r = n(n-l)... (n-r+1), r ̂  1, and

(4.15) Pn(m,x)/Qn(m,x) = m~x[\ + jc/(l+m) + ϊp2x
jl(\+m)... (j+m)].

In the case of Γ(α,x), the even order convergents form a monotonic increasing sequence

and the odd order convergents form a monotonic decreasing sequence, both converging

to exx~mΓ(m,x). So a system of inequalities can be generated by bounding exx~mΓ(m,x) by

successive convergents. These bounds are discussed in Gupta and Waknis (1965). These

bounds in turn can be used to get bounds on the integrals

(4.16) JZFp(cx;m)J{x;m)dx

and

(4.17) ί^[l-F(bx;m)YJix;m)dx
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where F(x,m) is the cdf of the gamma distribution. The integrals (4.16) and (4.17) with

c ^ 1 and 0 < b ^ 1 are the infima of the PCS for the subset selection rules of Gupta

(1963) and Gupta and Sobel (1962).

Now, let XQ>X\ , ... , Xp be independent identically distributed each having a gamma dis-

tribution with densityy(jc;m) given by (4.13). Let

(4.18) Zλ =

Let Gm{y) and Hm(y) denote the cdf's of Zx and Z2, respectively. We note that the integrals

in (4.16) and (4.17) are Gm(c) and \~HJb), respectively. Alam (1970b) proved that, for

m > 1, HJy) is increasing in m for y > 1 and is decreasing in m for y < 1. Alam's proof

involves a fair amount of analytical details. Further, Alam has no comment on the behavior

of Gm(y). The following theorem provides validity of Alam's result for m > 0 and estab-

lishes the monotonicity behavior of Gm and Hm for a larger class of distributions.

THEOREM 4.12. Let Xo» X\, ,XPbe i.i.d. nonnegative random variables each having

the distribution F λ , where {Fx} is a star-preceding family in λ € Λ [i.e., F\2η< Fλ] for λj

< λ 2 ] Let G λ and Hλ be the cdf s ofZλ and Z 2 defined in (4.18). Then Gx(y) and Hλ(y)

are both increasing in kfory > 1 and decreasing in λfory < 1.

Proof. Since Fχ2-< F λ ] for λι <λ2, the conclusions of the theorem follow immediately

from the inequalities (3.14) of Remarks 3.6. •

Remarks 4.13. In the case of the gamma family {Fm}9 it is known that Fm convex pre-

cedes in m > 0; see van Zwet (1964), p. 60. Since the convex ordering implies the star

ordering, Alam's result readily follows from Theorem 4.12. As we pointed out earlier, in

subset selection procedures, we typically encounter Gm(y) for y < 1 and Hm(y) for y >

1. That the monotonicity properties of Gm(y) and Hm(y) in these cases can be established

by the star-ordering property of the gamma distribution was known though not formally

demonstrated; see McDonald (1969) and Panchapakesan (1978) who have given different

alternative proofs in the case of integral m for p = 1 and/? ^ 1 respectively. Finally, the

monotonicity property of Hm(y) is applied to evaluate the infimum of the PCS for the in-

verse sampling procedure of Cacoullos and Sobel (1966) for selecting the most probable

multinomial cell.

For the Gamma distribution with density in (4.13), let ξm(a) and ξm(β) denote the

αth and the βth quantiles, where 0 < a < β < 1. For mx < m2, as pointed out earlier,
Fm2 ~f Fmχ. This is equivalent to

(4.19) F~m\ (β)/F- O T » ̂  /H (β)//^(α) ;

in other words, ξm(β)/ξm(a) decreases in m, a result obtained by Saunders and Moran

(1978) using a fairly long direct method. They have also shown that, for mi < m2, Fmi

is more dispersed than Fmχ; in other words, ξ m (β) - ξ m (α) increases in m. Also, we can

now apply the inequalities in (3.15) to obtain new inequalities for the distribution functions

of the maximum and the minimum of certain correlated differences.

4.4 Inequalities Arising From A Two Stage Selection Procedure. Gupta and Miescke

(1982) studied sequential selection procedures with elimination which are based on vector-

at-a-time sampling. They showed that the 'natural' terminal decisions are optimum in a

fairly decision-theoretic sense. To describe the inequalities that are obtained, let IΓJ , ... ,ττ*
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be k independent populations with densities fθ., θ, € Ω, with respect to the Lebesgue meas-

ure on the real line CR or any counting measure on a lattice in 5P, where C7 = \fθ}, θ € Ω,

is a one-parameter exponential family. Let Xn, Xi2, ... be independent observations from

ir, , ι = l , ... , k. For fixed n < m, let t/, = Xn + . . . + Xin, V, = Xitn+\ + ... + X, , m , and

W, = Ϊ// +V/, ι = l , ... , A:. Further, for fixed S £ { 1 , ... , k}9 permutation symmetric Borel

setΛ CI^*, and i e ί, define

(4.20) qt = Pθ{Vi •

j

n = Pe{Wi = maxWj\(Ul9 ... 9 Uk)eA}.
MS

T H E O R E M 4 . 1 4 . Fors = {/1, ... , / m }

( 1 ) 0 O < (9/V i m p / i n r/wzί r.. < rίV/ έ i w / ^ ^ qift j , t = l , ... , m j Φ t, and

( 2 ) the vector r = ( ^ , ... , ί ^ ) majorizes the vector q — {q{ , ... , r. ).

4 . 5 An Ordering Theorem and Its Specific Application. Let X\, ... , Xp be conditionally

independent and identically distributed random variables, that is, their joint distribution

F is a mixture of the form

(4.21) F(xux2, ... ,x p) = JUf=ιF1(xifz)dF2(z) =

where Fj (for given z) and F2 are distribution functions. The following theorem is due to

Tong (1977a).

T H E O R E M 4 . 1 5 . Leta = (aua2, ... ,ar)andb = (bub2, ... ,br) be vectors of nonnega-

tive integers such that aλ^ a2^ ... ^ ar and bx^ b2^ ... ^ br with X/=ifl/ = Σ/=i*/

= p . /fXi, ... , X p αre conditionally i.i.d. random variables and i /a>-b, then

(4.22) Π ^ ^ K e A ^ ^ l , ... 9aj]^IlJ=,lP[XieA,i= I, ... ,bj]

holds for every Borel measurable set A.

Now, if Y\,Y2, ... , Yp are i.i.d. random variables and Z is independent of the Yi9 then

it is known (see Tong, 1977b, Theorem 2) thatX, = φ(F f,Z), i = 1,2, ... , /?, are condition-

ally i.i.d. for any Borel measurable function φ. This fact together with Theorem 4.15 can

be used to obtain bounds on the PCS under the indifference zone formulation and the subset

selection approach in view of the fact that the PCS for many classical rules (see Gupta and

Panchapakesan, 1972) is a cumulative probability of conditionally i.i.d. random variables.

Tong (1977a) has also discussed a special form of Theorem 4.15 and its applications to

several specific multivariate distributions. Applications to multiple decision situations

besides selection and ranking are discussed by Tong (1977b).
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