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In this paper, the general monotonicity results concerning selection problems derived
by Berger and Proschan (1984) are reviewed. They are then applied to several different
formulations of the selection problem. These include comparison with a control and
restricted subset selection problems. Several classes of selection rules previously pro-
posed in the literature are shown to possess the monotonicity properties. In addition, a
new class of rules for the restricted subset selection formulation is proposed and shown to
possess the monotonicity properties.

1. Introduction. In this paper we study some monotonicity properties of ranking and

selection rules.

Recall that in a selection problem the general goal is to determine which of several popu-

lations possesses the largest value of some parameter. Based on random observations from

the populations, a selection rule selects a subset of the populations and leads to an assertion

such as, "The population with the largest parameter is in the selected subset." (Different

formulations of the selection problem entail different assertions resulting from the selection

rule.) A reasonable selection rule should be more likely to choose populations with larger

parameters rather than populations with smaller parameters. This property of selection rules

is called monotonicity.
In this paper we study some general monotonicity properties of a broad class of selection

rules in a unified manner. We also discuss applications of these general results to several

different formulations of the selection problem.

In symbols, let X = (Xu ... , Xn) be a random observation with distribution F(x; λ),

where the unknown parameter vector λ = (λi, ... , λn) e Λ C # \ The general goal of

a selection problem is to decide which of the coordinates of λ are the largest or which are

larger than a value λ 0 (possibly unknown). A (nonrandomized) selection rule 5(x) is any

measurable mapping from the sample space X of X into the set of subsets of {1, ... , n}.

Having observed X = x, the selection rule 5 asserts that the largest parameters are in

{λ,: /eS(x)}. The subset 5(X) may be of fixed or random size depending on the formulation

of the selection problem under consideration. See, for example, Bechhofer (1954) (fixed

size), Gupta and Sobel (1958) (random size), and Gupta (1965) (random size).

Gupta (1965) calls a selection rule montone if

(1.1) \i^ λj implies Px(ieS(X)) ^ PX(J€LS(X)).

Monotonicity is a desirable property of a selection rule since the selected subset is sup-

posed to consist of the large values of kr On a case by case basis, various authors have

shown that their proposed selection rules are monotone. Monotonicity has not been investi-
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gated for some formulations of the selections problem even though it is a desirable property

in all formulations.

In this paper we review the results in Berger and Proschan (1984) (BP(1984)). These

results concern some general notions of monotonicity which include the previously dis-

cussed notion of Gupta (1965). BP(1984) show in a simple unified way that a broad class

of selection rules (which includes rules proposed for various formulations of the selection

problem) possess these monotonicity properties. BP(1984) also discuss the application of

these results to selection rules proposed by Bechhofer (1954), Gupta and Sobel (1958),

and Gupta (1965). In the present paper, we discuss the application of these results to other

formulations of the selection problem and other classes of selection rules considered in the

literature. Also, a new class of selection rules for the restricted subset selection problem

is proposed and shown to possess these general monotonicity properties.

The monotonicity properties we consider are the following. Let A = {ax, ... , a^ and

b = {bl9 ... , bk} denote two subsets of {1, ... , n} with \A\ = \B\ = k, where | | denotes

subset size. Subset A is better than B if, for some arrangements α l ( 1 ), ... , aKk) and

fyci), » £/(*> of the elements of A and B, λa.{r) ^ λbj(r) for every r = 1, ... , k. If A is better

than B, then each of the following inequalities would be desirable for a selection rule:

(1.2) Pλ[\A Π 5(X)| ^ m] ̂  Pλ[\B Γ) S(X)\ ^ m] for every m e tf1

(In words, Px [at least m elements of Λ are selected] ^ Px [at least m elements of B are

selected].)

(1.3) PK(A = S(X)) > PK(B =

and

(1.4) P λ ( |

where Ac andBc are the complements of A and/?, respectively.

Some special cases are of particular interest. By setting m = k in (1.2) we obtain

Pχ[A C S(X)] ^ Pλ[B(Z S(X)]; i.e., the better subset is more likely than the worse subset

to be included in the selected subset. From the special case m = k = 1 in (1.2), we obtain

the classical montonicity property (1.1). By setting m = 0 in (1.3), we obtain Pλ[A D 5(X)]

^ Pk[B D S(X)]; i.e., the selected subset is more likely to be in the better subset than in

the worse subset.

In Section 2 the class of selection rules is discussed. The assumptions regarding the dis-

tribution F(x; λ) are discussed in Section 3. The montonicity results from BP(1984) are

presented and applied to three formulations of the selection problem in Section 4. In Section

5, an extension of these results to include additional parameters and statistics is presented

and applied to another formulation of the selection problem.

2. A Class of Selection Rules. In this section, a broad class of selection rules is de-

scribed. All of the rules in this class will have the general monotonicity properties (1.2),

(1.3), and (1.4).

Let IT = (ΊΓI, ... , irπ) denote a permutation of (1, ... , ή). For any x e 9?9 let x o TΓ

denote (JCV|, ... 9x^). Let 7C( ) denote the indicator function of the set C.

A nonrandomized selection rule 5(x) can be defined by specifying its individual selection

probabilities, ψ,(x), ... , ψΛ(x). These are defined by ψ, (x) = / s ( x ) (0. We will be

interested in selection rules which satisfy the following for every x e Jί1 and every

M l , . . . ,n]

(2.1) If ψ,(x) = 1 and Xj ^ xh then ψ/x) = 1,
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and

(2.2) ΨTΓ/X) = ψ/(x ° IT) for every permutation TΓ. Rules satisfying (2.1) have been

called natural in some selection literature (for example, Eaton, 1967).

Nagel (1970) and Gupta and Nagel (1971) defined and investigated a class of selection

rules called just rules. A selection rule is just if, for every i e {I, ... , n}, ψ/(x) is a nonde-

creasing function of xέ and a nonincreasing function of xjf j Φ i. If a selection rule is just

and satisfies (2.2), then the rule satisfies (2.1). To see this, let TΓ be the permutation defined

byπr, =7;τr/ = z;and/iτΓ = r, r = I, ... 9n,rφ iorj. Then if JC, ̂  JC,,

ψ/x) ^ ψ/x o 7Γ) = ψ^.(x o TΓ o TΓ) = ψXx).

The inequality follows from the justness, and the first equality follows from (2.2)

Almost all the selection rules which have been proposed in the literature for the models

described in Section 3 are just rules satisfying (2.2). Thus almost all of the selection rules

which have been proposed over the last thirty years satisfy the general monotonicity proper-

ties (1.2), (1.3), and (1.4); the results in Section 4 will give a simple unified proof of this

fact, as well as other consequences.

3. The Model and Key Mathematical Ideas. In this section, the concept of a decreas-

ing in transposition (DT) function is introduced. The effect of assuming that the density

of X is DT is discussed.

Let TΓ and TΓ' be two permutations and i and j two elements of {1, ... , n} such that

i < j>* tti < ifp tr'i = Ίrp π'j = ith a n d π'r = τrΓ, r = 1, ... , n, r Φ iorj. We say that

IT' is a simple transposition of τr; in symbols TΓ >' TΓ'.

The concept of a decreasing in transposition function plays a central role in our derivation

of the general monotonicity properties. A real valued function g(x λ) on Jp" is decreasing

in transposition (DT) if

(3.1) g(x λ) = g(x © ττ; λ o TΓ) for every x € JP, λ € J? and every permutation ΊT,

and

(3.2) JC, ^ . . . ^ j c n , λj ^ . . . ^ λ n , and IT >'IT' imply g(x λ o <π) ^ g(x ;λ°ττ').

Hollander, Proschan, and Sethuraman (1977) (HPS(1977)) present a detailed investigation

of DT functions. The DT property is called arrangement increasing by Marshall and Olkin

(1979).

We assume that the observation vector X = (Xj, ... , Xn) has a density g(x k) with

respect to a measure σ(x), where σ satisfies JAdσ(x) = SAdσ(x o IT) for each permutation

Ή and Borel set A C O?1. We assume that g is DT. HPS(1977) list several discrete and

continuous densities which are DT. For example, if g(x λ) = ττn

i=]h(xi; λ, ) and h is TP2,

thengisDT.

By Theorem 4.1 of HPS(1977), if X has a DT density, then the coordinates of X are

more likely to be in the same order as the coordinates of λ than in any other order. Further-

more, the probability of a rank order for X decreases as the rank order becomes more trans-

posed from the order of λ. This behavior is typical in selection problems. Usually Xz is

an estimate of λ, and so the X, 's are expected to be in approximately the same order as the

λ,'s. This leads to the use of selection rules satisfying (2.1). Most of the models considered

in the selection literature are models with DT densities.

A class of selection problems considered in the literature which do not have DT densities

are problems involving unequal sample sizes. See Berger and Gupta (1980) for several re-

ferences. For example, in the problem of selecting the normal population with the largest
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normal mean, the density of the sample means will not be DT if the population variances

are equal but the sample sizes are unequal. The density does not satisfy (3.1). Thus in their

present form the results of BP( 1984)do not apply to these selection problems.

4. Monotonicity Properties. In this section we state the monotonicity results of

BP( 1984). Then we apply these results to three different formulations of the selection prob-

lem.

THEOREM 4.1. Suppose (a) the density g(x λ) of X is DT, (b) the individual

selection probabilities of the selection rule S satisfy (2.1) and (2.2), (c) A C {1, , n},

# C { 1 , ... ,n}, and A is better than B. Then

(4.1) PX[\A Γ\S(X)\ ^ m] ̂  PX[\B C)S(X)\ ^ m] for every m e &,

(4.2) PX[A = S(X)] ^ PX[B = S(X)],

and

(4.3) P λ [ |A c nS(X) | ^rn]^Pk[\BcΓ)S(X)\ ^ m] for every m e ̂ P1.

The proof of Theorem 4.1 is given in BP( 1984). It is based on the fact that the indicator

functions of the desired events are DT functions of X and a vector of Γs and 0's indicating

which elements of {1, ... , n} are in A (or B) and which are not. By the Composition

Theorem of HPS(1977), the probabilities are DT functions of λ and the vector of Γs and

0's. The inequalities then follow, since the vector of Γs and 0's for B is a transposition

of the corresponding vector for A.

We now present some examples of selection rules satisfying the conditions of Theorem

4.1.

Example 4.1. (Restricted subset selection). Santner (1975) introduced the restricted

subset formulation of the selection problem. In this formulation, a subset of random size

is selected. The size of the selected subset must not exceed m, a fixed constant satisfying

1 ^ m ̂  n. Santner (1975) proposed and studied a class of restricted subset selection rules.

We will propose a class of rules which satisfy the conditions of Theorem 4.1. and thus

possess the monotonicity properties (4.1), (4.2), and (4.3).

Santner (1975) proposed this class of restricted subset selection rules. LetX f l ] ^ ... ^

X[n] denote the ordered values of Xί9 ... ,Xn. Let h~ι(z) be a nondecreasing real valued

function of the real variable z satisfying h~x(z) ̂  z. Then a rule in Santner's class is defined

by:

Include i in the selected subset if and only if

(4.4) Xt ^ max(X[n_m+1], A " 1 ^ ) ) .

Actually Santner places more restrictions on the function h~λ than we have stated but these

conditions are all that are important for our discussion.

We propose the following class of restricted subset selection rules. For any x e 9?1, let

x1 = (jή, ... , x*n_i) be the vector obtained by deleting JC, and arranging the remaining n-\

components of x in increasing order. Let p be a real valued function defined on CR"~λ =

{y e J^~λ: yι ^ ... ^ yn_i} which is nondecreasing in each coordinate. Assume thatp(y)

^ yn-ι for every y e 3?ΪΓX . Finally we assume, as Santner (1975) did, that g(x λ) is a

density with respect to Lebesgue measure on Jf1; thus no coordinates of X are tied with

probability one. A class of restricted subset selection rules is defined by:

Include i in the selected subset if and only if

(4.5) X
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The class of restricted subset selection rules defined by (4.5) contains the class of rules

defined by (4.4). Every rule in the class (4.5) also satisfies (2.1) and (2.2) and has the gen-

eral monotonicity properties (4.1), (4.2), and (4.3) if the density of X is DT.

Let 5 be a rule in the class (4.5). To see that S satisfies (2.2), note that for any permutation

ir, x e Jf1, and i e {1, ... , n}, xVi = (x ° TΓ), and x™ = (x o TΓ)1. TO see that S satisfies (2.1),

note that if X- > xi (say, xi — x[r] and x- = x[s] where r < s) then x*t = x{} t = 1, ... , r-\, xi

t

^ xJ

t, t = r, ... , 5-1, and JC( = xj

t, t = 5, ... , n-l. Thus, by the monotonicity of/?, p(x')

^ p(xj). So if ψ, (x) = 1, then Xj ̂  xt ^ max(x [ n_m + 1 ], /?(x')) ^ max(x [ r t_m + 1 ], p(xJ)) and

ψ , ( x ) = l .

To see that Santner's (1975) class of restricted subset selection rules is a subset of the

class (4.5), let hΓλ be a function which defines a rule in (4.4). For y e 9?2~ι define p(y)

= h~ι{yn_χ). By use of the properties of A"1, our restrictions on/? are easily verified. If jcf

= jc[n] both the rule defined with p and the rule defined with A"1 include i in the selected

subset. If Xi Φ jc[n], then J C ^ = x[n] andp(x') = A " 1 ^ ] ) . Thus Santner's rule from (4.4)

with A"1 is equivalent to the rule from (4.5) definςd with/?.

Santner (1975) showed that every rule in the class he considered had the classical

monotonicity property (1.1). Santner assumed that the coordinates of X are independent,

the density of JC, is g(x( λ,), and the family g{x λ) is stochastically increasing. Under

these same conditions, using a proof very similar to Santner's, we can show that every rule

in the class (4.5) has the montonicity property (1.1). In addition, we can conclude, using

Theorem 4.1, that any rule in the class (4.5) satisfies the monotonicity properties (4.1),

(4.2), and (4.3) if the density of X is DT. Inequality (4.1) includes property (1.1) as a spe-

cial case.

Example 4.2. (Comparison with a control). Lehmann (1961) formulated the compari-

son with a control problem in this way. A population is called positive if λ, ^ λ 0 + Δ and

negative if λ, ^ λ0, where Δ > 0 and λ 0 are fixed constants. The general goal is to select

a subset containing positive populations.

Lehmann (1961) derived minimax rules which minimize supΛ R(λ, S) subject to infΛ,

T(λ, S)^y. Here 7 is a fixed constant, A' is the subset of A for which at least one popula-

tion is positive, R is either of two criteria concerning the number of negative populations

selected, and T is any of four criteria concerning the number of positive populations

selected.

One application of Lehmann's (1961) results is the following. Assume Xλ, ... , Xn are

independent. Assume X, is a sufficient statistic computed from a sample from the i-th popu-

lation. Assume the density g{xt λ, ) of X, possesses the monotone likelihood ratio property.

Then the rule defined by ψ,(x) = 1, α, 0 according as Xt >, = , < C is minimax, where

α and C are determined by Eko+Δ ψ, (Xf) = 7.

The above assumptions imply that the density of X is DT. ψ/(x) will satisfy (2.1) and

(2.2) if α = 0 or α = 1. This will be the case if g(x λ) is a density with respect to Lebesgue

measure. It will also be the case for certain values of λ 0 and Δ if g(x λ) is a Poisson or

binomial density. In each of these cases, Theorem 4.1 implies that the minimax rule will

satisfy the montonicity properties (4.1), (4.2), and (4.3).

Example 4.3. (Just subset selection rules). In Section 2, it was shown that all just rules

which satisfy (2.2) also satisfy (2.1). Thus, if the density of X is DT, any just rule satisfying

(2.2) has the monotonicity properties (4.1), (4.2), and (4.3).

Historically, the concept of justness has been used only with the unrestricted subset

selection formulation of Gupta (1965). For example, Bjornstad (1981) recently investi-
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gated a large class of just rules. But the concept of justness is equally appealing for other

formulations of the selection problem. Indeed, the rules considered in Examples 4.1 and

4.2 are just.

5. Additional Parameters and Statistics. BP(1984) prove this more general

monotonicity result applying to models which include other parameters besides λ and other

statistics in addition to X. Let Y be a statistic, possibly a vector, with sample space y. Let

v be a parameter, possibly a vector, with a set of possible values denoted by N.

THEOREM 5.1 Assume that (X, Y) has a density g(x9y; λ, v) with respect to a measure

σ(x) X μ(y), where σ satisfies fAdσ(x) = JAdσ(x ° π)for each permutation π and Borel

set Ad 7P. Assume that for each yey and veN, g(x,y; λ,v) is a DT function ofx and λ.

Let ψi(x, y), ... , ψπ(x> y) denote the individual selection probabilities of a nonran-

domized selection rule 5(X, Y). Assume (a) for every y e y, ϊ/ψ,(x, y) = 1 andx. > xif

then ψ ;(x, y) = 1; (b) yeV,x eT , i e 1, ... , n , and π a permutation imply ψπ.(x, y)

= ψ/(x°ττ,y).

LetAQ{\, .. ,n}andBC.{ί> ••• , n}. If A is better than B, then

(5.1) PκM^(^S(X9Y)\^m]^PKv[\BΠS(X9Y)\^m]foreveryme^\

(5.2) Pχ,v[\AcΠ S(X, Y)| ^ m] ss PKv[\BcΠ S(X, Y)| ^ m]for every meJ?\

and

(5-3) PKv[A = S(X, Y)] ^ PKv[B = S(X, Y)].

The proof of Theorem 5.1 may be found in BP( 1984).

Example 5.1. (Comparison with an unknown control). Tong (1969) formulated the

problem of comparison with a control in this way. XO,XU , Xn are independent normal

random variables with means λo,λu ... . λn and common known variance σ2/N0. The pa-

rameter λ0 is the unknown control value. For i = 1, ... , n, λ, is bad if λf ^ λ0 + δj and

λ, is good if λ, ^ λ0 + δ 2 , where b} < δ 2 are known constants. The sample size No is

chosen so that the probability that all of the good populations are selected but none of the

bad populations is selected is at least a preassigned value.

In our notation, X = (Xu ... , Xn)9 λ = (λi, ... , λn), Y = Xo and v = λo Let d =

(δj + δ2)/2. Tong (1969) showed that the selection rule which includes i in S(X, Xo) if

and only if Xt - Xo > d is Bayes, minimax, and admissible among a class of translation

invariant rules.

The conditions of Theorem 5.1 are easily verified for this selection rule and model. Thus

5(X, Xo) possesses the general monotonicity properties (5.1), (5.2), and (5.3). For exam-

ple, if A is the set of good parameters and B is any other set of equal size, then, by (5.3),

A is more likely to be the selected set than is B.

In other applications, v might include nuisance parameters, which have no bearing on

which λ/s are preferred, as well as control parameters, like λo Similarly, Y might include

estimates of nuisance parameters.

6. Conclusion. In this paper, we have reviewed the general monotonicity results for

selection rules of BP(1984). By examples, we have indicated that almost all nonran-

domizecj selection rules which have been proposed for models with DT densities possess

the general monotonicity properties. Thus, results which have previously been derived on

a case by case basis may now be obtained using this unified theory; in addition, other results

may be obtained.
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