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PROBABILISTIC ORDERING OF SCHEFFE POLYHEDRA

B Y R . BOHRER and H. P. WYNN

University of Illinois and Imperial College

Some inequalities for spherically symmetric distributions are discussed using simple
ideas from convex geometry. There are two dual orderings of the size of convex polytopes
with respect to "width" in a random direction. One is equivalent to the ordering of content
with respect to all spherically symmetric distributions. The other is the stochastic version
of the mean width of convex geometry. Dual versions of known results are given and in
particular the complete classification of the Platonic solids is listed. Some remarks are made
about future developments.

1. Introduction. There is a duality between a problem in statistics of ordering certain

regions with respect to probability content and an ordering based on the support function

of a convex set. Recent results are discussed in the light of this connection.

The first ordering arises naturally in the statistical theory of multiple comparisons and

by now has a considerable literature. Let C be a class of sets in /^-dimensional Euclidean

space €F. Let F be a family of probability measures o n δ p with respect to which every

member of C is measurable. We say that for two members C\ and C2 of C, C\ > C2 if

μ(Ci) > μ(C2) for all μ in F. It is usual to specialize C and F in various ways. Typically

C may comprise all convex radially symmetric sets (x eC implies -x e C) and F may be

all unimodal, spherically symmetric distributions or their multivariate normal versions.

Much of this material is summarised in Tong (1980).

In this paper we first restrict C to all closed star-shaped regions: xeC implies λx eC

for all 0 ^ λ ^ 1. Thus C contains all points on the ray to the boundary point in any direc-

tion. Let F consist of all spherically symmetric distributions: all measures preserved under

any rotation about the origin. We refer to the induced ordering as >h. The following simple

geometric characterisation comes as Theorem 1 in Bohrer and Wynn (1982). Let s be a

random direction in £? which may be interpeted as a point distributed with the uniform

distribution on the surface of the unit sphere Sp_{ in &P. Let h(C,s) be the distance to the

boundary of C from the origin in the direction s. Then the result is that, for Cx and C 2 in

C, C\ >h C2 if an only if h(Cλ ,s) > h(C2,s)9 where > is stochastic ordering:

P[h(Cλ ,s) ^ r] > P[h(C2,s) *?r] for all 0 ^ r ^ oo.

The proof follows directly from the fact that it is sufficient to prove that the p-\ dimen-

sional area of the intersection with the spherical shell rSp_x of radius r is at least as great

for C\ as for C2, for all 0 ^ r ^ oo. Then since C\ and C2 are star-shaped these intersections

are (proportional to) the s-probability of the boundary in the direction s lying outside or

on rS^x.

Measures of the size of convex bodies abound in the field of convex geometry which

has had a resurgence in recent years but has been little used in the field of multiple compari-

sons. The subject arises as a foundation for Minkowski's geometry of numbers and in par-

ticular for his theorem on the volume of n-dimensional lattices (see Stewart and Tall (1979)

for an elementary treatment). One arm of the subject is loosely called integral geometry
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(see Santalo (1976)). More recently many advances have been made in stochastic geometry

and mathematical morphology (Serra (1982), Coleman (1979)) and in describing the com-

binatorial and geometric properties of the face lattices of convex polyhedra (see Grunbaum

(1967), McMullen and Shephard (1971)).

Our second ordering is based, then, on a classical idea from convex geometry. Let C

now be the class of closed convex sets in CF containing the origin. They are obviously star-

shaped. The support function H(C,s) of C is G in the direction s is defined to be

H(C,s) = sup{<y,s>\yeC}.

Note that since the origin is in C, H(C,s) ^ 0 for C in G. With s random H(C,s) becomes

a random variable. Then we define Cλ >H C2 if and only if H(Cλ ,s) > H(C2,s) where again

we mean stochastic ordering as defined above.

Both >h and >H are orderings of the size of the sets in C. We now show that there is

a close connection between them. Let C be a closed convex set containing the origin. The

dual set of C which has the same properties is defined as follows

C* = {y\ <x,y> ^ 1 forall ceC}.

NotethatC** = C.

THEOREM 1. Let C\ and C2 be closed convex sets containing the origin. Then C\ > A C 2

if and only ifC\ >HC*\.

Proof. We can denote a general point y e CP by v = rs where r ^ 0 and s is a point

on the unit sphere. Then for a general closed convex set C containing the origin h(C,s)

= sup {r\y = rs in C}. Then since C** = C this can be written

h(Cfs) = sup{r| <x,rs> ^ 1 for all x in C*} = r*, say,

while

//(C*,s) = sup { <x,s> I for all* e C*}.

Clearly if this supremum is achieved at x* in C then r* = <x*,s>~K Thus H(C*,s) =

h(C,s)~ι, with the value taken as °o when h(C,s) = 0. This immediately gives the inverse

relationship between the orderings expressed in the theorem. D

There are a number of results using the support function as a measure of the size of a

convex set C. Most important of these is that based on the so-called mean width W(C):

W(C) = E{H(C,s)+H(C,-s)}9

where E denotes expectation with respect to random s. The quantity W(C) is invariant under

change or origin and according to a result due originally to Crofton (see Hadwiger (1957)

for the general case) W(C) is proportion to the surface area of C. The constant of proportion-

ality depends only on how one defines the measure of area of the unit sphere. Now in our

case C contains the origin so that E{H(C,s)} = VιW(C). It is clear that >H implies the

ordering of E(H). Thus Theorem 1 combined with the Crofton result gves the following

corollary: C, >h C2 implies that the surface area of C2* is at least that ofC ,*. We also have

that the volume of C, is at least that of C2. These necessary results can be used to obtain

counterexamples to or conjectures about the ordering >h. We shall return to this idea later.

For a recent related paper on integral geometry see Enns and Ehlers (1980).

2. Scheffέ Polyhedra. In the multiple comparison literature many interesting regions

are obtained as one or two-sided confidence regions, or their translation to the origin. Thus

in some testing or confidence procedures we may construct intervals based on estimates
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θ = (θi, ..., θp) for parameters θ = (θi, ... , θp) which take the form <cif θ - θ> ^ ah

(/= 1, ... , q) where the c, are vectors of known coefficients. Writing X = θ — θ we obtain

<c, , X> ^ ait (i = 1, ... , q). In many applications the vector X can be assumed to have

a spherically symmetric distribution about the origin. Moreover the standardisation may

make all the at equal. If this is the case then we term the X-region so defined a Scheffe

region (or polyhedron): the polyhedron consisting of the intersection of half spaces each

of whose boundary hyperplane is tangent to the same sphere centred at the origin. Without

loss of generality in what follows we shall take the sphere to be the unit sphere. Thus define

for any collection of distinct points S = {su ... , sq} in the unit sphere a Scheffe region

to be

For two-sided regions sέ € S implies -ste S (/ = 1, ... , q). In this case C(S) is centrally
symmetric.

Because we choose to use the unit sphere, the dual of a Scheffe region C(S) based on
S = fri, ... , sq} is just the convex hull of 5, C(S)* = conv (S), and every s, is an extreme
point of C(S)*. While C(S) circumscribes the unit sphere C(5)* inscribes it.

From a statistical point of view the main interest is in giving conditions or examples for
which C(50 >h C(S2) holds. We can then make claims about the size of confidence level
of the relevant procedure. Sometimes C(5j) will arise as a non-standard case whereas C(S2)
may have a well known form and the μ content be tabulated. The claim then would be

that the test based on SΊ may be conservative so that μ{C(S2)} provides a lower bound to

the confidence level or size. We now interpret some known results in the light of the

geometric considerations of the last section.

Let/? = 2 and order the j , around the unit circle so that the angles subtended at the origin

between adjacent j,- are given by

cos"1 <sif Sj+i> = θf, (i = 1, ... ,q-l)9cos~1<sq,Sι> = dq.

THEOREM 2. Letp = 2 and C(Sι) and C(S2) with angles (as above) θ = (θj, ... , %)

and φ = (φ], ... , φ^). Then C{Sλ) >h C(S2) if and only */θ >~φ in the sense ofmajoriza-

tion.

Note that if S2 has more points st than Si then we merely extend θ by adjoining the requis-

ite number of zeros. Theorem 2 appears in Marshall and Olkin (1979, Chapter 8, Proposi-

tion E7) based on the earlier work of Wynn (1975) see also Bohrer and Wynn (1982). None

of this work mentions the duality of the last section. The consequence of Theorem 1 is that

θ >-φ is also equivalent to C(5"2)* >H C(S\)* but the C(5)* are now the inscribed polygons.

The Croften result then shows that the perimeter of S2 is greater than that of S}. The results

of Marshall and Olkin in the same section (1979, Chapter 8, Proposition El to E6) concern-

ing the area and perimeter of the inscribed figure are very close to this.

One of the best known results is that of Das Gupta, Eaton, Olkin, Perlman, Savage and

Sobel (1972) and can be rewritten with a more geometric flavour. Ap-pyramid is defined

to be the convex hull of the union of a convex set K in CP~λ containing the origin and a

line segment [0, JC]. For a discussion of the general case see Grunbaum (1967). Three di-

mensional visualisation is useful with K being the base of the pyramid and [0, JC] the (not

necessarily vertical) axis. Thus we define the pyramid as P = con\(K ( J [0, *]). A

bipyramid is P = conv(AΓ U [-•*> •*])• The results of Das Gupta, Eaton, Olkin, Perlman,

Savage and Sobel (1972) can be restated as follows: For any spherically symmetric measure

μ, the μ content of the dual P* increases as x rotates towards the plane of K while lying

in a fixed two dimensional "vertical" plane, when K is radially symmetric.
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THEOREM 3. Let K be a convex radially symmetric set in C^1. Let a be a fixed unit

vector in CP~λ and ep the unit vector orthogonal to Cp~λ. Let c > 0 be a fixed constant and

define a general vector x = c{(l—\)l/2ep + kV2a}. LetP*(λ) be the dual ofthe bipyramid

P(\) = conv(K U [-•*> •*])• Then the ordering >h is increasing in λ, for λ > 0, in the

sensethatλi ^ λ2 > 0 implies P*{\λ) >hP*{\2).

The dual result that P(λ) is decreasing in λ with respect to >H seems to be a new result

in convex geometry although the implied decrease in surface area follows from an element

argument. The case p = 2 follows by elementary geometry. A purely geometric proof in

the casep = 3 has been given by the authors (Bohrer and Wynn (1983)). The special case

when K has 2(p-l) vertices so that P*(λ) is /7-dimensional parallelogram is the generalisa-

tion of a result due to Sidak (1968) for normal distributions.

The paper of Wynn and Bohrer (1982) classifies the platonic solids C 4 tetrahedron, C 6

cube, C8 octahedron, Cl2 pentagonal dodecahedron and C 2 0 icosahedron so that C(S, )

>h C(Sj) when i < j when all the figures are incident to the same (unit) sphere centred

at the origin. The dual result is that C12 >H C20 >H C6 >H C% >H C4 when all the solids

inscribe the same sphere. This is because (with lazy notation) C 4 = C 4*, C 6 = C 8* and

C\2 = C2o* The implied ordering for volume and surface area must have been known from

antiquity but the statement for the orderings >h and >H seem to be new. The work also

studied the semi-regular rhomboidal dodecahedron C\2. This arises out of Studentised

range test with four means. It is a 12-sided solid each of whose faces is a rhombus with

semi-axes in the ratio 1: V~2 . We showed that C 8 >h C\2 >/, Cλ2. The dual result for

the inscribed solids is that C20 >H C\2 >HC6. The solid C'fc is called the cuboctahedron and

is obtain by suitably cutting off the corners of the unit cube (see Coxeter (1948) for a full

description of all the solids).

4. Counter-Examples and Conjectures. As mentioned above E{H(C,s)} is propor-

tional to the surface area for radially symmetric convex sets. Clearly E(h(C,s)2) is propor-

tional to the volume. In any case uniform μ giving volume content is spherically symmet-

ric. A useful property of H(ds) is that it is additive with respect to direct sums. Thus

H(Cλ + C2, s) = H(Cλ, s) + H(C2, s),

so that E{H{Cλ + C 2, s)} = E{H{Cλ, s)} + E{H(C2, s)}. It is not clear that >H is preserved

under the direct sum operation but one can certainly use the result for expectations to elimi-

nate any reversal of the ordering. That is to say if C\ >//CΊ and C 2 >H C 2 then it is impossi-

ble for (C{ + C 2 ) >H (Ci + C2) to hold strictly. Thus by Theorem 1 if C{ >h Cλ and

C2' >h C2 it is impossible for ( d + C2) >Λ (C/ + C 2) to hold strictly. This is a general

indication that direct sums tend to preserve the direction of the ordering. The authors are

engaged on a programme to search among regions generated under direct sums from the

known results in the last section to establish a wide range of new examples. One interesting

case is when Cx and C\ are non centrally symmetric regions for which C, >h C, and we put

Cx = -C2 and C\ = C^. The direct sums then, statistically, are the regionsob tained from all

pairwise contrasts among the defining linear functions of CX(C\). That is to say if C, = C(S)

where 5 = sl9 ... , sp then C{ + C2 = C(S~) where S~ = s. - s \ i,j =

1, ... ,q

The intuition for higher dimensions from Theorem 2 and the results on the Platonic solids

is that in some general sense for a fixed number of (/τ-l)-dimensional faces the Scheffe

region which is most regular is a minimal member of the ordering >h. It appears that this

is the case for the Platonic solids although the only one for which this is properly established
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is the cube with the added restriction of radial symmetry for which it follows from Theorem
3 above (Das Gupta, Olkin, Perlman, Savage and Sobel (1972)). The minimal member
idea is closely related to minimal packing problems. Indeed it is well known that the p-
simplex, p-cubc and the p-dimensional generalisation of Cn can be packed into €P. The
use of orderings rather than volumes or other mean-size measures in packing theory may
be new and will be the subject of a further paper. Another development which would be
valuable would be a characterisation of these minimal regions in terms of their fundamental
groups, that is the groups under which they remain invariant, where of course such a group
exists. There must surely be a relationship between the structure of the finite subgroups
of the full orthogonal group 0(p) and the >h ordering of their corresponding invariant
Scheffe polyhedra. It was hoped to give some simple results in this paper but these too
must wait for further developments.
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