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ON CHEBYSHEV'S OTHER INEQUALITY
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We formulate the notion of a best possible inequality. This involves finding the largest
class of functions and measures for which an inequality is true. We give two examples of
Chebyshev's inequality, e.g. f£ dμ Jafgdμ 2= flϊfdμ f£ gdμ for all pairs (f,g) which are
increasing if and only if /„ du ^ 0, /* du 2= 0 for all x. Other examples include Jensen's
inequality.

1. Introduction. Let μ be a probability measure on the real line and/and g increasing

functions. Then

(1.1)

says that the random variables/and g are positively correlated. This is Chebyshev's 'other'

inequality.

It is common to ask if an inequality is best possible. In most instances this means having

the largest (or smallest) constant(s) for which the inequality holds and settling the cases

of possible equality. For (1.1) equality holds if one of the functions is a constant or the

measure is a point mass.

In this paper we would like to explore a different meaning of 'best possible.' In order

to formulate our ideas in the context of inequality (1.1), consider a related version

(1.2) Ωdμfϊfgdμ^fϊfdμfϊgdμ

where [a, b] is any real interval. It was already observed by Andreief (1883), that (1.2) holds

under the hypothesis that

(1.3) \A*)-fiy)][g(x)-g(y)]^0 foral l (*,y)eM] x [a,b],

and

(1.4) μ is a non-negative measure.

The condition (1.3) is read "/and g are similarly ordered," see Hardy, Littlewood, and

Pόlya ((1952), p. 43). (More history of the inequality (1.2) appears in the article by Mit-

rinovic and Vasic (1974).) It is clear that (1.3) is satisfied if both/and g are increasing.

Our viewpoint is that the inequality (1.2) has "two variables," the pairs of functions and

the measures.'Best possible' should mean that:

(A) the inequality (1.2) holds for all similarly ordered pairs if and only if μ is a non-nega-

tive measure, and

(B) the inequality (1.2) holds for all non-negative measures if and only if/and g are simi-

larly ordered.

We will show below that both statements are correct. This means that each class, simi-

larly ordered pairs, and non-negative measures, is the largest class for which the inequality

can be proved, given that it must hold for all elements in the other class.

Contrast this with the condition
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(1.5) /, g are both increasing or both are decreasing, or one is a constant.

The set of pairs satisfying (1.5) is smaller than the set of similarly ordered pairs, so the

requirement that (1.2) holds for such pairs is a less restrictive condition on the measure

μ which is to satisfy it. In fact, for some signed measures μ inequality (1.2) holds for all

pairs satisfying (1.5). We will derive a condtion to replace μ ^ 0 for which the appropriate

versions of (A) and (B) hold.

In summary, what we are looking for is a class of measures Λf so that the following state-

ment is true.

"The inequality (1.2) holds for all pairs/, g satisfying (1.5) if and only if μ eΛf."

Thus M is the largest class of measures for which we can prove the inequality (1.2) under

the conditions (1.5). It is then natural to ask for the largest class of pairs of functions for

which inequality (1.2) holds for all measures in Λf. Our view is that 'best possible' should

mean that the conditions are those in (1.5).

In the succeeding sections we formulate this question in general and give several exam-

ples of this phenomenon.

2. Function-Measure Duality. Let F be a class of functions and Λf be a class of meas-

ures and J(f) ^ 0 be an integral inequality.

The classes F and M are said to be in duality with respect to J if (I) J(f) ^ 0 for all/

e F if and only if the measure is in Λf, and (II) J(f) ^ 0 for all measures in M if and only

if/e F. This is analogous to the situation, in the theory of locally convex topological linear

spaces, leading to weak and weak* topologies on X and 3?*. Each formulation of classes

in duality requires specifying the universe of functions or measures. For us here, all func-

tions are to be Borel measurable and all measures are regular Borel (signed) measures.

It is important to notice that if the integrals are linear in the measure, the class Λf being

as large as possible will be a cone. If the inequality is convex in the functions, then F will

also be a cone.

As a simple example, the class F+ of non-negative functions on an interval [a,b] are

in duality with the class Λf + of non-negative measures with respect to the inequality

(2.1) Ωfdμ^O.

The proof is straightforward and is omitted.

The inequality (2.1) is a point of contact with known theory. If C is a cone of functions

in a Banach space X, then the measures Λf C X* for which (2.1) holds is called the conju-

gate cone C*, see Kelly and Namioka (1963). If then we look at the class of functions in

X for which (2.1) holds for all measures in C*, then this class might be called *(C*). We

are interested in cones C for which *(C*) = C.

As a second example, let (FI)+ be the class of non-negative increasing functions on [a,b]

and Mo be the class of measures μ such that /£ dμ ^ 0 for all x e [a,b]. Then (F/)+ and

Mo are in duality with respect to the inequality (2.1). The proof is omitted.

3. Chebyshev's Inequality. We return to the inequality (1.2) which is our main moti-

vation. Observe that if μ is replaced by — μ the inequality is unchanged. For the two

theorems on this inequality we will assume that μ is somewhere positive.

THEOREM 1. Let SO be the pairs of functions which are similarly ordered and M+ the

set of non-negative measures on [a,b]. Then SO and Λf+ are in duality with respect to the
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inequality (1.2). Equality holds for a pair in SO and a measure in M+ if and only if one

of the functions is constant a.e. μ.

Proof. The inequality

(3.1) '/2j£fah\λχ)-f(y)Ig(χ)-g(y)]dμ(χ)dμ(y) >o

is obvious under the assumptions that the pair (f,g) are similarly ordered (see (1.3)) and

μ ^ 0. This establishes the sufficiency in both (I) and (II), since if the expression in (3.1)

is expanded one gets (1.2). For the necessity, let μ = δΛ + δ^, x Φ y. Then the inequality

(1.2) is exactly (1.3). Finally, to show that μ ^ 0 if (1.2) holds for all similarly ordered

pairs, take/ = g = X[C,d\, the indicator function of an interval [c,d\. Then (1.2) is

μ[fl,fc]μ[c,ύf| 22 (μ[c,d\)2 ^ 0. Thus μ is always the same sign. Since μ is somewhere

positive, it is positive everywhere.

To establish the cases of equality, observe that if A and B are any sets of μ positive meas-

ure then (3.1) with equality implies that \j{x) -fly)][g(x) - g(y)] = 0, x e A, y e B. Assume

that/is not a constant a.e. μ. If further one assumes thaif~]{a} is always a set of μ measure

zero, let A and B be disjoint positive measure sets. Then/(;c) -fly) Φ0 a.e. x e A, y e B

and thus g(x) = g(y) a.e. x e A, y e B. This implies that g is a constant. If there is an α

so t h a t / ^ α ) = A has positive measure, then take B to be the complement of A and the

above argument gives g a constant. •

For our second example on Chebyshev's inequality we consider the class SM (for simi-

larly monotone), those pairs of functions satisfying (1.5). The corresponding measures EP

(for end-positive) are those measures μ such that

and ftdμφ 0. This class will reappear in a different example.

THEOREM 2. The pair SM and EP are in duality with respect to inequality (1.3). Equal-

ity holds if and only if (when f g are right continuous)

sup supp Rdg^ inf supp L df and sup supp Rdf^ inf. supp Ldg.
(+)

If either pair of supports meet, their common point is a set of measure zero for at

least one of the measures.

Here sup φ = a, infφ = bf R(x) = J?dμandL(x) = f£dμ.

Proof. We will show the sufficiency of (I) and (II) by writing the inequality in the

form (3.1). Assume first that/is increasing and right continuous. Then there is a non-nega-

tive measure μi so that for x < y,

fly)-A*) = μάa,y] - μι[a,x] = μx(x,y] = ΪX(x,yit)dμ](t).

Then (3.1) can be written as (μ 2 the measure for g.)

Ktiti (fly) -Ax))(g(y) - g(x))dμ(x)dμ(y)

= Jala (y-x)°+ Sa X{x,yit)dμλ{t) ftX(x^(s)dμ2(s)dμ(x)dμ(y)

(integrand is 0 on the diagonal)

= ftftftft (y~x)\ Xu.,]W X(x,y](s)dμ(x)dμ(y)dμ](t)dμ2(s).

The part of the integrand involving x is expressible as

χ(y Λ t Λs>x)χ(t V s^y).

where x (P(variables)) denotes the indicator functions of the set of variables for which

P(variables) is true. This gives
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ΩίaίaXit Vs^y)L(y A t Λ s)dμ(y)dμι(t)dμ2(s)

= SΪSΪSΪW Λ s)X{t V s^y)dμ(y)dμι(t)dμ2(s)

= SΪSΪW Λ s)R(t M s)dμλ{t)dμ2{s),

where L(x) = μ([a,x))9 R(x) = μ([jc,£]). Thus (3.1) is equivalent to

(3.2) ίϊftUf Λ s)R(t V s)dμλ{t)dμ2{s) ^ 0.

This is clearly non-negative. Since any increasing function is the pointwise limit of right

continuous functions, the sufficiency is shown.

Conversely, if (3.1) holds for all (f,g) e SM, then as above, /*/<? W A s)R

(t V s)dμι(t)dμ2(s) ^ 0 for all non-negative measures μί9 and μ2. Thus L{xλ)R(x2) ^ 0

if JC, ^ x2. Since L(x) + R(x) = μ(Γ) we have L(x)R(x) ^ 0. If μ(/) Φ 0, L(x) and R(x)

have the same sign as μ(/) unless one of them is 0. The case μ(/) = 0 cannot occur unles

μ = 0, for then 0 ^ J / d μ / g dμ for all (f,g) in SM; thus taking/ = g = X[a>x) and/

= g = Z[OfX] lead to μ((xι 9x2)) = 0 ifjr, < * 2, so μ = 0.

Next we need to show that if (1.2) holds for all end-positive measures μ, the pair (f,g)

isinSM.

It may help the exposition to let a, b, c, etc. denote the values taken by/at JC, y, z, etc.

respectively, and A, B, C and so on denote the corresponding values of g. We need two

observations.

First, non-negative measures are end-positive, so/and g are similarly ordered (Theorem

1); i.e., (a-b)(A-B) ^ 0 for all pairs JC, v in /.

If JC < v < z the measure 8^-8^+δz is end-positive, so by (1.3)

aA-bB + cC^ (a-b + c)(A-B + C).

This is equivalent to

Neither product can be positive—the other would be negative, all four differences would

be non-zero, and similar ordering would imply that both products have the same sign (sgn

(C - B) = sgn(c - b)9 etc.). Thus we have the second observation: for all triples x < y

<z,(a- b)(C -B) =εs 0, (c - b)(A -B)^0. Note that JC and z are "separated."

It is enough to show that (a - b)(c - b) ^ 0, for all triples x<y<z, unless g is constant

(i.e. fly) is between flx) andflz) if JC < y < z). Suppose not. Then for some triple JC0

 <

yo < zo, (tfo-bo)(co-bo) > 0.

The key argument is this: if α0 < b0 then by the second observation (α0 - bo)(Co - Bo)

^ 0 if z > y0, so C ^ BQ. Similarly, A ^ Bo if x ^ y0, so g(y0) is a global minimum for

g. Moreover, Ao = Bo = Co. If not, say Λo > #o Then (Λo - B0)(α0 - b0) < 0, which

contradicts similar ordering. In case α0 > b0 we get that g(y0) is a global maximum for

^andΛ0 = β 0 = Co-
Next (still supporting α0 < b0) we show A = Ao, x ^ JC0, and C = Co, z ^ z0. For, if

A > Bo for some JC < JC0, similar ordering gives α ^ b0 > α0. Apply the "fl0 > ^o" c a s e

of the key argument to α, α0, b0 (the triple being JC < JC0 < yo). It gives A = Λo = Bo,
which contradicts A > Bo. Similarly, C = Co if z > z0.

If g were not constant there would exist y, JC0 < y < z0, such that B > Ao = Bo = Co.
We may suppose xo<y < y0. Now apply the key argument, with the roles of/and g inter-
changed, to conclude that α0 = b = b0, which contradicts αo<bo.

Since (f,g) and μ satisfy (1.2) if and only if (-f,-g) and μ do,/is monotone unless g
is constant. It follows, using similar ordering, that (f,g) e SM. •
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Finally, we discuss the case of equality. If/or g is constant, equality holds, and so do

the conditions (+). We shall assume that neither/nor g is constant. We may assume, too,

that each is non-decreasing and non-negative (a constant added to/or g adds equal quan-

tities to both sides).

If / dμ = 0 then we know μ = 0 (for then 0 ^ (ffdμ)2, where/ - y = X[a,x)> s o £(•*)

= 0). Thus we assume Jdμ Φ 0, and we may assume /δμ > 0 .

Note that, if μ ^ 0, the case of equality is covered in Theorem 1.

A case of interest, which we largely ignore, is that in which // g dμ = 0 and, say,

ffdμ = 0. We shall only consider this under the foregoing assumptions, and the further

assumption that/g are right-continuous. Thus/{jc) = V\[atx\, g(x) = v2[a,x], where vu

v2 are non-negative. Then

Safdμ = Sa5adμ^t)dμ{x) = tiR{t)dv,{t) = 0,

soRdvi = 0, and the first condition (+) holds. Also,

ίafgdμ= Lhfadvι(t)J^dv2(s)dμ(x) = JjR(t V s)dvx{i)dv2(s)

= Ift^ίR(s)dv](ήdv2(s) = SΪJ{s)R{s)dv2{s) = 0,

soflϊdv2 = 0. This implies inf s u p p / ^ sup supp Rdv2, which gives the second condition

in (+). A moment's reflection gives that the third part of (+) also holds. We now assume

that none of the integrals in the equality is zero.

Let us verify that (+) is equivalent to equality, if/,g are right-continuous, non-increas-

ing, non-negative, not constant, fdμ > 0, and none of the integrals in the equality is zero.

With/(jc) = v\ [a,x\, g(x) = v2[a,x], we have, as in the sufficiency argument, that

0 = JjL(s Λ t)R(s V ήbvι(ήdv2(s) (the limits on the integrals are a + 0 and b)

= ίίs^ίL(t)R(s)dvι(t)dv2(s) + SSs<Ms)R{t)dvx{t)dv2{s)

= ίb

a+oίUoUt)dvι(tyR(s)dv2(s) + Sh

a+0S
tΛL(s)dv2(syR(t)dv](t),

so both terms are zero. Since the roles of vx and v2 can be reversed, the last term is still

zero if t-0 is replaced by t. Now (e.g.) $s

a+0 L{i)dvx{t) ^ 0 is non-decreasing and Rdv2

Φ 0, so Ldv3_i = 0 in [α,cf), where c, = sup(supp Rdv(), i = 1,2. This gives the first two

parts of (+). The last part of (+) follows because if (e.g.) R(c2)v2{c2} > 0, then 0 =

/aVo L(ήdv\(ή ^ L(c2)v,{c2}. Finally, if (+) holds the last iterated integrals are both 0,

so equality holds.

If/and g are not right-continuous, we can write/ = fo + j , g = g0 + k, where/0, g0

are right-continuous and j,k are left-continuous jump functions. Then equality holds for

each pair (/b,go)> (Λ)Λ), (/»So)» (/'»*)• T n e conditions (+) are changed by replacing R(t)9

L(t) by /?(ί+0), L(ί+0) when they appear with dj or dk.

We remark that if/? and L are both positive in (a,b), and continuous, equality can only

happen if one of/g is constant.

4. Further Results and Problems. In the foregoing, it was essential to have a suitable

integral representation for the functions in the class F. Appropriate manipulations then per-

mitted reduction to the fundamental inequality (2.1). We state two more examples of such

results here, with problems we hope are of interest.

We letMp denote the class of functions/with the representation

wherex+ = max(0, x), (x-t)°+ means X[/p«)(*), v is a non-negative measure, and/? ̂  0.
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THEOREM 3. If p is an integer, Mp is in duality with the set M* of signed measures
μ which satisfy

Jl(x-t)fdμ(x)^0, O^t^T,

with respect to the inequality (2.1).

The proof uses the basic spline of Curry and Schoenberg (see Schoenberg (1973), p.

3), and a representation theorem of Bernstein (1926).

Problem: Ifp > 0 is not an integer, prove this.

The difficulty is in proving the representation.

Remark. This result, with p = 1, can be used to prove Theorem 108, page 89, in

Hardy, Littlewood and Pόlya( 1952).

The second result concerns Jensen's inequality:

φ(ffdμ/fdμ)^Jφ(f)dμ/Jdμ.

With appropriate modification of "best possible" in our sense (here we have three "vari-

ables"), this inequality is best possible for convex φ, Borel measurable functions, and non-

negative measures.

If we restrict/to be monotone, we have:

THEOREM 4. The convex functions are in duality with the end-positive measures with
respect to Jensen's inequality, when F is the class of monotone functions.

The conditions for equality are too lengthy to be stated here.

Elsewhere we have shown that

<p(fofdσ/Si dσ) ̂  [(tifdσY/Jάfdσ]ti w(f)dσ/ti dσ
holds for all/monotone and φzMp if and only if σ is end-positive, with equality for φ(jc)
= xp.

Problem. Is this "best possible" in the sense of this paper?
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