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Efron (1975) first proposed a differential geometric method to study curved

exponential families (CEF) and Amari (1982, 1985) presented a Riemannian ge-

ometric framework. In this paper we modify BW's (Bates and Watts, 1980)

framework for nonlinear regression models (NRM) by introducing a Fisher infor-

mation inner product so that it can be applied to CEF. Based on this modified

BW framework (MBW), we study the parameter effect and confidence regions

for CEF.

1. Modified BW Geometric Framework. Suppose that observa-
tions χι, , χn are independently and identically distributed and χ\ has the
density

f (1.1)

where ΰ — ($i, , $ m ) τ is the natural parameter belonging to a convex set
Θ C Mm. We assume that (1.1) is a full, regular, and minimally represented
exponential family. It is well known that

E(Xl) = μ{ϋ) = φ'(ϋ), Vax(Xl) = g(ΰ) = φ"(ΰ), (1.2)

where φ\ΰ) and φ11^) are the first two derivatives of φ(ΰ). Let χ = n~1ΣiXi^
the log likelihood of χ = (χi, , χm)τ is

K* ,x) = n[(xT*-ΨW] (1-3)

The Fisher information of x for ΰ and μ are g(O) and g'1^) respectively. Let
ϋ in (1.1) be defined for β e B C Mp, so (1.1) becomes a CEF. Suppose
the first three derivatives of #(/?) are finite in B. Let V$ = dΰ/dβ7, W$ =
d2ΰ/dβdβτ, V = dμ/dβτ and W = d2μ/dβdβτ, then the score function
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l'(β), observed information -l"(β) and Fisher information J(χ) with respect

to β are respectively:

l'(β) = y/nVτ(β)g-1{β)e(β), e(β) = yβ{χ - μ(ϋ(β))} (1.4)

-l"(β) = nVτg-1V - yβ[eTg-χ] [W - Γ], (1.5)

J(χ) = nVτ(β)g-\β)V(β), (1.6)

where Γ = Vτg^1Sg~1V and S = φ^\ΰ) are mxpxp arrays. The maximum

likelihood estimate β of β satisfies

Vτ(β)g-\β)e(β) = 0, (1.7)

i.e. the residual vector e = e(β) is orthogonal to all column vectors of V(β)

under the Fisher information inner product induced by g"1 on Mm. Let

the QR decomposition of V(β) be V = (Q,N)(RT,Q)T = QR, where R and

L = R~x are pxp nonsingular upper triangular matrices and columns of Q and

N are the orthonormal basis for the tangent space Tβ and the normal space

Tβ of solution locus π at β. The intrinsic curvature array A1 and parameter-

effects curvature array Ap are defined as follows:

A1 = [ iVV 1 ] [U], A? = [Qτg-χ] [U] and U = LTWL, (1.8)

where [•][•] indicates array multiplication as in BW (1980). We can also

introduce a dual geometry based on the dual parameter ϋ of μ (Efron (1975),

Amari (1985) and Kass (1983). We have a very important relation between

A1 and the dual curvature arrays A$ as follows:

A^ = A1 - V1 and T1 = [iVV 1 ] [LTTL], (1.9)

where Γ is given by (1.5).

2. Curvature Representation for Parameter Confidence Re-
gions. Hamilton et al. (1982) studied improved approximate confidence

regions for normal NRM using BW geometric framework. Now we study simi-

lar problems for CEF using MBW geometric framework. A usual approximate

confidence region is based on the likelihood ratio statistic:

LR{β) = -2[l{β)-l(β)]hχ\p).

To derive improved approximate projections of solution locus inference

regions onto the tangent space, we introduce a nonlinear transformation as

follows:

u = u(β) = v^Q V 1 W ) - μ(β)} (2.1)



BO-CHENG WEI and PETER CHE BOR LAM 463

THEOREM 1. Under the preceding assumptions, the approximate

tangent space projection of the solution locus likelihood region of β with 1-α

level may be expressed as:

uτ(β){Ip - B 2

Bΰ=B-BΓ =

where B = [Pg^N^A1], BΓ = ψg^N] [T1] ,χ2(p,α) is the upper α

percentage point of chi-square distribution with p degree of freedom, and Ip a

p x p identity matrix. |

This result is very similar to that of Hamilton et al. (1982), but our CEF

is completely different from normal NRM.

If a subset of parameters is of primary interest as studied by Hamilton

(1986), the parameter vector β can often be partitioned as βτ = (βϊΊβϊ)*

where β\ is nuisance parameter in Mk and β2 is parameter of interest in

k likelihood ratio statistic associated with βi is:

where β = {pf(fa),i3$)T and βι{βi) is MLE of fa with β2 fixed. The trans-

formation (2.1) has the form

« = uφ) = ̂ ΪQτg-1{u(β) - u(β)}.

We have the following theorems.

THEOREM 2. The improved 1 - α confidence region for βi may be

expressed as:

T = (Bΰ)22 + (Bύ)

(B$)ij is the partitioned matrix of B$ = B - BΓ. |

The score statistic can be used to construct confidence region for param-

eter subsets as studied by Hamilton (1986) for normal NRM. For our CEF,

the score statistic associated with the parameter subset β2 is

where J22 is the lower right corner of the partition of J 1(χ) = (J1**), h 3 —

1,2, and J(χ) is given in (1.6). Then we have:
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LEMMA 1. SC can be written as SC = eτg~1(P - P\)e, where P =
V^g^Vy^g-1, P = Vri(F1V

1Vi)-1VriV1, 9~\ Λ Λ and e are aJJ
evaluated at β.

THEOREM 3. The 1 - α improved approximate tangent space projec-
tion of solution locus inference region for parameter subset β2 based on score
statistic may be represented as

ύ%(Iq - Z/y/n)τ(Iq - Z/y/E)ύ2 < χ\q,α)

where Z = B22 + B21 [y/nlk - ( ^ ) n ] ~ 1 ( 5 7 9 ) i 2 . |
These results are similar to Hamilton et al (1982) and Hamilton (1986)

with different CEF and geometric framework. Kumon and Amari (1983) also
studied some problems related to confidence regions for CEF, but the methods
are different from ours.
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