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NEARLY OPTIMAL GENERALIZED SEQUENTIAL LIKELIHOOD
RATIO TESTS IN MULTIVARIATE EXPONENTIAL FAMILIES*

By TzE LEUNG LAI AND L1 MIN ZHANG

Stanford University

A simple class of generalized sequential likelihood ratio tests is introduced
for testing hypotheses in multivariate exponential families. These sequential tests
have asymptotically optimal frequentist properties and also provide approximate

Bayes solutions with respect to a large class of prior distributions.

1. Introduction. Let X7, X,,--- beii.d. p x 1 random vectors whose
common multivariate density (with respect to some nondegenerate dominating
measure v) belongs to the exponential family

folz) = exp{8'a - H(0)}. (1.1)

Thus, EgX = V(8), CoveX = V2¢(8), and the Kullback-Leibler information
number is given by

1(6, ) = Eglog{fs(X)/\(X)} = (8 = A)'V(0) — ($(0) — $(N)).  (1.2)
Let S = X1+4--+X,, X, = Sp/nand let © = {# € RP : [exp(f'z)dv(z) <
o0} be the natural parameter space. Consider the problem of testing sequen-

tially Hy : 0 € Og versus H, : 8 € O, where ©g, ® are disjoint subsets of ©
such that

A=inf{|A-0]|:0€ 00, A€ 01} >0, (]| =V06). (1.3)
Let g be a nonnegative function on (0,00) such that for some £ € R,

g(t) ~logt™ and g(t) >logt ' + €loglogt™ as t— 0. (1.4)
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332 MULTIVARIATE SEQUENTIAL TESTS
As in Lai (1988b), we shall restrict 6 to a convex subset A of © such that

inf Amin(V29()) > 0, sup Amax(V29(8)) < oo,
9€4, 9€A,
and V2% is uniformly continuous on A, for some p > 0, (1.5)

where A, = {\ € R? :infge4 ||0—A|| < p} and Amin, Amax denote the minimum
and maximum eigenvalues of a symmetric matrix. Define the stopping rule

N(g,¢) = inf {n >1:0, € A,,,jrr;g,)i (Zlogf@\"(X;)
i oo (1.6)
p D log fo(Xi)) > g(en)},

— su
0€0; i=1

where 8, is the maximum likelihood estimator that maximizes w1 log fo(X:)
(= n(0' X, —(8)) over 8 € ©. Noting that 8, = (V)™ }(X,) if X, € V¢(0),
we can express the statistics in (1.6) as

bn,j =y log f (Xi) - sup > log fo(X:)
i=1 j

O; =1
. {@Xn — $(@)) - sup (6'Xn ¢(0))}
0€®;
= eieng,' nI(b\n,O), (1.7)

in view of (1.2), at least when b, € A,. When stopping occurs at stage n, we
use the terminal decision rule 6* that rejects Hy or Hp according as £, 1 > £,
or £y1 < £yn0. This is a multivariate extension of the generalized sequential
likelihood ratio test (GSLRT) proposed by Lai (1988a) in the univariate case
p = 1, and Lai and Zhang (1993) showed that in the multivariate case such
GSLRT has the following asymptotically optimal frequentist and Bayesian
properties for testing Hy : § € O versus H, : § € O4.

THEOREM 1.  For the test (N(g,c),6*), in which g satisfies (1.4) for
some { € R, let a; = supgee, Po{(N(g,c),6%) rejects H;} (j = 0,1). Let
T (a0, a1) be the class of all sequential tests (T, 6) such that supgeo, Po{(T,9)
rejects H;} < o for j = 0,1. Let A be the distance between ©y and O, as
specified in (1.3) and define

J(6) = max {)\lél(go I(0, A),’Ylenefl I(O,’y)} . (1.8)
(i) For fixed A > 0, as ¢ — 0,

EgN(g,c) ~ | logel/J(8) ~ BT as c—0,

inf
(T,6)€T (axo,01)



TZE LEUNG LAI and LIMIN ZHANG 333

uniformly in @ € A with J(0) < D., for any positive numbers D, — oo such
that D, = o(logc) as ¢ — 0.
(i))As ¢ — 0 and A — 0 such that A%/c — oo,

sup FyN(g,c) ~ inf sup E¢T ~ < su JG'l}lo A?/e).
oeg oN(g,c) (T,6)€T(ao,a1)oe§ ? {9&3( ) g(A%/e)

(iii) Let G' be a probability distribution on A. Let r(T,§8) be the Bayes
risk

r(T, ) =c /@ EJTdG + /@ ¢(6) Py{Reject Hy) dG
0

+/ £(0)Py{Reject H,} dG, (1.9)
6,

of a test (T,6) of Hy versus Hy. Suppose that the loss function £ in (1.9)
for wrongly rejecting the true hypothesis satisfies supycg,u0, £(#) < oo and
infgeo,uo, £(0) > 0, that G(S N O;) > 0 for every p-dimensional ball S with
center belonging to ©;, j = 0,1, and that { > p/2 in (1.4). Then as ¢ — 0,

r(N(g,¢),6%) ~ c|log¢] /A (JO)dG(6) ~ inf +(T. ).

Theorem 1(iii) shows that (N(g,c),6*) is asymptotically Bayes risk ef-
ficient as ¢ — 0 for fixed A > 0. In Sections 2 and 3, we shall show that
(N(g,c),6™) is still asymptotically Bayes risk efficient as A — 0 when Hy, Hy
are one-sided hypotheses about some real-valued function of 8, and we shall
also extend this kind of tests to the case when there is no indifference zone, gen-
eralizing Lai’s (1988a) theory of nearly optimal sequential tests in univariate
exponential families. The derivation of these results in Section 3 uses trans-
formation techniques in multivariate analysis and certain geometric properties
of multivariate exponential families.

2. Asymptotically Bayes risk efficient GSLRT when 0AA — o as
¢ — 0 or when there is no indifference zone. In this section we consider
the Bayes problem of minimizing the Bayes risk (1.9), in which £() = 1 for
6 € OpUO; C A (the 0—1 loss), G is a prior distribution on A and Hy, Hy are
one-sided hypotheses about some real-valued function 2(#) of the parameter
vector §. Let z: A, — R and y: A, — RP~! be continuously differentiable

functions such that

¢: A, — RP is one-to-one, where ((8) = <2EZ§) , and
Y

ac\ [a¢\'
:éllfp Amax { (a_o’) (%) } < o0, (21)
. ac\ [oc\'
pTf Amin { (a_o> <a_0) } > 0.
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The notation 8¢/06 is used to denote the Jacobian matrix (9¢i/d0;)1<i,j<p-
In view of (2.1), the restriction of ¢ to A is a diffeomorphism from A onto
¢(A) and therefore we can regard ( as a reparameterization of A in lieu of
6. The one-sided hypotheses Hy, H; can be conveniently stated in terms of
this reparameterization as Ho : z < 2 versus Hy : z > 2z + eu(y) (with
an indifference zone whose width may depend on y) or Hy : 2 < 2o versus
Hy : z > z (without an indifference zone), with the component vector y of ¢
treated as a nuisance parameter.

To test Hy : 2 < z¢ versus Hy : z > 2 +eu(y) with cost ¢ per observation
and the 0 — 1 loss, we again use the GSLRT with stopping rule N(g,c) and
terminal decision rule é*. In Theorem 1(iii) dealing with the case of a fixed
distance A between @9 and 0;, g is assumed to satisfy (1.4) with £ > p/2.
This condition on g still suffices for the Bayes risk efficiency of (N (g,¢),6*)
when ¢ — 0 as ¢ — 0 such that ¢2/c — oo, as will be shown in Theorem 2
below. However, in the case of no indifference zone or in the case €% /c — v
(finite), we require a particular choice of g which agrees with the stopping
boundary for a continuous-time optimal stopping problem that arises from
Wiener process approximations to random walks.

Let wy(t),t > 0, be a Wiener process with E(w,(t)) = nt and Var(w,(t)) =
t. Lai (1988a) studied the problems of testing H : 7 < —v versus K : p > vy
and H' : p < 0 versus K' : 7 > 0, with the 0 — 1 loss and a cost of ¢ for observ-
ing the process for a period of length ¢, assuming a flat prior (i.e., Lebesgue
measure) on 77 € R. Given v > 0 (the case y = 0 corresponds to H' versus K'),
the optimal stopping rule is of the form 7., , = inf{t > 0 : |w,(t)| > h,(t)}, and
the terminal decision rule is to accept H (or H') iff w,(7y) < 0. Lai (1988a)
computed numerically the boundaries h,(t) for certain values of 7, and used
these numerical results and an asymptotic analysis of the free boundary prob-
lem for the heat equation associated with the optimal stopping problem to
derive simple closed-form approximations to h.(t) for all y > 0 and ¢ > 0. He
also showed that the optimal Bayes risk is finite, i.e., for 0 <y < oo,

oo

oo > b(7y) :=/

— 00

E(rradn+ [ Plwy(ra) < 0)dn
+ /_ 7 Plwy(r,,) > 0) dn. (2.2)

For the problem of testing Ho : < 0 versus Hy : 6 > 0 (or Hp : 6 < —A/2
versus Hy : @ > A/2) for the mean 6 of a univariate normal population with
known variance 1, let

n=c"1?, v =c"Y2A)2, t = cn, wy(t) = VcSn. (2.3)

Since \/cfn = nt, w,(t) is a Wiener process with drift coefficient 7 and with ¢
restricted to the set {c,2c,-- -}, which becomes dense in [0,00) as ¢ — 0. For
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7> 0,let
9(2) = (hy () + 72)? /21, (2.4)

Since I(6,\) = (8 — A\)2/2 and 8, = X, for the normal distribution, it follows
from (2.3) and (1.7) that for the above hypotheses on a normal mean,

[wn()] 2 hy(t) <= (1Sn] + An/2)*[2n 2 g,(en) <= max Ln; > gy(cn).

Theorem 3 below shows that the GSLRT with stopping rule T'(go,c) defined
in (2.7) is asymptotically Bayes risk efficient as ¢ — 0, not just for testing
the hypotheses Hyp : § < 0 versus Hy : 8§ > 0 for the mean 8 of a univariate
normal distribution, but much more generally for testing Ho : 2(0) < 2o versus
Hy : 2(0) > 2 for real-valued functions z(#) of the parameter vector 6 of
the multivariate exponential family (1.1). Theorem 2(ii) proves an analogous
result for the test (N(g,,c¢),6*) of Hy : 2 < 2z versus Hy : z > 2z + eo(y)
as ¢ — 0 and ¢ — 0 such that ¢71/2¢/2 — v, where o(y) is defined in (2.6)
below. In the univariate exponential family with 2(6) = 8 and 2z = 6p,0(y)
reduces to (d24(8)/d6?|¢=g,)"*/%. This factor of ¢ in H; was inadvertently
omitted in the statement (but not the proof) of Theorem 1(iii) of Lai (1988a).
While Theorems 2 and 3 focus on the 0 — 1 loss, their proofs and results can
be extended to more general loss functions of the form £(8) = 3| 2(6) — z|*
(@ > =1,8 > 0), using the ideas of Lai (1988c) in the case of univariate
exponential families with z(6) = 6.

Since ( defines a reparameterization of § € A, we can express a prior
distribution G' of @ with support in A as a prior distribution of {(= (z,¥)).
We shall assume that for some d > 0, [29 — d, zp + d] C 2(A) and that the prior
distribution G, as a distribution of (2, y), satisfies

G has density function g with respect to Lebesgue measure
in the region [z — d, 29 + d] x y(A)(C ((4)), (2.5a)
r6(z,y) — 76(20,y) as z — zp, uniformly in y € y(A), (2.5b)

7G(20,y) is continuous in y € y(A) and

0< / 7c(20,y)dy < 0. (2.5¢)
y(A)

THEOREM 2. Let G be a probability distribution on A satisfying
(2.5a)—(2.5¢c). Let (T, 6) be the Bayes risk (1.9) of a test (T',8) of Hy: z < z
versus Hy : z > zp + eu(y) with the 0 — 1 loss and cost ¢ per observation,
where ( = (z,y) is a reparameterization satisfying (2.1) and u is a real-valued
function on y(A) such that sup,e,4) w(y) < 00 and infyeyca) u(y) > 0. For
y € y(A), define

a(y) = ”(V2¢(0))_1/2vz(0)”z(9)=zo w(8)=y- (26)
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Then sup e 4y 0(y) < 0 and infyey(a) o(y) > 0.

(i) Let g be a nonnegative function on (0,00) satisfying (1.4) for some
£ > p/2. Then as ¢ — 0 and ¢ — 0 such that €2 [c — oo,

r(V(g,0), ) ~ ipf r(T,0) ~ {4 [, Cwiwiret y)dy} ce ™ log(c? o).

(ii) Suppose that u(-) = o(-). Let 0 <y < oo and define b(7) and g, by
(2.2) and (2.4). Then as ¢ — 0 and € — 0 such that 3¢/\/c — 7,

PV (g0, 87) ~ 0,0~ Veb(y) [ o(0)molen,)ds

THEOREM 3. Suppose that G is a probability distribution on A sat-
isfying (2.5a)—(2.5¢c) and that ( = (z,y) is a reparameterization satisfying
(2.1). Let r(T,6) be the Bayes risk (1.9) of a test (T,6) of Hy: z < zp versus
H; : z > 2 with the 0 — 1 loss and cost ¢ per observation. Define gy by (2.4)
and

T(go,c) = inf {n >1:0, ¢ A, and Zlogf; (X3)

i=1

~ sup Y log fa(x,-)zgo(cn)}. (2.7)

0€A,z(0)=20 ;1

Let 6 be the terminal decision rule that accepts Hy iff z(an) < 29 when stopping
occurs at stage n. Then as ¢ — 0,

r(D(00,6)8) ~ gt (1,8) ~ Vab0) [ otwpmatzo,v)dy
’ Y

where b( -) is defined in (2.2) and o(-) is defined in (2.6).

3. Proof of Theorems 2 and 3. For z € R?, define
$(z) = sup(8'z — ¥(9)),
IIC)
go(x) = sup  (8'z —9(8)), (3.1)
0€A:2(8)=2¢

L(z) = ¢(z) — ¢o(2).

In view of (2.1), given any (z,y')" € ((A), there exists a unique # such that
¢(6) = (2,9')'. This 6 will be denoted by .. Since I(8,A) = [}(1 —t)(\ -
0)'{V2p(tA + (1 — t)8)}(X — 8)dt by (1.2), it follows that

bl6 — M| <I(6,A) < Bl§ = A2 forall 8, A€ A,, (3.2)
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where )
b= = inf Amin(VZ9(0)), B = sup Amax(VZe(6)).
2 €4, 9€A,

LEMMA 1. Fory € y(A), let py = V(8,5 ), Sy = V23p(8y,2,), Jy =
00/9¢|e=s,,.,- Then

IE(T LR, = (1@ 1), (33)

where o(y) is defined in (2.6). Consequently, uniformly iny € y(A), asz — p,
with z € A,,

L(z) = {(V2(8y,2))'Sy (2 = 1)} /(20° () + ollz — myl®).  (34)

PROOF.  Let U, = 30/8y|y=p,,,- Using Taylor expansions and the
inverse function theorem, it can be shown that

V2¢0(ﬂy) = Uy(Ug’;EyUy)_l Ué, (3-5)

cf. Lemma 3.2 of Zhang (1992). In the remainder of the proof we shall fix y
and denote X, Uy, J, simply by X,U, J. Letting I, denote the ¢ x ¢ identity
matrix, note that

U=J( 0 ) U'SU = Taa, (3.6)
I,

where

r T
JIZJ=F= 11 12).
(F21 B3}

We first show that the (1,1) element of I'~! is 6?(y). Since I'"! is the co-
variance matrix of J~1X71 Xy, its (1,1) element is the variance of the first
component of J~'X71X;. Since J~! = 9¢/8|p=y,,, by the inverse function
theorem, the first component of J=1X71 X7 is (V2z(0y,2,))' S~ X1, which has
variance o%(y). By (3.5) and (3.6),

T _
T2V 80()20 =( 1) T (Tar )
[12T55' To1 T2 )
= . 3.7
( | P31 P (3.7)

Since VZ¢(u;) = 71 and L = ¢ — ¢, (3.3) follows from (3.6) and (3.7),
noting that (I'y; — I‘12I‘2'21F21)_1 is the (1,1) element of I'"!, cf. Rao (1973).
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Since L(py) = 0 and VL(py) = 0 by Lemma 3.1 of Zhang (1992), it
follows from (3.3) and Taylor’s expansion around p, that as ¢ — p, with
T €A,

L(z) =(z — py)' VL (uy)(z = py)/2 + o(|l& — g ||*)
={(ET) (= — py) Y {I'B(VL* (1)) ST H(ET) (& — py)}/2

+o(llz = pylI*)
={first component of J X7 (z — py)}?/(20%(y))
+ oz~ %) (38)

Let T = S (z — py). Since J™! = 9(/00]¢=9,, , it follows that the first
component of the vector J1Z is simply (Vz(8y,.,))'T. Hence (3.4) follows
from (3.8).

LEMMA 2. With the same notation as in Lemma 1, define
vy = (o(y))! )3;1/2Vz(0y,20) and let Z, be a px (p—1) matrix whose column
vectors are orthonormal and are orthogonal to v,. Let S, = X1 + -+ X,,.
For ¢ > 0 and y € y(A), define

!
We,(t) = \/2(21;)2;1/2(5,1 —np,) if t=en (n=12,---), (3.9)
Y

and define W, (t) by linear interpolation for cn < t < ¢(n+1). Let {wy(t),t >
0} denote a one-dimensional Wiener process with drift coefficient n and let
{B(t),t > 0} be a 1 x (p — 1) vector Brownian motion, with EB(t) = 0
and Cov B(t) = tI,_1, that is independent of {wy(t),t > 0}. Then for every
T >0 and M > 0, the process {W,,4(t),0 < t < T} converges weakly to
{(wn(2), B(1))',0 < ¢ < T} under Py with Vip(0) = py +(ven/o(y))V2(6y,z),
the convergence being uniform in —M < n < M and y € y(A).

PROOF. First note that for ¢t = cn,

!

Cove(We(0) = en( 3 ) 000 2) = 1
Yy

v\ oo
EG(me(t)) =cn (Zg)zy 1/277V2(0y,z0)/0'(y) = t(g)’
y
since Z,v, = 0 by definition and v;EJI/Z V2(8y,2)/0(y) = vjvy = 1. The
desired conclusion then follows by an argument similar to that used in the
proof of Lemma 4 of Lai (1988a).

LEMMA 3. (i) For©y={0€ A:2(0) <z} and ©; ={0 € A: 2(6) >
zo}, inf;eej I(0, A) = ianeA:z(A)zzo 1(0, )\) for any 0¢€ Ap - @J(j = 0, 1).
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(i) For @9 = {0 € A : 2(6) < %} and ©; = {6 € A : 2(6) >
20 + eu(y(9))}, infrco, 1(0,A) = infrca:z(r)=2 L(6,)) for € A, — O, and
ianGQI I(0, )\) = ianGA:z(A)=zo+eu(y(>\)) I((), )\) for 0 € Ap - 0.

PROOF. For O = {# € A : 2(0) < 2z}, suppose that for some
6 € A, — Oo,infrco, I(0,A) < infrea:z(n)=2 [(0,A). Then there exist Ay €
Oo(C A) and 0 < t; < 1 such that {t6 + (1 —t)A\1 : 0 < ¢t < 1} C Op and
I(6, A1) = ming<¢<t, 1(0,t0 + (1 — t)A1), recalling that A is convex and that
z is continuous with z(A;) < 2. Using (1.2) and a differentiation argument,
it can be shown that I(6,t0 + (1 — t)A;) is a decreasing function of ¢ € [0, 1],
which contradicts that I(6, A1) = ming<i<s, 1(0,10 4 (1 — t)A1). Similarly we
can prove the other assertions of the lemma.

PROOF OF THEOREM 3. Let u(y,z) = Vi(0y,.) = Es, ,(X1). We
shall use the change of variables ) = Y(y,2) € RP~1, n = n(y, 2) € R defined
by

#(y,2) = (Y, 20) + VenVz(By,5)/o(Y),  or equivalently,
(2) = < (w0 { ot + Lvet65.00} )

where )
z
0) = .
= (30)
Let M > 2. From (3.10), (3.2) and (2.1), it follows that uniformly in Y € y(a)
and || < M,

(3.10)

2 =20+ (Ven/o(D))(Va(6y,2))' S5 V(0 ,) + O(c)
2 + Veno(Y)(1 + 0(ve), (3.11)
y=Y+0(Vo), 3(=9)/3(n,Y) = Veo(Y)(1+0Ve). o)
3.12

For any sequential test (T, 6), define its risk function Rz s(z,y) by

Rr5(2,y) =cE¢T + Pg{(T,6) accepts H1} if 2< z,

=cE¢T + Py{(T, 6) accepts Ho} if z> 2,
(3.13)

where

((6) = (29"
Consider the risk function of the test (T(go,c),). By Lemma 1,

nL(X,) = {Vevy 232 (Sn — nuy)}*/(2en) + o(nl| Xn — uyll®),
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where vy is defined in Lemma 2 and (Y, 7) is defined from (y, 2) via (3.10).
Moreover,

20n) — 20 =2((V9) "1 (X)) - 2((VH) (1))
=(Vz(0y,20)),23_11(xn — py) + O(“Xn - uy||2)~

Hence by Lemma 2 together with (3.11), (3.12) and (2.5), as ¢ — 0,

R z,y)dG
/Iz—zo|$M\/Ea(y) T(go,c),6

R c “'(Z, y)ﬂ'G(z, y) dzdy
/yey(A),Iz—zo|gM\/z,,(y) T(g0,c),6

~y/c a(y)WG(Zo,y){ /—A; E(1o,n)dn

Yey(A)

t [ Pt > 0t [ P(rog) < 0)dn} a,

(3.14)

for every M > 2, where 79, = inf{t > 0 : wi(t)/2t > go(t)} = inf{t > 0 :
[n(8)] > ho(1)}-

Let H(8) = infyga:2(0)=2, 1(f,A). By an argument similar to the proof of
Theorem 3 of Lai (1988b), it can be shown that

E¢T(go,c) =O({log(c"*H(#))}/H(8)) uniformly in
e A with 2c< H(9)<|loge[>*. (3.15)

By (2.1), there exist K > £ > 0 such that
k[0 — Al < |2(0) — 2(A)| < K||0 — A forall 6, A€ A,. (3.16)

Let 8 € A be such that z(6) = 20 + s with s # 0. If A € A, is such that
2(A) — zp and s have different signs (i.e., s(z(A) — z9) < 0), then |s| < |2(8) —
z(A)] € K||0 — A|| by (3.16). Hence by (3.2), H(f) > bK~2s>. Moreover,
H(#) < Bx~%s? by (3.2) and (3.16). Therefore (3.15) yields

Ey, . T(g0,¢) = O((z — 20) " log((z — 20)*/¢)) (3.17)

uniformly in 6, , € A with Mc < (2 — 2)? < |logc|?/3, for every sufficiently
large M.

By Lemma 1 of Lai (1988a), go satisfies (1.4) with £ = 1/2. Let 6§ € A
be such that 2(f) = zp + s with s > 0. Then by the preceding argument,
{Ae A, 2(A) Sz} C{Ae4,:||6- A > K~'s}. Therefore, if @L € A,
and 2(6,) < 20, then infye g, jo-r>K-15 [(0r,A) = 0. Moreover, I(6,,60) >
infyeceo, I(an, A) = infye4:2(n)=2 I(é\n, A) by Lemma 3(i). Therefore by Lemma
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2 of Lai and Zhang (1993) (with a slight modification of the statement but
using the same proof), as ¢ — 0,

ng,z {Z(é\T(goyC)) S ZO}
=0(c(z — 20)*{log((z — 20)? /) }1*(P~1/2), (3.18)

uniformly in 6,, € A with M/c < 2z — 2 < |logc|'/3, for every sufficiently
large M. Clearly a similar result holds for P, {z(b\T( g0,¢)) = 20} With z < 2.

By choosing M arbitrarily large, it follows from (3.14), (3.17), (3.18) and
(2.5) that (T(go,c¢), 6) \/_b(O)f (4) o0(y)7c(20,y)dy. Note in this connec-
tion that supge 4, [|V2(0)|| < o0 a.nd mfgeA [IV2(8)|| > 0 by (2.1), and there-
fore (3.2) in turn implies that sup ¢, 4y o(y) < 00 and infye 4y o(y) > 0.

To show that infr s 7(T, §) ~ +/cb(0) fy(A) o(y)rc(20,y)dy, take any M >
1 and note that by (2.5), (3.11) and (3.12),

1nf r(T,6) >(1 + 0(1))\/_/ U(y )7c(20,Y)

'{inf/ Rrs(2(Y, n),y(y,n))dn} dy. (3.19)
T.5 J_pmr
By (3.13) and Lemma 2, uniformly in Y € y(A),
M
it [ RrsG:m) ) dn
b J M
M M
~inf{/ E(T)d77+/ P(wy(1) < 0)dn
T -M 0
0
+ / P(wy(r) > O)dn}, (3.20)
-M
noting that for any stopping time 7 of the Wiener process w,(-) with drift
coefficient 7, the Bayes terminal decision rule for testing H' : n < 0 versus
K': 1> 0 with respect to 0—1 loss and uniform prior distribution on [—M, M]
accepts H' and K' according as w,(7) < 0 or wy(7) > 0. Letting M — oo
in (3.19) and (3.20) and making use of (2.2), we obtain the desired conclusion

on infr s r(T,6).

PROOF OF THEOREM 2(II). Define ¢, ¢o, L by (3.1) and let

¢e(z) = sup (0'z — %(9)),
€ A:2(0)=2¢ +=u(y(8))
Lo(z) = max{#(z) - do(z), &(z) — ¢u(2)}. (3:21)

Here u(-) = o(-). A simple extension of the argument used in the proof of
Lemma 1 and (3.11), (3.12) can be used to show that uniformly in y € y(A),
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as € — 0 and z — py with z € A,,

Le(2) ={IV2(8y,0)' Sy (@ — py) + €0 () /2 + a(y)/2} /{20%(v)}
+o(|lz - ﬁ‘y”2 + 52)

={[0\2;Y%(z — uy) + €/2| +¢/2}* /2

+ollle = myll* +2), (3:22)
where v, is defined in Lemma 2. Using the transformations (3.9), (3.10) and
v = ¢ /2¢/2 4 o(1) in conjunction with Lemma 2, the rest of the proof is

similar to that of Theorem 3.

PROOF OF THEOREM 2(I). To evaluate the Bayes risk (N (g, ), §*), we

shall use the change of variables Y = Y(y,2) € RP~!,s = s(y,2) € R defined
by

#y,2) = (Y, 20) + 8V 2(0y,2)/0(Y), (3.23)
which is the same as (3.10) except that we replace \/cn by s. Define J(6) by

(1.8) with ®¢ and ©; given by Lemma 3(ii), and define L.(z) by (3.21). Then
under the transformation (3.23),

J(8y,2) = Le(u(y, 2)) ~ {Is + eu(Y)/20(D)| + eu(¥)/20M)} /2 (3.24)

as € — 0 and 2z — 2, uniformly in y € y(A), by Lemma 3(ii) and an argument
similar to that used to establish (3.22), noting that (Vz(Oy,zO))’E;,le(Hy,zO)
= 0%()) by (2.6). As shown by Lai and Zhang (1993) in the proof of Theorem
L,

Eg¢N(g,c) ~{log(c™'J(6))}/J(0) uniformly in
€A and d.<J() LD, (3.25)

for any positive numbers d. — 0, D, — oo such that d./¢c — oo and D, =
o(|logc|) as ¢ — 0. Combining (3.24) with (3.25), (2.5) and an argument
similar to (3.14) yields that as ¢ — 0,

/ EGy,zN(g7 C) dG
|z—20|<e|log €|o(y)

~ / o(V)r6(z0,Y)
Yey(A)

{/ log(c™1e?) ds }dy
lseliog el {|s + eu(¥)/20(V)| +ew(¥)/200)} | T (3.26)
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noting that supyey(A)(a(y) + u(y)) < oo and infyey(4) min(o(y), u(y)) > 0.
From (3.16) and (3.2), it follows that

J(0y,2) 2 inf 1(8y,2,A)

AEA:z(N)=2z20
> 0K %(2—2)? forall 6,,c€ A4, (3.27)
inf ||6 — Al > K~1(2(8) - 2) if 6 € O,
}\GC‘)o

. _ -1 . _ .
Alen(gl [0 — Al > K~ (20 + 5y€111/1(1;) u(y) — 2(0)) if 0 € Oo. (3.28)
By (2.5), (3.25) and (3.27), as € — 0,

/ Eey,zN(g7c) dG
|z—20|2¢|log £]o(y)

=0 ({e|loge|} " {log(c™'€?) + log | log |}). (3.29)

Noting that I(8,,68) > inface, I(Bn, ) if 8 € g, it follows from (3.16) that
for 6 € Oy,

Py {(N(g, ¢), %) rejects Ho}

ng{an € Ap,I(an,O) > n"lg(cn) and
I(6,,60) > inf I(B,,)) for some n > 1}. (3.30)
AEO;

Moreover, Lemma 2 of Lai and Zhang (1993) (which is used to prove Theorem
1) says that

Pg{an € Ap,I(gn,H) > n"'g(cn) and

I(?)\n,0) > I(b\n,)\) for some n > 1}

inf
AEA, A —-6]|>a
=0((c/a®)(log(a? /<)) ~€+7/?) as ¢ — 0,
uniformly in \/d_c <a<+y/D.and €A, (3.31)

where d, and D, are the same as in (3.25). By (3.28), (3.30) and (3.31), as
e — 0,

/ Poy,z {(N(g7 C), 6*) rejeCtS Ho} dG
6y,2€90
-2
= O . f _
(C L,,,;G@o (ZO e yelzl}(A) u(y) z)

2 1-¢+p/2
. {log ((zo + 8y612(fA) u(y) — z) /c> } dG)

= o(ce ! log(c71e?)), by (2.5) and since £ > p/2, (3.32)
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and a similar result holds for f@ Py{(N(g,c),6%) rejects Hy}dG. By (3.26),

(3.29) and (3.32),7(N(g,¢),6*) ~ 4ce~tlog(e?/c) . W(A) (02(y)/u(y))7ra(z0,y) dy.
To prove the desired conclusion for infr s 7(T,6), it suffices to restrict to
tests (T,6) such that r(T,6) < ce~'{log(¢?/c)}?. For such tests, as ¢ — 0,

(14 o(1)) veu(A) 7c(20,9)Ps, , {(T,6) makes wrong decision } dydz
|z—20|<ellog €|
<ce ' {log(e?/c)}’. (3.33)

Using the change of variables Y = )Y(y,z2), s = s(y,2) defined in (3.23), we
obtain from (3.33) by calculations analogous to (3.14) and (3.26) that for any
0<a<l,ase—0,

0 (1+a)eu(Y)/o(Y)
/ o(V)ma(z0,Y) / + /
Yey(A) —aeu(Y)/a(Y) eu(Y)/o(Y)

- Py {(T, ) errs} dsdy
< (14 o1))es™ log(e* /<), (3.34)

where Py  {(T,6) errs } denotes Po{(T,6) rejects Ho} if 0(= Oy(y,s),2(3,5)) €
O, and denotes P4{(T,6) rejects H1} if § € ©;. We can choose s(Y) €
[—acu(Y)/o(Y),0] and $1(Y) € [ew(Y)/a(Y), (1 + a)ew(Y)/o(P)] such that

/0 (1+a)eu(Y)/a(Y)
g
—aeu(Y)/a(Y) ew(Y)/a(Y)

>{acu(Y)/a(Y)}p(Y),

where pe(Y) = Py ) {(T, 6) rejects Ho}+Py 5, () {(T,6) rejects Hy}. Putting
this in (3.34) yields

Py {(T, 6) errs} ds

ac / w(V)ra(z0, V)pe(V) { M (V) /w2 (P)} dY
Yey(A)
<(1 4 o(1))es ™ {log(e? /e)}?, (3.35)

where M = {sup,¢,(4) 7(y)/u(y)} 2. Define a probability distribution F on
y(A) by
dF(y) = m™ (o (y)/u(y))7a(20,9) dy, (3.36)

where

m = / o*(y)/u(y))7c(20, y) dy.
We can rewrite (3.35) in the form
log ( / Pe(y)dF (y)) < log ({(aMm)™" + o(1)}ee ~*{log(¢?/¢)}?)
y(4)

~log(ce™?). (3.37)
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Let 6[Y,s] = 0. with Y = Y(y,2), s = s(y,2). By Lemma 3 of Lai and
Zhang (1993), which is a restatement of Hoeffding’s lower bound for EyT in
the context of (1.1),

(1+0(1))|logp(Y)
max{I(6[Y, s],6[Y,s(P)]), I1(]Y,s],0[Y,s1(V)))}
N 2|log p(Y)|

max{(s — s()))%, (s — s1(¥))?}

uniformly in Y € y(A), where the last relation above follows from I(8[Y, s, 6,
s*]) ~ 2(s=5*)2(V2(0y,5)/0(¥)' T (V2(0y,z,)/0(V)) as s—s* — 0 in view
of (3.23). Hence, noting that s1(Y) — s(¥) < (1 + 2a)euw(Y)/o(Y), we obtain
that analogous to (3.14) and (3.26),

Eqy T 2

as §s—0 and ¢—0,

/ By, . TdG
|z—20|<e|log g|o(y)

>@+o1) [ a()alzn, ) logp V)
Yey(A)
. / {max((s — s(¥),(s - 31())))}'2 dsdy
|s|<elloge]
>(4+0(1))(1+2a)7 et /

Yey(

A)(—logps(y))dF(y), (by (3.36))

A)(02(y)/U(3’))7TG(Zo, Y)llog pe(Y)| dY

=(44o(1))(1 + 2a)'16"1m/

y(
> — (44 0(1))(1 +2a) e mlog (/ Pe(Y) dF()i)) ,
y(4)
(by Jensen’s inequality). (3.38)

Combining (3.37) with (3.38) yields
r(T,8) > ¢ / Es, T dG > (4+ o(1))(1 + 2a) ce~"mlog(? /c).

Since a can be arbitrarily small, 7(T,68) > (4 + o(1))mce'log(¢?/c). As has
already been shown, r(N(g,c),6*) ~ 4mece~1log(e?/c). Hence the desired
conclusion follows.
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