
Multivariate Analysis and Its Applications

IMS Lecture Notes - Monograph Series (1994) Volume 24

INTERIM ANALYSIS FOR NORMALLY
DISTRIBUTED OBSERVABLES

BY SEYMOUR GEISSER AND WESLEY JOHNSON

University of Minnesota and University of California at Davis

We address the problem of whether an experiment should be continued or

aborted when N observations are in hand and a total of K > N have been

scheduled for a decision. A Bayesian predictive approach is used to determine

the probability that if one continued the trial with a further sample of size M

where N + M > if one would come to a particular decision regarding some set

of parameters. In particular, sampling from a multivariate normal distribution

will be discussed.

1. Introduction. Often experiments will consist of a series of inde-
pendent observations with some minimum sample size required, say if, before
a conclusion is reached concerning the efficacy of a new treatment. Many such
trials are costly and time consuming. Frequently an investigator would like
to know at some interim point whether the continuation of the trial is worth-
while. With regard to a new treatment or a therapy, the issue is invariably
whether continuation will lead to a conclusion that the treatment is at least
as effective as some standard. There are frequentist methods which control
type I and type II errors if interim analyses are made at preset sample sizes
in a sequential trial. Depending on the number of such interim analyses, the
required sample difference can be much larger than in a trial where no interim
analyses are made. Also it is not always convenient to conduct such analyses
at preset sample sizes in a trial. Other methods that allow for analyses at ar-
bitrary sample sizes involve highly conservative tests which render even more
difficult the detection of differences.

Although Bayesian statisticians ordinarily do not suffer from such restric-
tions they also may be subject to an important trial which requires at least
some fixed number of observations before a conclusion is reached. This is
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inarguably true if the conclusion is to be convincing to a wider public or in par-
ticular to a regulatory agency which licenses new therapies. Hence Bayesians
also need to consider interim analyses in order to decide whether to abandon
a trial or to continue a trial to its specified term.

2. A Mixed Metaphor. In the last few years some Bayesian procedures
have been suggested for those who prefer a frequentist analysis, Choi and
Pepple (1989), Choi et al. (1985) and Spiegelhalter et al. (1986). First we
shall illustrate the procedures suggested in a very simple case and indicate
certain difficulties that arise if they are used.

Suppose XL, . . . ,Xjv+M are i.i.d. N(μ, 1) and a test of the following hy-
potheses is required, HQ - μ < μo vs. Hi : μ > μo The standard test for
testing HQ VS. HI at level a is to reject Ho if

Λ/N + M(x - μ0) > zaj (2.1)

where a = 1 - Φ(za), and Φ( ) is the standard normal distribution function.
To conduct an interim analysis at N observations, it is suggested that

the probability of achieving the above event (2.1) be calculated. A syncretic
approach has been proposed and developed in the previously mentioned papers
which apply Bayesian predictive ideas towards the solution of this problem.
It is assumed that the prior for μ is constant to conform as closely as possible
to a frequentist analysis. After N observations are in hand, this results in a
posterior distribution for μ as N(XN, 1/N). NOW we compute the probability
of the rejection set in (2.1)

where xι + x2 + + XN = Nx^ and XN+I + + XN+M — M I M , noting
that now x^ is fixed but the as yet unobserved XM is random. The predictive
distribution of XM is easily obtained to be N(XN, 1/N + 1/M). Regrouping
terms in (2.2) and letting

Z = i-rr

(

we obtain

z>z-^
M - (M + N)(xN - μ0)

where Z is JV(0,1). Finally, this yields

-μo)]), (2.3)
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the probability that if the trial were continued for an additional M observa-
tions, Ho would be rejected at level α. Small values of Pa would discourage
while large values would encourage the continuation of the trial . It follows
from (2.3) that

lim Pa = 1 - Φ(-VN(xN - μ0)) = 1 - P, (2.4)

where
P = Fr[Z>y/N(xN-μQ)],

the P-value at N observations for testing Ho which is independent of a. The
limiting result of (2.4) turns out to be the posterior probability of the alter-
native as is indicated subsequently in (3.2).

This implies that if one continued the trial indefinitely, the predictive
probability of rejecting Ho approaches 1 - P irrespective of a. This is a
"Bayesian" interpretation of 1 — P that naive students and some investigators
often make with regard to significance tests. Further, teachers of frequentist
statistics often strive mightily to disabuse students of this flawed interpreta-
tion. The result does not have an acceptable frequentist interpretation and
furthermore, this is not the kind of test a Bayesian would apply. Hence one
needs to be rather careful in mixing metaphors.

3. The Bayes Approach, A Bayesian approach in this situation would
reject Ho, say, if the posterior probability, for a specified p, is

Pr [μ > μo\xu... ,XN+M] >P

assuming a prior π(μ) for μ. Hence, after N observations one would calculate
the predictive probability of the above event assuming X\ , . . . , x^ have been
observed and future observables XN+I > ? XN+M are random. In this exam-
ple if the previous prior for μ is used, then μ ~ N(XN+M? l / ( ^ + M)). Hence
JSO is rejected if

M(μ - XN+M) > VN + M(μ0 - XN+M)] > P

or
1 - Φ(VN + M(μ0 - XN+M)) > V,

where (N + M)XN+M = (#1 + V %N+M) NOW stopping at iV, we need to
find the predictive probability of the above event i.e.

NxN + MJCM

y

After some algebra, and denoting Φ " 1 ^ ) as the inverse distribution function,

M)i/2 ~ Φ ~ i ( i
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is the chance of rejecting HQ if the trial were continued.

Now if the trial were contemplated to be continued indefinitely,

Mm Pp = 1 - Φ((/io - XN)VN) = Pτ[μ>μo\xi,...,xN] (3-2)
M—» oo

which does not depend on p and is obviously the posterior probability given N

observations. This is perfectly sensible as the best prediction of what would

occur if one were to continue sampling indefinitely.

4. Normal Sampling with Mean and Variance Unknown. Let

Xi,i = 1,... , N + M be i.i.d. N(μ,σ2) and 7r(μ,σ2) oc 1/σ2. Hence it is well

known that
(μ - XN+M)VN + M

where tv is a student random variable with v — N + M — 1 degrees of freedom.

To test

Ho : μ < μo vs. μ > μo,

we will decide for HQ if the posterior probability

-^r μ S: /^o l ̂  i ^ — Pi

where
7V+M

and S'ι/( ) is the student distribution function with v degrees of freedom. After

observing χ(N^ = (xι, - ,XN) a n d some algebraic manipulation we find that

we need to calculate

1/2 — ̂ ^ V̂ >

(4.1)

for

N+M

i=N+l
N

N+M
s= {M-l)sM= Σ {Xi-X)\

i=N+l
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and S~1(p) is the inverse student distribution function or the quantile function,
where X and Y are the as yet unobserved random quantities. This requires
the calculation of the joint predictive distribution of X and Y. This can easily
be obtained, Geisser (1992), as

NM

However, the distribution of the function of X and Y within the paren-
theses on the left-hand-side of the greater than or equal sign in (4.1) is fairly
complex and is not readily susceptible to being tabled. Hence as a reasonable
approximation for Pp for sufficiently large JV, we shall approximate s2

N+M by
known s2

N so that

Then calculate

'(μ0 ~ XN+M)VN

= Pr

> s;\Pή
Ή + (χN-x)- M

This should serve as an adequate approximation for N > 25, until computing
algorithms of the distribution function involved in (4.1) can be easily managed.

5. Multivariate Normal Observables. Let X^i = 1,2,... ,n be
d-dimensional and i.i.d. JV(μ,Σ). Suppose for some d-dimensional region # Q ,
we are testing

H0:μeR$ vs. Hx : μ <£ R^

and we reject Ho if at n = N + M observations,

Pr[μ i R$\χW] > p, (5.1)

calculated from the posterior distribution of μ, where x^ = (#1, . . . , # n ) .
Assuming p ^ Σ " 1 ) oc |Σ |( d + 1 )/ 2 and (n - l)Sn = ΣΓ=i(^ " «n)(«< - *n)',
we obtain that the posterior distribution of

μ ~ S ( n - d, xn, Sn I ,
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i.e. a cί-variate student distribution whose density is denned as

f{x) oc (1 + (x - θyA-\x - 0))-***

so that X ~ S(a,θ,A), Geisser and Cornfield (1963). Stopping at N we need
to compute

where X(M) = (XN+I, • • • ,XN+M) is now random. Now it is clear

Pr [μ i Rά

0 I x<N\Xm] = U(X(M) \ xW),

say, is a scalar random variable so that we are required to find

Fτ[U>p) = Pp.

An important application is when RQ is a hyperrectangle or semi-infinite
hyperrectangle. Here simulation appears to be the simplest method of calcu-
lating Pp if the dimension d is not large.

Another particular application which may be of some interest is the "dis-
tance" between two populations or the "distance" of a population from some
specified d-dimensional vector, say μo Let 7 be the distance of the population
from μo so that

7 = (μ-μoyΣ-V-μo).

Interest can focus on whether this normed difference of μ from some μo is
less than some given distance. A similar situation can be defined for two
populations. Further suppose we are interested in testing HQ : 7 < 70 vs.
H\ : 7 > 70. Now for n = N+M observations and Σ known, 727 ~ X^(λ) where
λ = n(xn - μ o ) 'Σ- 1 (x n - μ0). Further vλ/T2 - χl for Σ " 1 - W(v,v-ιS~ι)
i.e. Wishart distributed, for

V = Π -

and

T2 = n(xn-μo)'S-1(zn-μo).

Now we can find the posterior density,

P(Ί\T2) = Jp(Ί\λ,T2)p(λ\T2)dλ

and it is possible to show that

j=o
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where fd+2j(n/y) is the density of a chi-squared random variable with d + 2j

degrees of freedom and

UN =

Geisser (1967).

Note that as n grows,

Ύ2\j e-
W4 \

Hence wy will tend to a non-central chi-squared variate with d degrees of

freedom and non-centrality parameter Γ 2 .

To reject Ho we require Ϋτ[nη > njo \ x^N+M^] > por 1 -F(nηo \T2) > p.

Now if we stop at N we need to calculate Pp = Pr[l - ^ ( ^ o l Γ 2 ) > p] for

n — N + M. Because we can show that 1 — F((N + M)7o|Γ 2) is increasing in

T2, we need to find the minimum T2, say t% , such that

and then

Pv = Pr(Γ 2 > * 2 ) .

To demonstrate the monotonicity property we note that

1 - F(y\T2) = Pr(n 7 > y) =
3=0

where Gd+2j is the distribution function corresponding to fd+2j(n/y) Define

Then it suffices to establish monotonicity in η. Now it is easy to show that

so that after some algebraic manipulation

d °°
- [ 1 - F(y\T2)} ex Σ Wj(Gd+2+2j(y) - Gd+2j(y))

η j=o

jττ^ (5 2)

i=o
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Now we will show that for any integer k

Gk+2(y) > Gk(y) (5.3)

which will imply that the first term in (5.2) is non-negative. Let

Gk+2(y) - Gk(y) = h(y) = J°° ( | - l) fk(x) dx.

Clearly h(y) > 0 if y > k. Furthermore,

dh(y)

dy >o

if and only if y < k. Thus h(y) is monotonically increasing for y < k and then
monotonically decreasing. Because h(0) = 0 it then follows that h(y) > 0 for
all 0 < y < k and (5.3) is established. Hence the first term in (5.2) is positive
for y > 0.

We now consider the second term in (5.2). Define g( ) to be a differen-
t iate increasing version of Gd+2j(y) so that g(c) is differentiate, increasing
and g(c) = Gd+2j(y) provided that c = j . Then the second term of (5.2) is
proportional to

M T )
 (5 4)

3=0 V Z )

A first order Taylor expansion about Γ2/2 yields

for j * G (j,Γ2/2). Expression (5.4) then becomes

But g'(j*) > 0 and

Hence the second term in (5.2) is also positive and the monotonicity
property is established.

6. An Approximation to the Predictive Distribution of Γ 2 . Now
Γ2 depends on the random variables XM and SM since

V NxN

N + M

μ o ) S»+"{ N + M
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where

( N + M - 1 ) S N + M = ( N - j ^ ^

The joint predictive density of XM = X and (M - 1)SM = Y is easily found
to be

. M-d-2 NM

N + M
(x - XN)(X -

for z — (N - l)5Άr However, the calculation of the exact density of T2 is even
less tractable from the above than in the univariate case i.e. d = 1, discussed
in Section 4.

Define
NxN + MXM

N + M '

so that
T2 = (N + M)(V - μo)'S^+M(V - μ0).

As in the univariate case we will approximate SN+M by 5JV thus eliminating
the random matrix SM a n ( i a l t e r T2 to

f2 = (N + M)(V - μo)fSΰ\V - μ0)

and derive the density of f 2 . Define Q = Ni™+M)SN,q = N - d. Then

V-xN~S(q,0,(N-l)Q).

Now given x^N> consider the random vector W(qfU)1'2, where W is iV(0,Q)

and independent of U which is χ2

N_d Let δ = xjγ - μ0. Then the vector

V - μo is distributed as W(qfU)1/2 + δ. Hence T2 is distributed as

1/2

Conditional on U,W + ( f ) 1 / 2 ^ ~ ̂ ( ( f )1/2^,<5) so that

i.e. non-central chi-square with d degrees of freedom and non-centrality pa-
rameter
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Thus conditional on U

^f2 = A ~ xliDuyu.

The predictive density of A is then

/•OO

Jo
T(2k+f) ( D x k

From (6.1) it is clear that ^4(1 + D)"1 = B has density

k=0

an infinite sum of beta variates, i.e.

(6.2)

with negative binomial weights, where

/k+l-l\ ( D \ k ( 1 ^ / 2

Wk= \ jf ) I i j n ) ( ΓT"

Hence ^

so that

/ iVί2 λ _ -

" P Γ \ > M(ΛΓ-d)(l + jD)J " P p

which can be numerically calculated to reasonable accuracy.

7. Monte Carlo comparisons of T 2 and T 2 and Pp and P p . We

have provided an approximation for the solution of this problem that can be

numerically calculated. The question now is how good this approximation

is with regard to the exact Pp. To have an idea, we consider a subset of

the Iris data of Fisher (1936). The full set consists of 4 variables yielding
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measurements on sepal and petal widths and lengths in centimeters on 150
plants, 50 each from 3 different species of irises, setosa, versicolor and virginica.
For the sake of illustration, we only consider two of the variables, sepal and
petal width on each plant, of species Iris versicolor. We first use petal width
and sepal width together as bivariate data and then separately as univariate
data to check the approximations of T2 to T 2 and Pp to Pp. The latter are
calculated using Monte Carlo simulations of 10,000 repetitions for sample sizes
N = 25,50 and future samples of size M = 25, for varying μ0 and 70 and p. In
each figure the graph in the upper left hand corner compares the distribution
function of Γ 2 with that of Γ2 while the other three compare Pp with Pp. The
graphs for the bivariate case are given in Figures 1 through 4, and for the
univariate case in Figures 5 through 8.

7o-.O5; Interim Posterior Probability - .97

0.0 0.1 0.2 0.3 0.4

y o - . 2 0 ; Interim Post rίor Probability » .77 7 0 - . 0 0 : Iπt rim Posterior Probability « .OS

0.2 OJ 0.4 0.S O.β 0.7 O.β 0.9 1.0 "3.00 0.03 0.10 0.13 0.20 0.23 0.30 0.33 0.40 0.45 0JO

Figure 1 SP-Width Data: N=M=25, μo=(2.7,1.4), Γ^=
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7 o " 2 0 : Interim Posterior Probability - .97
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P P

Figure 2 SP Data: N=50, M=25, μo=(2.7,1.4), T&=26.9
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Figure 3 SP-Width Data: N=M=25, μo=(2.6,1.4), Γ^=21.0
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Figure 4 SP Data: N=50, M=25, μo=(2.6,l 4), Γ^=62.9
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Figure 5 P-Width Data: N=25, M=25, μ o =(l 4), Γ^=



276 ANALYSIS FOR NORMALLY DISTRIBUTED OBSERVABLES
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Figure 6 P-Width Data: N=50, M=25, μo=(1.4), Γ£=7.0
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Figure 7 S-Width Data: N=25, M=25, μo=(2.6), Γ^=
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Figure 8 S-Width Data: N=50, M=25, μo=(2.6), Γ^=

The approximations appear to be quite good in all situations for which Tjy,
the interim value of T2, is small or moderate. This is true for all the univariate
cases considered and for the bivariate case illustrated in Figure 1 with N =
M = 25 and μ0 = (2.7,1.4). We note that

_ _
N ~

/1.326\ _ /0.
V2.770y N ~ V 0.

0985
0412

0.0412
0.0391

The cases illustrated in Figures 2-4 indicate that the error in approximation
can range up to 10%. For example, in the cases depicted by Figure 4, if 70
were set at 0.70 and p were set at 0.91, we obtain Pp = 0.83 while Pp = 0.89.
However, we note that in this case, if we consider the null sampling distribution
of Tjy (i.e. the usual Hotelling Γ2 distribution), it will exceed its observed
value of 62.9 with probability 8 X 10~14. The value 70 = 0.70 was chosen to
give an interim posterior probability of 0.95 and is probably larger than one
would choose in practice. Values of 70 smaller than 0.3 correspond to interim
posterior probabilities greater than 0.9994 and result in values of Pp and Pp

that are nearly 1 for all choices of p. For example, when 70 = 0.3, and p = 0.99,
we obtain Pp = .999 and Pp = 0.99. This is the worst case for p < 0.99.
In passing, we point out that the tail probabilities calculated from the null
sampling distribution for cases 1-8 are .004, 3 X 10~8,l.l X 10"5,8 X 10""14,
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0.19, 0.02, 0.01 and 0.00035, respectively, indicating that the approximation
works well when Ύjy is within a reasonable distance of μ0 while it fails to be
precise when it is not.

The reason that the approximation fails to be precise when Tjy- is large
is due to the fact that the distribution of Γ 2 has a noticeably fatter left tail
than that of T2 in this instance, as can be seen in the figures. The right hand
tail can also be fatter as indicated in Figure 4. We point out that the mean of
T 2 and that of T2 were consistently very close to one another across all cases
considered. In any event, suppose the value tl corresponding to p, namely
such that

corresponded to the first percentile of T 2, say Γo

2oi Then if the left tail is
fatter for Γ2 than it is for T2, we must have

Pp = 0.99 > Pp.

Similarly if, for given p, t\ corresponds to TQ 9 9 , we must have

Pp = 0.01 < Pp.

This is illustrated in Figures 2-4. Further study is necessary to see if the
distribution of T2 can be adjusted appropriately so that it better mimics the
tails of the distribution of T2 when Tfa is large. However, our simulations
suggest that when the given value of Tjy is such that the chance of it being
exceeded is not miniscule using the null sampling distribution, the suggested
approximation is quite adequate.

8. Remarks. As noted before, this work can be adapted to the two
population problem. However, the case of k populations presents further com-
plications and will be the scope of further work including interim analysis in
multivariate normal classification problems.
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