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In this paper we combine the so-called LBG algorithm in vector quantiza-

tion and the number-theoretic methods to propose a new algorithm, NTLBG, of

generating vector quantizer with low mean square error for many classes of mul-

tivariate distributions including one of the elliptically contoured distributions.

Some numerical examples show that the present method is effective.

1. Introduction. The number-theoretic (or quasi Monte Carlo) method
has been applied in many branches of statistics: numerical evaluation of prob-
abilities and moments of multivariate distributions, optimization, regression
analysis (nonlinear and robust regression, and regression with constraints),
estimation and testing hypothesis, experimental design and geometric proba-
bility, see Wang and Fang (1981,1990a,1990b, 1991), Shaw (1988), Fang, Yuan
and Bentler (1992), Fang and Wang (1991), Fang, Zhu, and Bentler (1993)).
Fang and Wang (1993) and Fang, Wang and Bentler (1994) gave a compre-
hensive review in a bibliographic setting. These works show that the number-
theoretic method (NTM) is useful and powerful in many statistical problems.
In this paper, we will apply the NTM to quantization and give a unified ap-
proach to generating a quantizer of an elliptically contoured distribution with
low mean square error.

Let X be a random variable with p.d.f. p(x) and σ2 = Var(X). For a
given integer n we want to find —oo < x\ < x<ι < < xn < oo such that the
mean square error (MSE)
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CO

MSE(a:i, ,a:n) = -=• / min (x - Xifp(x)dx (1.1)
G J l<i<n

is minimum over TRn = {(#i, ,xn) : xι < x2 < - < xn}- The corre-

sponding {xi} are called rep-points (representative points) of X that can be

definded in another way: For any (#i, ,# n ) E TRnj its quantizer Qn(.) is

definded as the step function:

Qn(%) = %k>> if αjb < a: < αjb+i,fc = 1, ,n (1.2)

where

d\ = -oo, α n + 1 =00, ak = (0:̂ -1 + #/c)/2, fc = 2, , n.

Then the MSE of {x }̂ or Qn(^) defined in (1.2) can be expressed as

= MSE(*i,- - ,a n ) = \Έ(X-Qn(X))2. (1.3)

The optimum quantizer Q^(x) minimizes MSE(xi, ,a?n) over TRn. The

corresponding solution is just the rep-points of X. The problem for finding a

set of rep-points has been raised in many fields, such as information theory,

cluster analysis, correlation analysis, signal processing, theory of quantiza-

tion, and dress standardization (Cox (1957), Bofinger (1970), and Fang and

He (1984)). Max (1960), Lloyd (1982), Fang and He (1984), and Cambanis

and Gerr (1983) have proposed using numerical methods for finding rep-points

of a given distribution. With the sequential number-theoretic method for op-

timization (SNTO) suggested by Wang and Fang (1990b) we can find approxi-

mate rep-points for any continuous distribution with finite variance (Fang and

Wang (1991)).

In this paper we shall concentrate our study on quantizers of a multivari-

ate distribution. Let x = (X l 5 ,XS)' be an θ-dimensional random vector

with joint density p{x\, , xs). An n-level quantizer Q = {3̂ , S} of x consists

of

(1) a set of output vectors y = {τ/i, ,2/n};

(2) a partition S = (5Ί, ,Sn) of the space Rs with n disjoint and

exhaustive regions;

(3) a mapping Q : Rs -> S defined by Q(x) = 2/;, if x G £;.

When s > 1 people often call the quantizer a block quantizer, vector quantizer,

or s-dimensional quantizer. The optimal n-level quantizer minimizes

MSE(Q) =-E\\x-Q(x)\l (1.4)
s
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the mean square error, over all n-level quantizers and the corresponding {yi}

are called rep-points of x.

It is easy to find the following necessary conditions for an optimal quan-

tizer:

alignment 1) associated with each quantizer output yι, there is a partition

cell S%, i = 1, , n, satisfying

alignment 2) for each patition cell Si, theyi should equal the conditional mean

y i = E[x\xeSi]. (1.6)

When s > 1 it is difficult to find the optimum quantizer as well as the rep-

points for any multivariate distribution. A theoretical basis for asymptotically

optimum vector quantization has been provided by Zador (1982), and Gersho

(1979,1982). Zador found for the asymptotic case of high quality quantization

that

MSE(Q) = A(s,2)n-ys\\p(x)\\s/{s+r) (1.7)

where

is the /ί-norm and A(s,2) is independent of the density p(x). When n is not

large, Linde, Buzo and Gray (1980) suggested an iterative vector quantizer

algorithm LBG based on a training sequence. This approach has been used to

calculate low bit-rate quantizers for multivariate normal, multivariate Laplace,

multivariate gamma and multivariate uniform distributions (see, for example,

Abut, Gray, and Rebolledo (1982), Gray and Linde (1982), and Gray (1984)).

The necessary conditions (1.5) and (1.6) provide the basis of the LBG

algorithm, the details of which are given in Linde et. al. (1980). The outline

of the algorithm can be stated as follows:

1) Set t = 0. Give an initial set of output vectors yt = {j/n> ->ytn}

and find the associated partion St = (Sn, , Stn) by (1.5).

2) Generating a training sequence a;i, ,XN-> by the Monte Carlo

method, representing the distribution of random vector x.

3) Each Xi is assigned to the nearest sell of the partion St*

4) Calculate the sample mean, yt+i,j say, of Xi which falling in the cell

StjJ = 1, ,n. Let Jt+i = {2/t+i,i, ,3/ί+i,n}- If Vt+i = yt, then output

yt as the final output vector, otherwise go to next step.

5) Let t — t + 1 and go to step 3).

This process provides a nonincreasing MSE, and the algorithm eventually

converges to a locally optimal solution y = {3/1, ,2/n}
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The LBG algorithm is essentially based on the k-means method of cluster
analysis. It is interesting to note that there are so many authors (for example,
MacQueen (1967), PoUard (1981, 1982), Gray and Karnin (1982), and Zhang
and Fang (1982)) who have given different proofs for convergence of the k-
means algorithm.

The LBG algorithm has the overwhelming advantage of being a general
algorithm that can generate a vector quantizer. But there are some problems
with the approach:

1) The resulting output vectors are only locally optimum and depend on
the initial set of output vectors. There is no unified way to offer a good initial
set of output vectors so far.

2) The training sequence and numerical evaluation of MSE has been based
on the Monte Carlo method. The convergence rate of Monte Carlo method is
(^(n"1/2) in probability and is slow.

There are a number of authors who have proposed many kinds of the
initial output vectors. Wilson (1980), Fisher and Dicharry (1984), Fisher
(1989) gave geometric designs. An alternative approach is the lattice quantizer
by Conway and Sloane (1983), Gersho (1979) and Sayood et. al. (1984), in
which they considered only the uniform distribution. Fisher (1986) proposed
a source coding approach based on Shannon's entropy theory (1948). This
approach is effective only for very high dimensional quantizers. Already there
is work done in this direction; for example, Fisher (1986), Gersho et. al. (1983),
Sabin and Gray (1984) and Tseng and Fisher (1987). However, one wishes to
find a unified way to offer initial output vector which can produce a vector
quantizer with low MSE value by the LBG algorithm for various multivariate
distributions. In this paper you will see that the use of NTM can meet this
requirement well.

The essence of NTM is to find a set of points that is uniformly scattered
over an s-dimensional unit cube [0, ϊ\s (it is called a set of quasirandom num-
bers or an NT-net on [0,l]s) and sometimes this set can be used instead of
random numbers in the Monte Carlo method with better results. Therefore
the NTM is also known as the quasi or deterministic version of the Monte
Carlo method. The application of NTM is a new, but rapidly expanding,
branch of statistics. In this paper the NTM is applied to give a new algo-
rithm, NTLBG, for generating low MSE quantizer and the associated feasible
rep-points of elliptically contoured distributions (ECD) including multivariate
normal, multivariate t-, multivariate uniform distributions and related distri-
butions. The algorithm modifies the LBG method in the following aspect:£Λe
initial set of output vectors as well as the training sequence are generated by
the NTM. Our numerical results show that the present method can be used
to obtain low MSE quantizers for ECD and various classes of distributions.

The paper is organized as follows. Section 2 develops a unified approach
to generating quasirandom F-sequences for many classes of multivariate dis-
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tributions including one of ECD. A new algorithm NTLBG of generating vec-

tor quantizer is given in Section 3. Some numerical results for multivariate

normal, symmetric multivariate Pearson Type VII and multivariate uniform

distributions are given in Section 4.

2. Quasirandom F-numbers. The number-theoretic methods are

based on the so-called quasirandom F-numbers which will be defined below.

First we need the concept of F-discrepancy proposed by Wang and Fang

(1990a).

DEFINITION 1. Let V - {xk,k = 1, ,n} be a set of points in Rs and

Fn(x) be its empirical distribution, i.e.,

Fn(x) = ±
n

where I{A} is the indicator function of A, and all inequalities are understood

with respect to the componentwise order of Rs. Then

DF(n,V) = sup \Fn(x) - F(x)\ (2.1)

is said to be the F-discrepancy of V with respect to F{x).

When F(x) is the uniform distribution U(CS) the F-discrepancy reduces

to common discrepancy in the sense of Weyl (1916). In fact, the F-discrepancy

is just the Kolmogorov-Smirnov distance in goodness-of-fit tests.

DEFINITION 2. A set of points V* = {p*k, k = 1, ,n} in Rs is called

the F-optimum set of points with respect to F(x) if

DF(V*n) = inΐDF(V). (2.2)

where Vn = {Pk : Pk G Rs,k = 1, . ,n}.

The following facts show that there always exists the F-optimum set of

points for each univariate continuous distribution.

1) The set Qn = {(2i — l)/(2n), i — 1, , n} is the optimum set of points

with respect to the uniform distribution ί/([0,l]) and with discrepancy l/2n.

2) Let F(x) be a continuous distribution function and let F~x (x) be its

inverse function. Then the set Qζ = {F~1((2i - l)/(2n)), i = 1, , n} is the

F-optimum set of points with respect to F(x) and with F-discrepancy l/2n.

So far it is difficult to find the F-optimal set of points for multivariate

distributions. So we have to be content with the second best.



242 APPLICATIONS OF NTM IN VECTOR QUANTIZER

DEFINITION 3. Let Vn be a sequence of sets of points under a cer-

tain structure in Rs and F(x) be an s-dimensional distribution function. If

DFCPΠ) = 0(n~x(logn)5) as n —• oo, the points of Vn are called quasirandom

F-numbers, and the Vn is called quasirandom F-numbers sequence.

When F(x) is the uniform distribution ?7(CS), where Cs = [0, l ] s is a

unit cube, the quasirandom F-numbers reduce to the common quasirandom

numbers. There are many methods, such as the good lattice point (glp )

method, the good point (gp ) method, the Halton method and (£, s)-sequence,

that can be used to produce quasirandom number sequences in Cs (cf. Hua

and Wang (1981), Niederreiter (1992)).

There is no universally applicable method for generating quasirandom F-

numbers. fortunately. The following method can be applied to most useful

multivariate distributions.

Let F(x) be a continuous distribution in Rs and a; be a random vector

such as x ~ F(x). Suppose that x has a stochastic representation

x = h(y), (2.3)

where y ~ U(Cf),t < s and ft. is a continuous function on C*. Let {c ,̂fc =

1, ,n} be a set of quasirandom numbers on C* and let Xk = h(ck)^k =

1, ,ft. Then {xjς} is a set of quasirandom F-numbers. Wang and Fang

(1990a) pointed out that the above method has good properties. In partic-

ular, the method can be applied to generating quasirandom F-numbers of

elliptically contoured and multivariate Liouville distributions(cf. Fang, Kotz

and Ng (1990)).

An s-dimensional random vector x is said to have a spherically symmetric

distribution if x and Px have the same distribution for every orthogonal

matrix P. It is known that x has the stochastic representation (SR)

x = Rula\ (2.4)

where random variable R > 0 is independent of u^ which is uniformly dis-

tributed on the unit sphere, Us say. Wang and Fang (1990a) proposed an

algorithm for generating quasirandom F-numbers of the uniform distribution

on Us by the use of a spherical coordinate transformation. Another more effi-

cient algorithm (the so-called TFWW algorithm) is due to Tashiro (1977) and

Fang, Wang and Wong (1992). For details of the TFWW algorithm see Fang

and Wang (1993).

Combining the TFWW algorithm and (2.4) we obtain the so-called NTSR

algorithm:

Step 1. Generate a set of quasirandom numbers {c^ = (C^L, , c^s), k =

l, ,n}.
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Step 2. Denote the cdf of R by FR(T) and let FR~Ύ be its inverse function.

Compute rk = F R " 1 ^ ) , & = 1, ,n.

Step 3. Generate a set of quasirandom F-numbers {t/̂ , k = 1, , n} of

the uniform distribution on ί7s with the first (s-l)-components of c'ks.

Step 4. Then {xk = r^Vk^k = 1, , n} is a set of quasirandom F-

numbers of the given spherical distribution F(x).

With this algorithm we can generate quasirandom F-number sequence for

every continuous spherical distribution (in this case R defined in (2.4) is a con-

tinuous distribution). Obviously, the NTSR algorithm can be similarly applied

to many kinds of distributions such as the multivariate lχ -norm symmetric and

multivaraite Liouville distributions.

An s-dimensional random vector x is said to have an elliptically contour

distribution with parameters μ(s x 1) and Έ(s X s) if

x = μ + A'y, (2.5)

where y has a spherically symmetric distribution and Af A = Έ. Obviously,

we can generate quasirandom F-numbers for every continuous elliptically con-

toured distribution.

3. An Algorithm For Vector Quantizers. Based on the LBG

algorithm and the NTM we would propose an algorithm NTLBG for vector

quantizers of a multivariate distribution F(x) with a stochastic representation

(2.3). The NTLBG algorithm involves the following steps:

Step 1. For given F(x) generate a set of quasirandom F-numbers a?i, ,

XN as a training sequence by the NTM mentioned in section 2. The number

N is often large.

Step 2. Set t = 0. For given n generate a set of quasirandom F-numbers

2/u? * iVtn of F(x) as an initial set of output vectors yt = {yti, - - - ,3/tn}

Step 3. Form a partition {Si} of {xk,k = 1, , JV} such that each X{

is assigned to the nearest cell of a partition, i.e. X{ G Sj if \\x{ - ytj\\ <

\\χi-ytk\\,kφj(cΐ.(1.5)).

Step 4. Calculate the sample conditional means (1.6) and from a new set

of output vector vectors yt+ι = {yt+i,i, " ;2/ί+i,n}, where

vt+ι,j =

and nt+ij is the number of xk falling in Sj.

Step 5. If 3̂ t+i = yt terminate the algorithm and deliver the final output

yt. Otherwise let t = t -f 1 and return to step 3.

We now give some explanations for the above steps.
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Step 2): People often use the F-discrepancy for measuring uniformity of

quasirandom F-numbers, but use the MSE (or other error distortion measure)

for output vectors of a quantizer. These two measures are different, but there

are some relationships between them. For example, take a sequence of sets of

Vn of points in Cs with discrepancy D{Vn) = C^rc"1 log5 n). Then we have

max min \\x - xk\\ < C^ra"1/5 log rc), (3.1)

where ||cc — Xk\\ is the Z2-norm (cf. Wang and Fang (1990a)) and

MSE = - / min \\x - x J l 2 dx < Oin'2!8 log2 n) (3.2)

S JQS l<k<n

which is close to the order O(n~2/S) in (1.7) as ||p(a5)ll = l The results in

the next section show that the initial points chosen by this way can obtain

a vector quantizer with low MSE in most cases. Thus, we provide a unified

way to choose an initial output for every multivariate distribution which has

a stochastic representation (2.3).

Step 1): A training sequence generated by NTM has a better repre-

sentation than one generated by Monte Carlo methods. Furthermore, the

symmetrized technique (or the antithetic variates technique in Monte Carlo

methods) is widely used in numerical integration and is more efficient (cf.

Zaremba(1972)). For example, if {ck = (cfci,^)} is a set of points with low

discrepancy, its symmetrization set is given by

which has AN points, and the corresponding quasirandom F-numbers follow.

Our results (not put into this work) show that this kind of training sequence

can save much computing time and make higher precision of MSE.

4. Quantizer of Elliptically Contoured Distributions. In this
section we apply the algorithm proposed in the previous section to obtain low

MSE quantizers for some elliptical distributions and give comparisons among

our results and other results. Throughout this section we always employ the

glp method to generate sets of quasirandom numbers. For given n and s

choose an integer vector h = (hi, , hs) satisfying 1 < hi < n, hi φ hj for

i φ j . Calculate

cki = {(2fcΛi-l)/2n},fc = l, - ,n;t =

where {x} denotes the fraction part of x. The choice of h can be found in

the Appendix of Hua and Wang (1981) or Fang and Wang (1993). Then

cjς = (cfci, , Cfcs), k = 1, , n is a glp set of quasirandom numbers.
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EXAMPLE 1. The Multivariate Normal Distribution.

Without loss of generality we consider the standard normal 7V5(0, Is) only.

Let x ~ Na(O,I8) withthecdfΦ(α:i, ,xs). It is known that Φ(arl5 ,xs) =

Φ(a?i) Φ(xs) where Φ(x) is the cdf of iV(0,1). Let {ck = (ckl, - . ,c*β),Jfe =

1, ,n} b e a set of quasirandom numbers by the glp method. Then {xk =

(xkι, ,Xks)yk = 1, ,7i}, where xkj = Φ~ 1 (c^ ), is a set of quasirandom

F-numbers for N8(Q,I8). By this way we can generate a training sequence

asi ? ' ? ̂ iv as well as an initial set of output vector. For illustration we con-

sider only the binormal with N — 70844 and s = 3 ~ 32. By the use of

NTLBG algorithm the corresponding quantizers are showing in Figue 1 in the

Appendix of the paper. The MSE values are plotted (with "x") in Figure 1

and listed in Table 1. We can see that our results are better than Wilson's

(1980) and Fisher and Dicharry's(1984), the latter gave quantizers only for

n = 8,16,32 by their special geometric design.

Table 1
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Figure 1 MSE values of quantizers of normal distribution
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Since the normal distribution JVS(O,IS) is a spherical distribution with
χs in (2.4), where χs is the Chi-distribution with s degrees of freedom, we
might use the NTSR algorithm mentioned in Section 2 to generate u^s^ in
(2.4) by the TFWW algorithm and the inverse transform method to generate
χs. Consequently, we can find a set of quasirandom F-numbers for NS(O,IS).
When s = 2, the output vectors by this method are very close to that of
the first method except for an orthogonal transformation. For example, for
n = 8,16,32, the MSE values are 0.200268, 0.106794 and 0.056556 respectively,
which are at the same level as in Table 1.

REMARK: Wang and Fang (1981) proposed a method to obtain a set
of quasirandom numbers for even n with lower discrepancy by deleting the
last point of a glp set of size n + 1 of quasirandom numbers and rescaling
these numbers. Their method provides another way to design the initial set of
output vectors. For example, when n = 6, by this way the output vectors with
MSE = 0.2522955 is plotted by Ό' in Figure 1, which is better than that with
MSE = 0.2711950 in Figure 1. Their output vectors are plotted in Figure 2(b)
and the output vectors obtained before are plotted in Figure 2(a). Similarly we
can obtain a set of output vectors in the case of n = 32 with MSE = 0.056895
which gives a slightly improved results than MSE = 0.0569415 in Table 1.

Figure 2

EXAMPLE 2. Some Spherical Distributions.
Let x have a symmetric multivariate Pearson Type VII distribution (cf.

Fang, Kotz and Ng (1990), 81-82). The density function of the associated R
(cf. (2.4)) is given by

B(s/2,N-s/2)
-s/2 5-I 2 / -N



K.T. FANG, K.H. YUAN, and P.M. BENTLER 247

It is easy to generate quasirandom F-numbers of x by the NTSR algorithm
mentioned in section 2. When m = 4,7V = 15, and s = 2 the NTLBG
produces sets of theoutput vectors for n = 8,16,32 with respective MSE values
0.032294,0.017586,0.009286.

When x is uniformly distributed in the unit ball, x has a spherical distri-
bution. The corresponding density function of R in (2.4) is srs~λ, 0 < r < 1,
(cf. Fang, Kotz and Ng (1990),74-75). Its quasirandom uniform-numbers can
be generated similarly. The output vectors in the case of n = 8,16,32 have
MSE values 0.032936,0.016591,0.008116, respectively.

The above two examples indicate that the new algorithm is effective to
generate sets of output vectors for all continuously spherical and elliptical
distributions as well as for many classes of multivariate distributions, such as
multivariate Liouville distributions.

We also applied the NTLBG to the Laplacian and memoryless gamma
distributions and found that most of our results are better than Fisher and
Dicharry's (1984).
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