
Mυltiυaήatt Analysis and Its Applications

IMS Lecture Notes - Monograph Series (1994) Volume 24

ASYMPTOTICAL OPTIMALITY OF ADAPTIVE

NEAREST NEIGHBOUR DISCRIMINATION*
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Anhui University, China and Concordia University, Canada

This paper has discovered that the commonly used k — NN discrimination is not

Bayesian risk consistent. A new adaptive discrimination procedure has been proposed.

It has been proved that such procedure is Bayesian risk consistent, i.e. it has asymp-

totical optimality. Finally, an open problem is posed.

1. Introduction, Procedure and Result. Suppose that (X,θ) is an
Rd X R1 -valued random variable, but θ assumes only a finite number of values

which, without loss of generality, can be denoted by 1,2, , M. The intuitive

background is that if an individual assumes j as its θ-value, then we say that

this individual belongs to class j. The problem is to determine the class j to

which the individual is likely to belong, with the aid of its X value x and a

series of i.i.d. observations Zn = ((X;,^), i = 1,2, ••• , n) to be called the

training sample.

Assume for the moment that the distribution of (X, θ) is known. Then the

conditional (priori) probabilities

j\X = x), j = l, - , M . (1)

can be calculated. Denote by θ*(x) the integer j * such that

P i.(a:) = max{P i(a;): j = l,- - , M } . (2)

Then as known well, θ* attains the minimum error probability among all
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possible procedures, i.e.

R* =P(Θ\X) φ θ) (3)

= mΐ{P(δ{X)φθ): all δ}. (4)

The procedure θ* is called the Bayesian discrimination of the problem, its
error probability R* is called Bayesian risk.

Since the distribution of (X, θ) is rarely known, a reasonable discrimination
procedure must be based on the training sample Zn . An intuitively attractive
procedure, to be called the K - NN (if-Nearest Neighbour) discrimination,
is defined as follows. Choose a distance />( , ) on iZd, take a fixed integer
k (1 < k < n). For given #, reorder -XΊ, ,Xn according to the increasing
order of p(x, X;), i = 1, , n:

where, if p(x,Xi) is the j-th smallest among {/)(#,Xt), t = 1, ,n}, write
(X;, θi) = {Xnj, θnj), and call Xnj as j-th nearest neighbour point of x among
Xut = 1, ,n. Think of 0ni, ,βn j b as A; "ballots" for 1, ,M. The
"person" who receives the highest number of ballots is the choice (if more than
one "person" receive the same highest number of ballots the choice may be
decided randomly). This procedure, called k - NN discrimination, is denoted
by θn in the sequel, k is the order number of the discrimination.

K — NN discrimination was first advanced by Fix and Hodges (1951), and
has attracted much attention since the late sixties. Caver and Hart (1967),
Wagner (1971), Fritz (1975), Devroye (1981), Chen, X.R. (1984), Bai, Z.D.
(1985) and chen, G.J. and Kong, F.C. (1986) have studied the asymptotic
behaviour of this procedure. The basic results are

n — • o o
lim i?W = J R W , (5)

n — • o o

a.s., (6)

where Rn ' is error probability of the K — NN discrimination θn '•

R^ = P(θik\X)φθ); (7)

and Ln is the empirical frequency of K - NN discrimination:

(8)

in which θ^ is k - NN discrimination of θj based on Xi as present sample,
and (Xi,θi), i φ j , i = 1, ,n, as training sample; and RW is a positive
number depending on k and discrimination of (X,0).
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We shall prove that (see Lemma 6 below) : R* < R(k^ for every k fixed.

It could be seen that k - NN discrimination is not Bayesian risk consistent,

that is, it does not have asymptotical optimality. In order to improve this

procedure, we consider an adaptive method. It is resenable and natural to

take

as a basic cross-validatory criterion function to determine the order number of

discrimination based on training sample Zn. Define an adaptive order number

as follows:

*?* = k\Zn) = max \k : W ^ - min (W^ : 1 < i < C n ) } , (10)

C n = (logπ)σ°, 0 < σ o < l fixed. (11)

For such order number &*, we could operate k* — NN procedure as above.
( k* }

About adaptive k* - NN discrimination θκ

n , we have obtained some results

as following.

THEOREM. Under notations above, suppose that (i) X has a positive

continuous density f(x), for every sequence εn j 0 there is a corresponding

sequence bn | oo such that

p ( | | X | | > 6 n ) <εn and f(x)>εr

n as \\x\\<bn (12)

for some r > 0;

(ii) For j = 1, , M , the conditional probabilities Pj(x) satisfy Lipschitz

condition:

Pj(x) - Pj(xf) < Dp(x,xf), x, x1 e Rd; (13)

(iii) There are z'o, jo(l < ^o5 io < M) such that

P(0 < Pio(X) < Pjo(X)) > 0. (14)

Then one has

φθ) = R*, (15)

Um Z4**) = R* a.s. (16)
n—»-oo

This theorem tells us that the adaptive K* - NN discrimination is Bayesian

risk consistent in both error sense.
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2. Proof of the Theorem. The proof of the theorem consists of six
lemmas. Let fi, ,£& be random variables such that 0,£i, ,£* are i.i.d.
under X — x given. Denote by θ^ the discrimination value of θ by "majority
of votes" using fi, ,f*. Write

R(k) =

k—> oo

M

LEMMA 1. One has

lim Λ<*> = R*. (18)

PROOF. From (2), (3)

= 0) = 1 - EPj*(X) (19)

and from

Write M j

lim 1
k-+oo

(17)

>{V3b[(j»

M

w = l

M

1 -ί"(ίt — ^)? W =

^>-4 f c ) )A-

t) =

θw

i,

- ( p

• M. One has

u | X ) } •

*} = Φ

(20)

(*)

by central limit theorem, where σ2 = Pu(x) + Pj*(x) - {Pu(x) + Pj (x))2.
Then, if Pj.(χ) > Pu(x),

0 < P(P = u \ x) < P(Nikϊ > N^ \ x) ^ 0 as ^ o o

by the definition of θ^. From (19) and (20),

l i m P(θ^k) =j*\x) = 1,
k—> o o '

= u I X)} = iΓ.
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LEMMA 2. Under the assumptions (i) and (ii), one has

lim Rik) = R(k) (21)

uniformly for k < (logn)σ°.

PROOF.

M

u=l

M

u=l

From this and (20)

M

(nk) = «, * = U I X,Xn ,Xn)}

E{P(θn] = U I X'XnU ,Xnk)P{θ = tt | X)}.

= u . (22)

By the definition of <?„ , one has

P(θW=u\x,XnU -,Xnk)

K M-\

= Σ * Π Pu(Xnm)A™ Π Pu(Xum)Ami<, (23)
m = l

where Σ * - Σ ( 1 ) ^ Σ ( 2 ) Σ ( 3 ) Σ ( 4 ) Σ ( 5 ) ,

/-ι\ Λ /r»\ Ϊ. / . .

Σ •

Σ < 3 ) =
- I ) e B,

in which

A u = { ( ύ , , « M - I ) : aU permutations of (1, ,u — l,u + 1, , M ) } ,

B =B(iu-" ,iM-\)
M
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kit < s, t = v,v + l, ,M ~1>,

G = C ( Λ U , fcj1? i">iM-\)

= UAmu,Amii : ro = l, ••-,*, t = 1, , M - 1) : Δ = 0, or 1,

M

n = l

One could also get

M-\

= u I x) = (24)
m = l

Then we obtain

= u
M

- u

m=l i = l
(2 5)

Using the assumptions (i) and (ii), one could prove that

p(\Pi(Xnm) - Pi(x)\ > ε/N ! * ) < ( * + l)n f c exp(-c/(x)εV- σ ),

P{\P(W =u\x, Xnl,-- ,Xnk) - P(θW = u I x)\ > ε \ x)

< N(k + ΐ)nk exp (-c/(x)εV-σ). (26)

where jV = Mck, C, 0 < σ < 1 stand for positive constant independent of
n, k < (log n)σ°.

Take G > 0 large enough such that P(| |X| | > G) < ε. Define 6 = inf ί/(x) :

\\x\\ < &} > 0. Then for ||x|| < G

W = u I x,Xnu '-,Xnk) - P(0(fc) = « )> ε I z

when n large enough, fc < (log n)σ°. T h e n

= u I X , X n l , . , X n f c ) - P(^( f c ) =u\X)

0W = u I X,Xnl, ,Xnk)-P(θ^ = u I X)\l(\\X\\ < G)}

E{p(\P(θW=u\X,Xnl,...,Xnk)

< G)}= tt

<2ε + cexp (-Cn x ~ σ ) < 3ε



GUI-JING CHEN and Y. H. WANG 155

as n large enough for k < (log n)σ°. From this and (22), Lemma 2 is proved.

LEMMA 3. Under the assumptions (i) and (ii), for any bound measurable

function μ(a ), x G Rd, one has

(27)

i = 1, , &, k < (log n)σ°, n large enough. Where Xjni is i-th nearest neigh-

bour point of Xj, among Xt : t φ j , t = 1, , n\ εn satisfies

εn i 0, εnN
r -• oo as n -> oo for any r > 0; (28)

and c,b,σ e (0,1) are independent ofn.

PROOF. At first suppose that μ(x) — IA{X)-> where A is a rectangle in

Rd. Denote the boundary of A by #A, and denote the probability distribution

or measure of X by F. Because F{dA) = 0, so we could choose rectangles

AiniA2n such that

Aln C AC A2n,

0 < p(dAln, dA2n) = Pn~>0 as n -> oo, (29)

F(A 2 n ΠΛf n ) = ίn (30)

in which p(dA\n,dA2n) is distance between dA\n and 9A2n Choose δn such

that

εn/8 < δn < εn/4. (31)

By the condition (12), there are rectangles A$n such that A2n C A$n and

) < ε«/4, /„ = inf {/(*), x e A3 n} > εr

n. (32)

Then the set Aιn\J(A2nC\Azn) could be divided into N\ rectangles Bχ, • • , 5 ^

such that Bi Γ\Bj = φ,i φ j, and Nι < Cp~d,

d(Bi)<Pn/2, F(Bi) > cfnP

d

n, i = l,.-.,Nlt (33)

here d(Bi) is diameter of B{. Then

Pn = mί{F(Bi), i = l,- ,Ni}> cε^ (r ' = r + <i) (34)
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by (31), (32). Denote

S2 = I Σ^ΠXj € (Ac
ln (Ί Λ 2 n ) U Ac

Zn) < n ε n \ .

From (30), (31) and (32), one has

F{Ac

lnf)A2n{jAc

3n}<εj2.

Using Bennett inequality (Bennett, G. (1962)) and condition (28)

P(Sξ) < 2exp(-2nε2

n) < cexp(-6n1"σ). (35)

Because k < (log n)σ°, Nι < Cε~d, (28) and (34), one has

- t n 1 - ) . (36)
i=l j=0

By the definition of S\, for j = 1, , n; i = 1, , fc, one has

n {x^ G A } = ^ {xjni e A},

n {xά e A3n n A^n} =* {x.

Therefore when the event 5Ί happens, then

|^(Xi) - lA(Xjni)\ < i{Xj e (A2n n A{n) u

Then one has

by (35) and (36). Then (27) holds when μ(x) = IA(X) Using commonly used

measure theory method, it could be shown further that (27) is still true for a

general bound measurable function μ{x). Lemma 3 is proved.
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LEMMA 4. Suppose that Xjnir >Xjnk are the first k nearest neighbour

points of Xj, among Xt : t φ j , / = 1, , n. Tien with probability one,

we could divide the set class J^ = {(j\jni, dnk) '• J' = 1> ' ?n} m^°

q (independent of n) subclasses Jj , , Jg such that for each j \ n \ when

j φj and (j,jnu --,jnk) e 4n\ (j',j'nl,- ,j'nk) e 4n)

,in*} n {i'>iήi» »iή*} = 0 (37)

(See the Lemma 2 of [9].)

LEMMA 5. Under the assumptions (i) and (ii), one has

- 6 n 1 " σ ) (38)

for k < (log n)σ°, n large enough. WhereL^, B.W are defined by (8) and (17);

{εn} satisfies the condition (28); 0 < c , 6, 0 < σ < l are independent oΐn.

PROOF. Let &,i = 1, , k,θW be defined as in the Lemma 1. Then by

(8) and (17),

where

where

in which

Let

M

u=l

< ^i^ί^'i=«)-*:(u)

(ti) _ T (ti) I ,

nk2\

i = i

4-

+
(39)

(40)

fJ =u\XjnU... ,Xjnk),

(41)
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Where θjnt is matched with Xjnt, which is *-th nearest neighbour point of Xj,
among Xs\ sφ j , s = 1, , n. Because

P(θjnt ~ i I = Pi(Xjnt)i

then

k

= Σ* Π ^(
M - l

m = l t = l

where summation X)* is defined as (23). So
(42)

k Mk M

771 = 1 i = l

Let N be defined as Lemma, ε'n = εn/N. For & < (log n)σ°,
(28). Using Lemma 3, one has

(43)

=:' } still satisfies

k M 1 n

From (24), one has

m=l i = l j

-6n 1 - σ ) <cexp(-6n 1 " σ ) .

M-l

Π p « ( ^ ) Λ m u Π
m = l ί = l

(44)

(45)

From this and (41), μ(x) = P(0W = u \ x)P(θ = u \ x), which is independent
of n, and

=u,θ = u) = E{P(θM =u,θ = u\X)}

= u I X)P{Θ = u\X)} = Eμ(X).

From (39),

using Bennett inequality (Bennett, G. (1962)),

(46)
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Now consider the term Δ ^ \ . By Lemma 4, one could divide the set class

Jin) = {(jjnw ' Jnk) : j = 1, ,n] into q subclasses j[n), t = 1, ,q
such that (37). Denote

I \(ί Ί i - . . Ί iΛ — T(ΘK ' —11 θ — Ίlλ - P\n>k'U)
U W ? J n l i -iJnk) — 1\σjn — V>, Vj — U) Γ

Then we have

n

'»JnU ,jnk)
j=i

Σ« Σ
ί = l

Using Bennett inequality (Bennett, G. (1962)) again

P(A[% > εn I X l 9 . . . ,Xn) < 2qexp(-2nε2Jq2) <

Then

p ( Δ l l i > εn) = ̂ ^ ( Δ l l i > ε n I ΛΊ, ,X n ) < cexp(-6n 1 " σ ) .

Combining (39), (44), (46) and (47), this lemma is proved.

LEMMA 6. Under the assumptions (i), (ii) and (Hi), one has

(47)

jfe = l , 2 , -

lim K* = oo a.s.,
71—* OO

where R*,R^ and K* are defined by (3), (10) and (17).

(48)

(49)

PROOF. Write A = {x : 0 < Pio(x) < Pjo(x)}. From (2), Pj(x) < Pj (x)
for all x 6 Λd and all i = 1, ,M. When i £ 4 , then 0 < Pio(x) < Pj (x),

^ = to I x) > (Pφ))k > 0 by the definition of θ^, therefore

M M

= i I χ)Pt(x)

Because P(X G A) > 0, then

Λ* = 1 - EPj*(X) < 1
M
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by (19) and (20). So (54) is true.

Denote

kn = [(log n)σ°],

Bo = {φϊ - Λ<* > -> 0},

0}, * = 1,2, ,

Using (38) one has

CO

> ε) < oo, ^ P( l4 f c n ) - R(kn)\ > ε) < oo,
71=1 n = l

then P(5 f c) = 1, k = 0,1,2, , by Borel-Cantelli lemma. So P ( 5 ) = 1. We

come to prove that for ((Xi, #i), i = 1, , n, ) G -0, one has

/ r ( Z n ) - ^ o o , as n->oo. (50)

In fact, if it is not true, then there is a subsequence {nt } such that as i —>

oo, π; —• oo, but

K*(Zni)<k0<oo. (51)

Because 5 C -βfc, one has

z m i » > min Λ(*> (52)
l<fc<fco

by the definition of Bk and (51). On other hand, 5 c 5 o ,

limsupZgf ( z n i ) ) < Umsupi (

ntn i ) = Λ* (53)

by (10), Lemma 1 and 5. It is easy to see that (52), (53) and (48) are contra-

dictory. Lemma 6 is proved.

Now we could give the proof of the theorem as follows. For ε > 0 given

arbitrarily, there is &o large enough such that when k > k0 then \R^ - R*\ <

ε/3 by Lemma 1; and there is nχ(> Ko) large enough such that when n > n\

then P{k* < &o) < ε/3 by Lemma 6; and by Lemma 2 there is ri2(> ni) large

enough such that as n > n2 then {R^ - RW\ < ε/3, for k < (log n)σ°.

Therefore as n > n2, one has

|P(0(f) φ θ) - R*\ < Σ \R(k) ~ R*\P(k* = k)
l<k<(\og n)σ0

<P(k* <ko)+ Σ (\R{

n

k) - RW\ + \RW - R*\)P(k* = k)
K0<K<{\og n)σo
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hence (15) is true. In order to prove (16), denote εn = ε/(log n) σ °, which

satisfies the condition (28). From Lemma 5,

n)σ

<(log w)σ°cexp(-6w1~σ) < cexp(-6n1~σ)

Then

n=l

therefore

]J£ ^ — R^k ^ —» 0, as n —> oo a.s.

By Borel Cantelli lemma. Using Lemmas 1 and 6, one has

βik*) — i2* -^ 0, a.s. as n —> oo,

it implies (16). The theorem is proved completely.

3. Discussion. From intuition point of view, in order to improve the

convergence rate we should take σo as large as possible when choosing adaptive

discrimination order number k* by (10) and (11). In fact it is not difficult to

justify that if we take σn = 1 - (log log n)~σi (0 < σ\ < 1), instead of σ0, the

theorem still holds. But it seems to us that σo could not be greater than or

equal to 1. We now do not know whether it is true.
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