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OPTIMAL DETECTION OF A CHANGE IN DISTRIBUTION
WHEN THE OBSERVATIONS FORM A MARKOV CHAIN

WITH A FINITE STATE SPACE

BY BENJAMIN YAKIR
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Consider a process X i , J ϊ ^ •• When the process is in control the se-

quence of observations is distributed like a stationary Markov chain with a

(known) probability transition matrix A. If the process goes out of control,

the probability transition matrix becomes B (which is a known matrix as well).

We describe the structure of the minimax policy (in the Pollak-Siegmund sense)

and of the Bayes rule for detecting the change in the distribution.

1. Introduction. Suppose one is able to observe sequentially a series of
observations Xi,X2> whose distribution possibly changes at some unknown
point in time. The objective is to raise an alarm as soon as possible after the
change-point, subject to a restriction on the rate of false alarm.

An important motivation to such a problem is the on-line quality control
of a manufacturing process. Imagine a machine that produces some product.
The machine might break-down at some point in time. The propose of an
on-line quality control scheme is to determine, based on the observation of the
manufacturing process, whether the machine is functioning properly or not.
One would like to have a scheme which detects the break-down of the machine
as fast as possible but does not stop the production if the machine is working
well.

In the classical setting of this problem it is assumed that the observations
are independent. Their common distribution function before the change is Fo
After the change the distribution function is a different distribution function

The assumption of independence of the observations might be too re-
strictive in many important applications, where some dependence structure
between the observations is apparent. In this article we consider the simplest
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of all dependence structures : the Markov chain process with a finite space of
possible states.

In the next section the theory of the Bayesian formulation is developed
for the problem of detection of a change in distribution in the Markov chain
case.

Section 3 deals with the structure of the optimal detection policy in a
minimax sense.

2. Bayes Rules. Let us consider the Bayesian formulation of a dis-
ruption in a Markov chain process. In order to do so, we have to specify the
structure of the probability space and of the loss function. Let (Ω, F) be a
measure space. On that space we are given random variables ι/, Xo? X\-> and
a probability measure P^^) such that:

P^X\XO = x) = 1,

P(^)(l/ = 1) = 7Γ

and:
p(^)(u = k) = (1 - π)pqk~\ for k > 2;

where p and π and x are known constants with 0 < p < l , 0 < 7 r < l and
x one of the possible states of the process (x £ X). The parameter v is the
(unknown) point of change of the process.

The distribution of the observations is determined by the value of v.
Conditional on the event {y = &}, the distribution of the random process
Xi,X2? satisfies:

lΠ?=iΦ*'k-i) if k>n.

where XQ = x.

The matrices A = (a(i\j)) and B = (b(i\j)) are two transition probability
matrices. The interpretation of the above is that when the process is in control,
its distribution is like that of a Markov chain process with transition matrix
A. If the process goes out of control, the transition matrix changes to the
matrix B.

Let N be a stopping time adapted to the system of σ-algebras {Fn}^_0,
where F o = {0,Ω} and F n = σ(F 0 ,Xi, . . .,Xn). The stopping rule N can
be interpreted as the detection policy, i.e. the time at which the "alarm" is
sounded to signal the change in distribution. It is desirable to choose N in
such a way that it is as close as possible to the time of disruption v. Following
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the formulation of Shiryayev [1978] (and the modification of Yakir [1991]), the
risk associated with the detection policy N is:

, v) = P^)(N < i/ - 1) + cE^x\N - v + 1)+, (1)

where c > 0 is a fixed constant that represents the relative cost of taking
observations from the uncontrolled process.

DEFINITION: For a given pair (π,x) € [0,1] X X we call a stopping time
N* a (π,x)-Bayes time if

where inf is taken over the class of all proper stopping times.

The following theorem characterizes the structure of the Bayes rule:

THEOREM 1. Let p > 0, c > 0 and let:

τrn = π^'*) = P^x\v - 1 < n |P n )

be the posterior probability that the next observation is governed by B. There
exits a function δ( ), defined on X, such that the stopping time:

JV* = inf{n > 0 : *<>•*> > δ(Xn)},

is the (π,x)-Bayes rule. Moreover, δ(-) does not depend on π or on x.

Since the proof of the theorem is similar to Shiryayev's proof it is omited.

REMARK: The theorem remains correct when the initial pair (τr,x) is
random (according to a measure φ). Again, the threshold function does not
depend on the initial state. (Notice that the stopping time does depend on
the distribution of the initial state through the dependence on the initial state
of the probability of a change.)

The structure of the Bayes rule plays a crucial role in the development
of the optimal detection time in the non-Bayesian setting. Denote the Bayes
problem described above by 5(c,p, π, x). If the pair (π, x) is random we denote
the problem by jB(c,p,<^).

It is convenient to reformulate the stopping time N* in terms of a different
sequence of statistics. It follows that:
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where:

\ Σ Π w«)+J, (3)
t=l q k=2i=k

and:

The function y/(y + 1/p) is a monotone function in y, hence the Bayesian

stopping time can be rewritten in terms of Rn£ :

N* = inf{n > 0 : τr£π *> > δ(Xn)}

= inf{n > 0 : R^'^ > Δ(Xn)},

for Δ( ) = r(«(.)).

For a given c > 0, and for all p > 0, let Np = N* be the the Bayes rule
for the Bayes problem -β(c,p, TΓ, X), that was discussed in the previous section.
Our first aim is to find a sequence of p's, that converge to 0, for which the
stopping times Np converge to an appropriate stopping time. Furthermore,
for technical reasons, we want all the stopping times in the sequence to be
bounded by some stopping time with finite expectation. The main tool to
achieve such goal will be the following lemma:

LEMMA. Consider the problem 5(c,p,p, xo), where xo is a recurrent state
of the Markov chain process governed by A. There exists a constant D and
some 0 < qo < 1, such that for all qo < q < 1 and for all threshold functions
Δ( ) with the property that A(x) > D, for each x £ X, the average delay it
takes the stopping time:

NpA = inf{n > 0 : R^'x^ > Δ(Xn)},

to detect the change, satisfies:

-V + 1\NPA > v - 1) > 2c"1. (5)

A sketch of a proof: Define a sequence of stopping times 7\, T 2 , . . . by the
recursive formula:

T(0) = 0,

T(j) = ίnf{n > T(j - 1): Xn = x0}.

For a given j , Let:
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and:

k=T(j-l)+2 i=k

(If T(j) = T(j-l)+l then V(j)=l/q.)

Let P£° be the distribution of the Markov chain process, with initial state
x0 and probability transition matrix A. Let Eξ£(-) be the expectation operator
of that distribution. Notice that the sequence {Uj,Vj}(?L1 is a sequence of
independent and identically distributed random vectors under the regime
Furthermore, there exists a constant 0 < qo < 1 such that:

< r / < 0 (6)

and:

< oo (7)

uniformly in p, for qo < 1 — p < 1.

Consider the sequence i2(l), i2(2),..., where:

It is easy to see that:

For each j the distribution of ϋ(j) is the same as the distribution of:

k=l

Using a similar argument to the one given in Pollak [1985, Lemma 3], one
can show that H(j) converges to the (P£°-a.s. finite) random variable:

The rest of the proof of the lemma follows along the lines of Lemmas
5 and 6 in Pollak [1985, pp. 211-212]. The only modification needed is to
consider distributions on the space [0,00) x Λ', rather then the space [0,00).

The following corollaries are easy results of Lemma 1. Notice first that
the constant D does not depend on the initial state (p, x0).
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COROLLARY 1: For a given x € X define:

and let:

It can be concluded that for each 0 < p < 1 - go there exists y = y(p) such
that

Np <a.s. NPtDfy <a.s. ΛΓi.D.y, (8)

where iVp is the Bayes rule for the problem i?(c,p, 7Γ,z).

COROLLARY 2: There exists a state yo and a subsequence of p's, such that
(8) is true with y(p) = yo? for all the p's in the subsequence.

COROLLARY 3: Let Δp( ) be the threshold function of the problem B(c,p, π, x)y

and assume that Δp( ) —>p_>o Δo( ) for some function Δo( ) Assume further
that the convergence is along the subsequence of p's from the previous corol-
lary, then:

Δo(yo) < D.

REMARK: Lemma 1 and the corollaries of the lemma remain true when
c = c(p) is allowed to vary with p, as long as liminfp_f0 c(p) > 0. In particular
they are correct if c(p) converges to some positive c.

Let (1 - p{N,v))lp be the normalized risk of a stopping time N. Using
the results of the last lemma we can show that for p —• 0, the (normalized)
risk of a converging sequence of stopping times goes to a limit.

3. Minimax Detection Policies. After understanding the structure
of the Bayes rules for detecting a change in the Markov chain process and
the characteristics of the limits of such rules, we can turn our attention to
the problem of detecting a change in a non-Bayesian setting. Let us start by
describing the model we have in mind.

Let (Ω, F) be a measure space. On that space we are given a sequence
of random variables X0?^i?^2? •? each one of them has its values in the
finite space of states X'. Let A and B be two transition probability matri-
ces. Consider the sequence of probability measures, denoted by Pk(-) , for
k = oo,l,2,.... Under the regime Poo(#) the sequence of observations form
a stationary Markov chain process with the transition probability matrix A.
(That is to say that the distribution A of Xo is stationary under the transfor-
mation A.) For 1 < k < oo, the distribution Pk(') is such that the distribution
of the observations Xo,..., Xk-i is £»(•)> a n ^ the observations X^ Xfc+i,...
form a Markov chain process with transition matrix B and initial state Xfc-i
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Let Ek(') be the expectation operator of the distribution Pk( ) It is assumed
that the statistician knows what the starting value of the process (Xo) is.

Consider controlling the process of the manufacturing of some product.
A situation where the above formulation is reasonable is, for example, when
at the beginning of a production cycle, the repaired machine is operated for a
while under close inspection. If it performs well at the end of that inspection
period, regular production is continued, and the process control policy we
have in mind goes into effect. Since the machine was operating for a while,
the distribution of the state of production, just before the regular production
starts, is approximately the stationary distribution of the controlled process.

A change-point detection policy is a stopping time, adapted to the se-
quence of observations XQ,XI, An optimal detection policy, or a minimax
detection policy, is a policy that minimizes the maximal average delay in de-
tection:

sup Ek(N-k + l\N>k-l), (9)

among all policies that satisfy a constraint on the rate of false alarm:

EooN > β, (10)

for a given constant β. In this section we will characterize the structure of the
optimal policy.

For a given set of non-negative boundary points Δ = {A(x)}xeχ (infinity
is not excluded), consider the set:

SA = {(r9x) \x£X, 0 < r < Δ ( x ) } .

Let T& be the set of distribution functions, with support in 5 Δ Let T Δ be
the transformation defined by:

TAF(r,x) = ̂  Y: I I(sC^B + 1) < r)a(x\y)dF(s,y),

where:

= Σ / Δ % K § ^ + 1) < Δ(y)^^

It can be shown that with each Δ there associates a set of invariant
measures ΦΔ, i.e. T^φ = φ for all φ e ΦΔ For each such φ a detection policy
can be defined in the following way: Let φ be the transformed distribution,
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defined on R+ x X by the relation:

^^^ rΔ(y) h(τ\iΛ

fax) = Σ / ^ ( 4 ^ + !) ̂  r)a(x\y)dφ(s,y).

Given the value of the initial state Xo = #o> simulate a random vector ( J2Q,
from the distribution φ, conditioned on the event {Xo = xo}. Define sequen-
tially:

Rn = Rn^b(Xn\Xn^)/a(Xn\Xn^) + 1.

The detection policy is:

Nφ = inf{n > 0 : Rn > Δ(Xn)}.

If the ^-distribution has atoms on the boundary Δ, we allow randomized
stopping times in the sense that if the statistic falls exactly on Δ then the
decision onto whether to continue sampling or not is done by some random
law. This law can depend on the boundary point, but not on time. In this
case, thus, we have a family of policies, associated with the invariant measure

Φ>
Notice that each one of these detecting policies is an "equalizer rule" in

the sense that:

Ek(Nφ - fc + l\Nφ >k-l) = EλN
φ,

for all k > 1. The same is true for the case where φ has atoms on the boundary,
since the randomization law is time independent.

For a given /?, let λίβ be the set of all detecting policies Nφ, of the above
form, for which EooNφ = β. In the next lemma it is shown that Aίβ is not
empty. Furthermore, this set contains a stopping rule that is a limit of Bayes
stopping rules:

LEMMA 2. There exists a sequence of p's that converge to 0, a, sequence
of randomized Bayes problems B(c(p),p,φp) with the appropriate Bayes rules
N(c(p)jP,φp), a detection policy Nφ of the above form and a constant 0 <
c < oo such that:

(i) c(p) -^p^o c

(ii) EooNφ = β.

(iii) g^{N(c(p)9p9φp)) —^o (μ(Φ) + β)(l - cExN
φ),

where μ(φ) = Σxeχ /0°° rdφ(r,x), and Qφp(N(c(p),p,φj)) is the normelized
Bayes risk.
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PROOF: For each p, it can be shown that one can choose a Bayes problem
B(c(p),p,φp), such that the appropriate Bayes rule N(c(p),p,φp) satisfies:

EoaN(c{p),p,~φv) = β.

Furthermore, for each p, the measure φp can be picked in such a way that:

E*(N - 1/ + 1)+ = EλN - P~Φ(N > v - 1),

where i?i( ) = JB*( |i/ = 1). (This corresponds to the Bayesian version of the
"equalizer rule".)

The first task is to show that the sequence c(p) is bounded away from
zero and from infinity. Consider the Bayes problems B(c,p, 0,z), for x € X.
Let cx(p) be the cost for which the P^-expectation of the Bayes rule is β. It
is easy to see that the sequence cx(p) is bounded away from infinity for each
x. Since c(p) < supxeχ cx(p) we get that the sequence c(p) is bounded away
from infinity as well.

In order to prove that the sequence of costs is bounded away from zero,
notice that all the invariant measures φ, associated with the couple (c,p),
are uniformly tight for all p < 1 - q0 and all c. Hence, the function Q{φ)
converges to 1 as c —> 0, uniformly in p, for p < 1 — qo. But it is assumed that
EooN(c(p),p,φp) = β, and hence it is bounded away from infinity for all p's,
therefore c must be bounded away from zero.

Let c be an accumulation point of the sequence c(p). Assume that the
threshold functions Δc(p)( ) converge to a function Δ( ). (If the assumption
does not hold for the given sequence - choose a subsequence for which it does.)
Furthermore, without loss of generality it can be assumed that:

sup Δc(p)(y) < oo, (11)
<l

for some y 6 X. This follows from Lemma 1 and its corollaries.

Consider next the sequence of invariant measures φp. Since this sequence
is uniformly tight, it converges to a measure φ. It can be shown that this
measure is invariant under the transformation TΔ By the Representation
Theorem (see Pollard [1984, sec. iv.3.] it can be assumed that the random
variables, that carry the distributions φpi converge almost surely to a random
variable that carry the distribution φ. Hence, the stopping times N(c(p),p, φp)
converge almost surely to a stopping time Nφ. By corollary 1 of Lemma 1 it
follows that all these stopping times are uniformly bounded by an appropri-
ate stopping time. Claims (ii) and (iii) follow from Lesbegue's Dominated
Convergence theorem.
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After showing that the set Aίβ contains a limit of Bayes rules, it is an
easy task to show that this limit is the minimax detection policy. This result
is stated in the next theorem:

THEOREM 2. Let N^ be a stopping time from the set λfβ, that minimizes
EiN among all stopping times N from that set. The change-point detection
policy N^ is a minimax policy in the sense of equations (9) and (10).

The proof of the theorem is almost identical to the proof of Theorem 3 in
Yakir [1991], and is thus omited. Notice that a limit of Bayes rules minimizes
E\N among all stopping times in the set Λ//?, hence the claim of the above
theorem is not empty.

4. Concluding Remarks And Directions For Further Research.
In the last theorem it was shown that a minimax detection policy can be
constructed by solving a minimization problem, involving the Pi-expectation
of a stopping time of a given form, restricted by a constraint on the value of
the Poo-expectation of the stopping time. Actually, by using the same methods
as in Theorem 4 in Yakir [1991], the problem can be translated to a problem
concerning invariant measures. It can be shown that an optimal policy can be
found by solving the problem of minimizing the functional μ(φ) among all the
invariant measures of the transformation T& and all boundary points Δ, for
which Q(φ) = β/(β + 1).

The solution of such a problem is feasible with the aid of Markov chain
simulation techniques. We hope to demonstrate this approach in the near
future.

Another problem is the comparison between the optimal detection policy
and the policy suggested by Pollak & Yahav [1991]. The two policies are
distinguished by two aspects: the structure of the boundary function and the
distribution of the starting values of the statistics (R,X). Pollak & Yahav's
boundary function is constant and the starting values is a fixed point (0,#),
for some x £ X.

Consider the asymptotics (as β —• oo) of the difference between the aver-
age delay in detection of their policy and of the optimal policy. Our conjecture
is that the fact that one starts from a fixed starting value, rather than from
the appropriate invariant distribution will affect the difference by a positive
constant value. This phenomenon was observed in the independent random
variables case (See Yakir [1992]). Furthermore, we conjecture that the effect
of choosing a constant threshold, rather than a threshold that depends on the
state of the process, is a o(l) term when β -» oo. Thus far, we were not able
to prove either of these conjectures.
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Another interesting area for further research is the problem of finding
an optimal detection policy when the transition matrix after the change is
unknown. A simple model, where the set of possible transition matrices B
is finite, was considered by Pollak & Yahav. The solution they suggested, of
assigning a prior distribution to the different matrices, seems to be promising.

5. An Example. We give an example of a change-point problem in a
Markov chain process in which the conjectures of the previous section are true.
Consider the following problem: Let XL,X2? be a process with values in
X = {0,1}. The probability transition matrix before the change is: a(i\j) =
1/2 for i, j e X. After the change it is: 6(1|1) = δ(0|l) = 1/2, 6(0|0) = 1
and δ(l|0) = 0. The state 0 is an absorbing state. The Pollak-Yahav policy is
to observe the process until the Shiryayev-Roberts statistic crosses a constant
boundary.

Given any pair of boundary points (Δ(0),Δ(l)), it follows that the in-
variant distribution is unique (up to randomization on the boundary) and its
support is in the set {(n,ra) : n,m 6 N,2 < n < Δ(0),l < m < Δ(l)}.
Consider the policy N& based on the boundary points (Δ,oo), where Δ is
uniquely defined by β. The conditional distribution of the invariant measure,
given the event XQ = 1, is stochastically bounded by a geometric random vari-
able, hence it follows that the policy N& is almost optimal (up to a o(l) term,
where o(l) —> 0 as β —> oo).

Let NA be the policy that stops the first time the statistic Rn is larger
than A and Xn = 0. (i?o = 1-) It is just as easy to show that the difference
between the behavior of the Pollak-Yahav policy, and the policy NA is negli-
gible provided that β is big enough. (Again the threshold A is determined by
β.) We will proceed by examining the difference between N& and

For the policy NA, since the event {Rn = l,Xn = 1} is positive-recurrent,
it follows that:

where:

MΛ(1) = mί{n >l:(Rn = l,Xn = 1) or (Rn >A,Xn = 0)}.

Similar arguments and some algebra lead to the conclusion:

EN A = 2Λ(1 + o(l)) and ENA = 2Δ(1 + o(l)).
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Choosing A = Δ = β/2 it can be shown that:

- NA) —+β^

E(log2(T + Λo + l) - lo g 2 (T + 1)|XO = 1) + E(log2(R0 + 1)\XO = 1), (13)

where the distribution of Ro is the limit of the distributions <f>& as Δ —> oo

and T is a Geometrical j2) random variable, independent of RQ.
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