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ASYMPTOTIC MINIMAXITY IN THE
CHANGE-POINT PROBLEM

BY ANDREW L. RUKHIN

University of Maryland

A lower bound on the limit of the minimax risk under the zero-one loss
function is established in the classical setting of the change-point estimation
problem. This bound is attained by the maximum likelihood estimator in the
situation when the two probability distributions before and after the change
point are completely known. The nature of this bound is related to the multiple
decision problem and a variety of inequalities relating it to the information-type
measures is deduced. Minimaxity of the maximum likelihood procedure is proved
for normal observations with unknown means.

1. Introduction and Summary. In this paper the classical setting
of the change-point estimation problem which was studied by many authors
(see Hinkley, 1970; Cobb, 1978) is considered. It is well known that in this
setting there is no consistent estimator of the change-point so that to study
the asymptotic efficiency the setting is usually modified to allow the parameter
(Carlstein, 1988) or the distributions (Ritov, 1990) to depend on the sample
size in some fashion.

In Section 2 a positive lower bound on the limit of the minimax risk under
the zero-one loss function is established. Although the maximum likelihood
estimator is not consistent (its deviation from the true parameter is positive
with positive probability) it attains this bound when the two probability distri-
butions before and after the change-point are completely known. The nature
of this bound is related to the classification problem, and this relationship is
used to derive various inequalities for the probability of the correct decision in
terms of information-type characteristics.

When the observations are normal with unknown means it is shown in
Section 3 that the maximum likelihood procedure is asymptotically minimax
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in the sense that its risk attains the mentioned bound. This result might be
extendable to more general situations. Numerical results give evidence of the
reasonable behaviour of this procedure for moderate sample sizes.

2. Minimaxity Notion for the Change-Point Estimators. Let P
and Q be two different probability distributions with densities p and q and
assume that the observed data

consists of two independent parts, the first xi being a random sample from
distribution P, and the second random sample X2 coming from distribution Q.
In other words v is the change-point, the parameter of interest. It is known (cf.
Hinkley, 1970) that there is no consistent estimator of 1/, so that this setting
is usually modified for the purpose of studyng the asymptotic minimaxity.

In our approach asymptotic efficiency is defined by means of the error
probability which does not tend to zero as sample size increases but which
satisfies the following inequality analogous to the classical multiple decision
problem.

LEMMA 1. Let δ = <5(x) be any estimator of v and denote by δ the

maximum likelihood estimator. Then if as n —> 00 both n - v —• 00 and

v —> 00

n

ί/=l

lim inf -YPr (δ(x) φ iλ > Urn Pr f̂ (x) φ iλ
n-+cχD n *—i \ / i/—» oo,n-ι/—κx> \ /

Γ * N / ^ M>» ( 2 1)

A;=l 1 1

ίfere Zj = logp(xj) - log q(xj) with Xj having the distribution P and Uj =
log q(xj) — logp(xj) with Xj having the distribution Q and it is assumed that
P(Σi Zj = 0)= Q(Σί Uj - 0) = 0 for any k.

PROOF. The proof of inequality (2.1) is based on the following facts.
The maximum likelihood estimator is the Bayes estimator against the uniform
distribution for v under the zero-one loss function. Therefore
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One has

k

j > 0,k = 1 , . . .,i - 1 , J ^ Uj > 0 , m

1 i

k

According to known results of the random walks theory (cf. Siegmund,
1985, Corollary 8.44 or Woodroofe, 1982, Corollary 2.4 ) as i -» oo

k=l

and a similar formula holds for qn-i Inequality (2.1) follows now from the
fact that if the sequences of positive numbers pi and gt converge to limits p
and q respectively then

pq

Lemma 1 shows that the maximum likelihood estimator is asymptotically
minimax and also that the quantity p(P,Q) defined by (2.1) provides a new
"information-type" divergence between distributions P and Q. Indeed, as is
easy to see, ρ(P,Q) = ρ{Q,P),

p(P,P) = oo

and

P(P,Q) = O

if P and Q are singular.

These and some other properties of p(P,Q) are discussed by Lorden
(1977) who showed the fundamental role of this quantity for sequential multi-
ple hypotheses testing problems.

For example if P and Q are two normal distributions with the same, say,
unit variance and means θ\ and 02 ? then

p(P,Q) = po(A) = 2£λΓ1Φ(-Δv/&) (2.2)
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with Δ = 0.5 I 0i — 02 I a n d Φ denoting the standard normal distribution
function. Function (2.2) plays an important role in sequential analyis and
renewal theory; its values are tabulated in Woodroofe, 1982, p. 33. For Δ —> 0

po(Δ) ~ - log Δ

and as Δ -» oo
po(A) ~ 2exp(-Δ2/2)/\/2^Δ.

Also notice that the term rk = [P(Σi zj < 0) + Q(Σi Uj < 0)]/2 i n t h e

sum defining p(P,Q) in (2.1) is formed by probabilities of large deviations for
sums of i.i.d. random variables. Indeed EpZj = K(P,Q) > 0 and E®Uj =
K(Q,P) are information numbers, so that

k

j < 0) =

and known inequalities for such probabilities can be used to estimate r& from
above. Also rk can be interpreted as the error probability of the maximum
likelihood procedure in the multiple decision problem for two probability dis-
tributions P and Q on the basis of random sample xi,. . ., Xk More precisely
this is the Bayes risk of the Bayes rule against the uniform prior and the
zero-one loss function.

These facts lead to many useful inequalities. For example,

k=l

where

= inf I p\x)q^\x) dμ{x) >

Also

where

h2k = I / ^ ( ί ^ W <W*)| < r*(l - rfc)

so that
/>2. (2.3)

In the normal example

h = exp{-Δ2/2}

which shows that (2.3) provides a better bound for large Δ then for small Δ.
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If the likelihood ratio q(x)/p(x) is bounded, say,

h < q(χ)/p(χ) < t-i

then the Hoeffding's (1963) inequality implies that

1
Γ* * ϊ

Also it follows from Rukhin (1993) that

Ik Ikι2 - tλ

For any two distributions P and Q with given means θ\, #2 a β d variances
τhσί

1

(see Chernoff, 1971).

3. Asymptotic Efficiency of the Maximum Likelihood Proce-
dure. In this section we study the change-point estimation problem for a

normal sample assuming a known and constant variance, which can then be

taken to be unity. Thus assume that xi = ( # i , . . -jXv) is a normal random

vector whose components are independent and have the normal distribution

with mean θ\ and the unit variance. Also let x 2 = (a^+i, . . . ,x n ) be another

such vector whose components have mean 02 Here both θ\ and 02 = #i — 2Δ

are unknown, but for the sake of concreteness we assume in the following that

02 < θ\. Also let vjn — pn be such that pn —> p with 0 < p < 1.

Our goal is to investigate the asymptotic efficiency in the sense of Lemma

1 of maximum likelihood estimator δ0 which is known to have the form

, [Sk - kSJn]2

So = arg max ι— rj-γ-
l<k<n k(l-k/n)

with Sk = x\ + . . . + Xk James et al. (1987) studied the properties of tests

about the change-point based on this statistic.

One has

\i<k< k(l-k/n)

[Sk - kSJn]2 Sv -
x P r ( m a x ^ ~ **»/"r < ,2 ^ - ^ n / n Λ

\v+i</;<n k(l-k/n) ~ y/u(l - vjn) '

(3.1)
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The expected value here is taken with respect to the distribution of

which is normal with mean 2Ay/ι/(l — pn) and the unit variance.

We look at the first conditional probability Πi in (3.1). It follows from

Hinkley (1970) p. 11 that for bounded m = v — k the distribution of

Sk - kSn/n Sy - vSn/n

y/k(l - k/n) y/u{l - v/n)

is approximately that of the sum J^Γ Yj where ϊ j , j = 1 , . . . , v - 1, are inde-

pendent normal random variables with mea n — Δ/[n(l - p)pγ^2 and variance

l/[np{l — p)]. Also the argument given by James et al. (1987) shows that for

any positive m

. maxf • • » . / . max
I i<k<u k(l - k/n) v-m<k<v

and the same formula holds for conditional probability Πi. Because of these

facts

.. . + Vk < 0,fc = 1,.. .,ra)
m—*oo

m = l

with Vi, V^,... being independent normal random variables with negative

mean — Δ and unit variance.

The second conditional probability Π2 in (3.1) has the same limit, which

is easily seen by using a similar argument.

This leads to the following result.

THEOREM 1. Maximum likelihood procedure 60 is an asymptotically effi-

cient estimator of the change-point parameter v in a sequence of independent

normal observations with the same known variance and unknown means θ\

and 02 ifl the sense that for any fixed positive Δ = 0.5|#i - Θ2\

lim Pr(60 .= u) = exp{-/>(P,Q)} = exp {
7 1 > O O I
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Table 1: Probabilities of the correction decision for estimators δ0 and δ when n = 50

and v = 25 and asymptotic efficiencies exp{—po(A)} for various values of Δ

= v) Pr{δ = v) exp{-/90}

.05

.10

.15

.20

.30

.40

.50

.60

.70

.80

.90

1.00

2.00

.014

.021

.032

.053

.108

.178

.259

.330

.419

.495

.564

.630

.950

.022

.035

.054

.074

.132

.203

.280

.360

.438

.511

.579

.640

.952

.005

.018

.038

.063

.127

.201

.280

.360

.438

.511

.579

.641

.978

Numerical results show that estimator δo behaves quite reasonably for

moderate sample sizes. In fact Table 1 containing the probabilities of the

correct decision for δ0 and maximum likelihood procedure

δ = argmax Sk - k 1 2 ,

which uses the exact values of θ\ and 02 ? shows that when n = 50,1/ = 25

estimators δ0 and δ exhibit similar behavior. Although δ outperforms δ0 for

all Δ, when Δ is large this becomes less noticeable. For most values of Δ the

probabilities of the correct decision for procedure 6 are almost equal to the

limiting value exp{-po} determined by (2.2) which is also given in Table 1.

For small values of Δ these probabilities even exceed exp{—p0}. These results

are based on Monte Carlo simulations with 75,000 replicas of i.i.d. standard

normal variables.

Hopefully these results can be extended to a more general situation of

multivariate normal vectors with an unknown covariance matrix (see Srivas-

tava and Worsley, 1986 for the hypothesis testing problem and James et al.,

1992 for the confidence estimation problem) and to observations from an ex-

ponential family as in Worsley (1986).
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