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Change analysis is concerned with distinguishing "fluctuation" of the data

(in accordance with probability distributions fitted to a whole sample) from "non-

stationarity" (changes in the parameters of probability distributions). To detect

change over time in a sequence of observations one forms for various transforma-

tions of the data sample change processes on [0,1]; the transformations are called

"data score functions" (Parzen (1992)). One can choose non-parametric score

functions which detect changes of location, scale, skewness, etc. in the prob-

ability distribution of the observations. When a parametric model is available

for the distribution of each observation one can detect changes in the parame-

ter values by transforming the data by parametric score functions which we call

Fisher-score functions.

This paper studies the asymptotic distributions (under the null hypothesis

of no change) of Fisher-score change processes which are cusums of scored data.

They are related to cuscore processes or cumulative score processes, some of

whose applications are described in Box and Ramirez (1992).

1. Fisher-score Change Processes. Let Xχ,X2,.. .,Xn be indepen-
dent random vectors with distribution functions F(x; 6>i), .F(x; 6)2),...,
F(x;Θn), where 6>i,02, ?®n a r e unknown p-dimensional parameter vec-
tors. A basic change-point problem is the problem of "abrupt change" which
tests

Ho : 0 i = Θ2 = . . . = Θn

against the alternative HA : There is re(0,1) such that

Θχ = ... = Θ[nτ] φ G>[nτ]+i = . . . = Θn.

The "abrupt change" problem motivates the definition of the Fisher-score
change processes introduced in (1.3). We digress for a moment to note that
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test statistics for smooth change models can be formed by inner products of
these processes with "change score functions."

We assume that the observations are absolutely continuous or discrete.
The density functions (probability mass functions in the discrete case) are
denoted by /(x; G>i),..., /(x; Θn).

Let gi(x; Θ) = (01,1 (x; 6>),..., #i,p(x; 6>)), defining Fisher-score functions

0 (x; <9) = ^ g ^^ g , 1 < * < p.

We estimate the unknown parameter by the usual maximum likelihood method;
i.e. Θn = (Θn,i> ->> Θn?p) satisfies the estimating equations

A basic statistic in change-point problems is the process on 0 < t < 1

Zn(ί) = (Zn,i(ί),...,Zn | P(*)), (1.2)

whose components are called Fisher-score change processes defined by

Z n . C) = ^ Σ Λ. " (Xj βn) ,0 < t < 1,1 < i < p (1.3)

(Znii(l) = 0,1 < i < p). They can be considered, for / fixed, to be score test
statistics for the hypothesis that the parameter estimators for data up to time
(n+ l)t are not significantly different from the parameter estimators for all the
data, against the alternative hypothesis that there is abrupt change at time
( n + l ) ί .

We study the asymptotic properties of Zn(ί) under the null hypothesis Ho
of no change. The true value of the parameter under Ho is denoted by Θo —
(Θo,i,..., ΘofP). Let X be a random vector with density function (probability
mass function in the discrete case) /(x; θo). Let

i,, (x; 0) = ^ Q

S2,i,j(x; Θ) =
(J \J ΐ (J \J j

and
d3

d2

g(x; Θ),
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We assume that there is an open neighborhood Θo of Θo such that the following
conditions hold:

C.I. flf(x θ) , 5i,;(x;6>), g2tij{x\θ) and fif3,i,j,*(χ; ®) 1 < i,3,k < p exist for
all xeRd and ΘcΘo

C.2. There is a function M(x) such that .EM(X) < oo and for all κeRd, Θeθ0

< M(x), l < ij, k < p

C.3. ftoifί(X;βo) = 0, l < i < P

C.4. .B|flfi,i(X; Θ0)\2+δ < oo, 1 < i < p, for some <5 > 0

C.5. J " 1 exists, where J = {Jij, 1 < i,j < p} and

Λ ,j = Egu(X; θo)gιj (X; 6>o), 1 < i,i < P

C.6. £|<72^(X;0o)|2<oo.

We show that Zn(ί) converges weakly to Γ(ί) = (Γ ( 1 )(/),.. .,Γ ( p )(/)),
where Γ(/) is a Gaussian process with covariance structure ET^\t) = 0 and
EΓW(t)Γk')(θ) = / ^ ( m i n ^ θ ) - is). This means that J^/2T®(t) is a Brow-
nian bridge for each 1 < i < p.

To consider the convergence in weighted metrics, we consider the follow-
ing class of functions:

Q01 = {q : q non-decreasing in a neighborhood of zero, non-increasing in
a neighborhood of one and inf£<ί<i_5 q(t) > 0 for all 0 < δ < 1/2}.

The condition is given in terms of the integral test

THEOREM 1.1. We assume that (1.1) has a unique solution, Ho, C.1-C.6
hold and qieQo,i, 1 < i < p. We can deήne a sequence of Gaussian processes
{Γn(t) = (Γn,i(ί),...,Γn,p(ί)), 0 < t < 1} such that

{Γn(t), 0 < t < 1} = {Γ(t), 0 < t < 1} (1.4)

and
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if and only if

max J(ft, c) < oo for all c> 0. (1.6)

If we are interested in the convergence of the weighted supremum func-

tional, we can establish it under weaker conditions.

THEOREM 1.2. We assume that (1.1) has a unique solution, ϋf0, C.I -

C.6 hold and <freQo,i> 1 < i < p. Then, as n —> oo, we have

sup |Zn,i(t)|/βi(t),..., sup |Zn i P |/fc(t)} (1.7)
i o<t<i J

{ sup IΓWWI/ftCί),..., sup

if and oniy if

max I(qi,c) < oo for some c > 0. (1.8)
l<t<p

We can choose β(ί) = (t(l - t)loglogl/(ί(l - *))) 1 / 2 i n Theorem 1.2

but this function does not satisfy (1.6). However, the standard deviation

(Ji,it(l - t)f12 does not satisfy (1.6) nor (1.8). Let

α(z) = (21ogz)1/2

b{x) = 21ogx + -log log a; - -logπ.

THEOREM 1.3. We assume that (1Λ) has a unique solution and ifo?

C.1-C.6 hold. Then for each 1 < i < p we have

lim P ία(logn) sup |Zn f f (ί)l/ (Λ^(l - t))1/2 <x + b(logn)\ (1.9)n^°° L o<*<i J

= exp(-2e~x)

for all x.

We note that if Jid = 0,iφ j , then α(log n) s u p 0 < κ l |Z n , t ( ί) |/ ( J f V ί ( l - t))1/2

-6(log n) and α(log n) s u p 0 < t < 1 | Z Π | J ( ί) |/ ( J j j ^ l - ί ) ) 1 / 2 ~6(log n) are asymp-

totically independent. This happens, for example, if the observations are nor-

mal and the parameters are the mean and the variance.

2. Proof. We start with a few lemmas. We assume that Ho holds. Let

| |x| | = maxi<1 <p |a;1 | , x = (xu...,xp).
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LEMMA 2.1. We assume that (1.1) has a unique solution and C.1-C.6
hold. Then, as n —• oo, we have for all 1 < i < p that

ZnΛt) = KΛ*) + <](*) + <!(*),

where

Σ Λ.. (x,-; βo) - <

sup

and

sup

PROOFS. Conditions C.I - C.4 imply

| | θ n - 6>o|| β = 0(1), (2.1)

as n —» oo, and therefore we can assume that ΘneΘo. Ibragimov and Hasmin-

skii (1972, 1973a,b) showed that

\\n (Θn - β 0 ) -

Let

We write

where

and

Let

n,i (χ; <

:*)

=>) =

r2,«,

..•(*) = ^

1

9U (x; <

i ( χ ; 0 )

9) - h,i (®

5(0.

-turn)

) , 1 < i < p.

(2-3)

(2-4)

(2.5)
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and

We note that

and

E τ 2 > i j ( X ; β 0 ) = 0 , l<i,j<p (2.6)

(2.7)

yield
A two-term Taylor expansion and (2.2) with the central limit theorem

SiA&n) - ~9ι,i (®o) = 2 &Ai (βo) (θ n , , - θO f, ) (2.8)
i<i<P

•O
Next we use again (2.2) and get

n (5i,, (β») - ~9U (βo)) = g2,ί (β 0 )

+ op (n 1

Observing that ίfe,i,j(®o) = ~^,i? by (2.9) we have

n {hA®n) - Λ,< (βo)) = - ^ 5i,* (X/; Oo) + (2.10)

We use again Taylor expansion and get

(τu(Xe;Θn)-τhi(Xe;Θ0))

(d«j-®oj)

< fιiβ» -

Now by (2.6) we can use the invariance principle and by C.2 we can apply the
law of large numbers. Thus we obtain

sup (2.H)
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We showed that

0<Kl

and

sup
0<t<l

^ Σ

(2.12)

= op(l). (2.13)

By (1.1) we have

= - Σ

and therefore similarly to (2.3) we have

- * Σ

Σ
— ί

Tljί V / 71.ί V /

Now similarly to (2.12) and (2.13) one can establish

sup \A®(t)\ = OP
0<t<l

sup

and

which completes the proof of Lemma 2.1.

LEMMA 2.2. We assume that C.3 and C.4 hold. We can define a sequence
of Gaussian processes {Γn(t) = (Γn |i(ί),.. -,ΓnjP(ί)),0 < t < 1} such that
(1.4) holds and

*-" max sup \Z*nβ) - Γn,, (ί)|/(ί(l - ί))" =
l<ί<Pl/(+l)<ί</(+l)

(2.14)

for a]] < 1/ < 1/2.
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PROOF. Let

Vn,t (ί) =

and

We have

f Vn̂  (ί) - * (Vn,i (i) + (K,,(l) " Vn,i ( | ))) , 0 < t < \

~ (Vnfi(l) - ^.-(ί)) + (1 " t) {Vn,i (I) + (Vn.iCl) -

i < ί < l .

By Einmahl (1989) for each n we can define two independent Gaussian pro-

cesses {(G^(X),...,GΆ(X)),0 <X< n/2} and {(£$(*) , . . . ,£$(*)) ,<) <

x < n/2} with covariance EG^j(x) = 0, EG^(x)G^k(y) =
j = 1,2, 1 < i, k < p and

sup \Vn,i(t) - GfJ(nt)|/(nί)2 + * = OP(1) (2.16)
l)<ί<l/2

and

max sup {(V^l)-Vn,i(t))-G^(n(l-t))\/(n(l-t))2 +6 = Op(l).
1<'<Pl/2<ί<n/(n+l)

(2.17)
Now (2.15), (2.16) and (2.17) yield

Σ ftw—-I/f(βί3(«*)-*(oa(|)+GS(|)))ι/(-«)
+l)<f<l/2

1

sup

and similar arguments give

supΠ2 ^

(2.18)

(2.19)
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We define Γn(ί) by

1 / 2 r _ ί <#!(»*) - * (<#! ( f ) + σ £ ! (f)) ,o <«< 1/2
-G{ Un(l - t)) 4- (1 - t) I G ι (R) + G{ '• (^

It is easy to see that Γn(t) satisfies (1.4) and by (2.18), (2.19) we have (2.14).

PROOF OF THEOREM 1.1. First we assume that

I(qi,c) < oo for some c> 0. (2.20)

By Csδrgδ et al. (1986) (2.20) implies

lim qi(t)/Vt = oo (2.21)

no
and

Bm f t (<)/( l- ί ) 1 / a = oo. (2.22)

Let ε > 0. Lemma 2.1 implies

sup \ZUii(t) — Z^{(t)\/qi(t) = op(l) (2.23)

and

sup \Zn%%{t) - Z*>t (ί)|/(ί(l - i))1/2 = Op(l). (2.24)

Next we write

sup \Zn9i(t) - Z*ti(t)\/qi(t) (2.25)

< sup t1/2/qi(t) sup \Zn,i(t) - Zlj{t)\ltιl<1

0<t<ε l/(n+l)<t<n/(n+l)

and

1 e<t<
UnP „ 1 | Z n ' ' ( ί ) " Z:>i(t)l/qi(t) ( 2 2 6 )

< sup (1 -

Putting together (2.21) - (2.26) and choosing ε as small as we wish we get

sup \Zn,i(t) - Z^MIΦ) = Ml)- (2-27)
) < ί < / ( + l )
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Using Lemma 2.2 with v — 1/2 we have

sup \KM - Γn.iWI/W1 - *))1 / 2 = °P(1) (2.28)

Hence by (2.21) and (2.22) similarly to (2.27) we can establish

sup \Z^(t) - Γnfl (ί)l/«(*) = M l ) (2.29)
) < t < / ( + l )

The covariance of Γn>t (t) implies that J ^ ' Γnjt (ί) is a Brownian bridge for
each n. By Csδrgδ et al. (1986) condition (1.6) implies

sup |Γnff.(t)|/«(t) - op(l) (2.30)
0<t<l/(n+l)

and
sup |Γn,,-(t)|/β(t) = o P (l). (2.31)

/ ( )
Now (1.5) foUows form (2.27), (2.29), (2.30) and (2.31).

Next we assume that (1.5) holds. It follows from the definition and (1.1)
that Zn,i(ί) = 0 if 0 < t < l/(π + 1) and Zn^{t) = 0 if n/(n + 1) < t < 1.
Thus we have

sup |Γn,t-(ί)l/«(ί) - op(l) (2.32)
/ ( )

and
sup |Γn>I (t) |/ β (ί) - o P (l). (2.33)

/ ( )
By definition,

{Γn|ί(ί),0 < ί < 1} = [jlj2B(t), 0 < t < l} (2.34)

for each n, where {B(t),Q < t < 1} is a Brownian bridge. We have (2.32) and
(2.33) if and only if

lim sup \B(t)\/qi(t) = 0 a.s. (2.35)

and
lim sup \B(t)\/qi(t) = 0 a.s. (2.36)

Using Csόrgό et al. (1986) we get that (2.35) and (2.36) imply (1.6).

PROOF OF THEOREM 1.2. We showed in the proof of Theorem 1.1 that
(1.8) implies

max sup |Zn f t (t) - Γn,f (ί)|/β(t) = oP(l). (2.37)
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Also, (1.8) yields that the limiting random vector is almost surely finite in
(1.7) (cf. Csδrgδ et al. (1986)). Since Zn,,-(<) = 0, if 0 < t < l/(n + 1) and
ZnJ(t) = 0 if n/{n + 1) < t < 1, the limit theorem in (1.7) follows from (2.37).

Now we assume that (1.7) holds. In this case the limiting random vector
is almost surely finite. Using (2.34), this can happen only if (1.8) is satisfied.

The proof of Theorem 1.3 is based on the following lemma. Let

/ \ 1 1 " X

c(x) = log .
X

LEMMA 2.3. We assume that C.3 and C.4 hold. If l/(n+ 1) < εi(n),
ε2(rc) < n/(n + 1), ε\(n) < 1 - ε2(n) and

( l g l ( n ) ) ( l ε 2 ( n ) )
lim — — τ — τ = oo,

n-^oo ει(n)ε2\n)

then we have

lim plα (J(c(£l(n)) + c(ea(n)))) sup | 2 ;

n-+oo { \ί / ε i ( n ) ( )
< a; + 6 Q(c(eχ(n)) + c(e2(n)))) 1 = exp(-2e-a;)

for aii x.

PROOF. It can be found, for example, in Csδrgδ and Horvath (1990).

PROOF OF THEOREM 1.3. We show that

sup |£n,i(<)l/(<(l - t))Φ and
)<*<n/(n+l)

sup |z; f f.(ί)l/(*(i-*))1/2

) < * < / ( + l )

satisfy the same limit theorem. By Lemma 2.3 we have

sup |Zn t ί(ί) - Z;t-(ί)l/(«(l - t))1'2 = O P ( 1 ) . (2.38)
) < K / ( l )

Now Lemma 2.3 yields

(2 log log log n)-1'2 sup \Z^(t)\/ (7 i f i*(l - ί ) ) 1 / 2 - 1 (2-39)
l / ( + l ) < ί < ( l ) /
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and therefore by (2.38) we have

(21ogloglogn)"1/2 sup |Z* t (*)|/(J t> *(l - t))1/2 ^ 1. (2.40)

It is easy to see that (2.40) implies

o(log n) sup \Zn<i(t)\/ (Jiti ί(l - ί)) 1 / 2 - (* + 6(logn)) £ -oo
l/(n+l)<t<(logn)/n

(2.41)
for all x. Similar arguments give

o(log n) sup \Zn,i(t)\/ (Ji,i <(1 - ί )) 1 / 2 - (ar + b(log n)) Z -oo.
l-(logn)/n<ί<n/(n+l)

(2.42)
Using again Lemma 2.1 we obtain

sup \Zn>i(t) - ZV(*)I/(<(1 - *)) 1 / a = Op(αogn)-1/2) (2.43)
(logn)/n<ί<l/logn

and

sup . \Zn>i(t)-Z*n<i(t)\/(«l-t))1/2 = Op(Oogn)-1/2). (2.44)
l-l/logn<*<l-(log n)/n

Combining (2.38) with Lemma 2.3 we get

α(logn) sup |Zn>t (t)l/ (<M(1 - t ) ) 1 / 2 - (« + i(logn)) £ -oo
l/logn<t<l-l/logn

(2.45)
for all x. Similarly,

o(logn) sup I Z ^ ^ i
l/logn<t<l-l/logn

(2.46)
By (2.41)-(2.46) we have

lim P{α(log n) sup \Zn<i(t)\/ ( J M ί(l - t))1'2 < x + 6(log n)}
n-°° / ( ) < / ( )

= lim P{α(logn) sup |
n->o° (logn)/n<t<l-(logn)/n

and therefore Lemma 2.3 implies the result in Theorem 1.3.
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