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NONPARAMETRIC ESTIMATION OF FUNCTIONS
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The problem of estimating a function with a jump discontinuity in one

of its derivatives is considered. A semi-parametric framework is employed to

formulate the problem, and a least-squares type estimator of the jump point

is proposed for this setting. The asymptotic properties of this estimator are

derived, including consistency and asymptotic distribution theory.

1. Introduction. The problem we consider is that of locating the

point of a cusp (or change-point of the first derivative) and the size of the

change in the first derivative for an otherwise smooth function. This problem

has been studied in one form or another by several authors. Wahba (1984)

and Engle, Granger, Rice and Weiss (1986) were among the first to use a

semiparametric approach to derive partial smoothing splines for estimating

curves with cusps assuming the change-point is known. This article adapts

a related technique given by Eubank and Speckman (1991) to the problem

where the change-point is unknown. Our results are similar to those of Mύller

(1992) who uses boundary kernels to locate the change-point and estimate the

size of the change. See Mύller (1992) for a more complete list of references.

We consider the following model. Responses z\n,..., znn are obtained at

equally spaced design points trn = r/n, r = l , . . . , n . The zrn and trn are

related under the model

Zrn = g(trn) + Srn, Γ = 1, . . ., 71, ( l )

where the εrn are independent, identically distributed random variables having

zero means and common variance σ 2. (Throughout the rest of the article, we

will suppress the dependence of the zrn and trn on n.)

The unknown regression function g is assumed to be continuous on [0,1]

and twice continuously differentiate on [0, r 0) and (ro, 1] for some point r 0 €
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(0,1). At ro, g is assumed to have a jump discontinuity in its first derivative.
Thus g can be written as the sum of a basis function and a smooth part

g(t) = βoφro(t) + f(t),

where
ί < r ,

ro is the unknown change-point, βo is the size of the discontinuity in the
first derivative of g at ro, and f(t) is an unknown continuously differentiable
function. We assume that f"{t) exists and is continuous for all t φ ro, and that
/ has right and left continuous second derivatives at ro, f"(τ£) = lim^Q f"{t)
and /"(TQ) = limtfη, f"(t). We further assume that β0 φ 0, which excludes
treatment of the problem of testing for the existence of a change point. This
latter problem is different and will not be discussed here.

Our estimator β for βo is based on ideas from semiparametric estima-
tion. This estimator and a related weighted-least squares estimator f of ro are
defined in Section 2. The main theorems are presented in Section 3, establish-
ing consistency and asymptotic normality. Under standard assumptions for
second order smoothing, we show that

f-τo = Op(n

and

β-βo = Opίn

This latter rate is known to be asymptotically optimal for estimating a first
derivative under the conditions we impose on /.

Our model is very similar to one considered by Mύller (1992). He treated
a class of problems with a single discontinuity in an arbitrary derivative. The
problem addressed here is related to Mύller's case v = 1. However, Miiller
required / £ C*+l/[0,1] for some k > 2. In particular, to apply Mύller's results
to the problem here, we would need / £ C3[0,1]. We relax the requirement of
smooth higher derivatives for / because it seems natural in many applications
that a response function with a discontinuity in the first derivative would also
have a discontinuous second derivative. Our asymptotic results in Section 3
reflect this weakened assumption. While our results are qualitatively similar
to Miiller's, we have not made any finite or large sample comparisons. A more
precise connection between the two methods is given at the end of the next
section.
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2. Kernel Smoothing and Semiparametric Estimation of the
Change-point. To begin, we cast the problem in vector notation. Write

where z = ( z l 9 . . . , zn)
f, etc. Letting φτ = (φr(h)j ., Φτ{tn))', the goal is to

estimate τ0, βo and

5 = βoΦτo + /•

The foundation for our method is a semiparametric approach to esti-
mating βo found in Eubank and Speckman (1991) based on one dimensional
smoothing. In the application here, we focus on second-order kernel smoothers
and assume observations as in (1). The fundamental kernel smoother for this
case is (cf. Eubank, 1988)

where h is the bandwidth and if is a kernel function satisfying the second
order conditions

K(t) = 0, \t\ > 1, (Al)

/ K{t)dt = 1, (A2)
J — 1

/ tK(t)dt = 0, (A3)
«/ — 1

and

/ t2K{t)dt = Co > 0. (A4)

Letting 5 denote the n x n matrix of kernel weights, i.e.

and gh = (gh(h), -igh(tn))'i the smooth can be written in vector form as
gh = Sz.

If the change-point r is known, βo can be estimated efficiently by mini-
mizing

\\(I-S)(z-φτβψ (2)

over β (see Eubank and Speckman, 1991), and the resulting estimate is

β(r)= A"T
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Setting

_ (I - S)φτφ'τ(I ~ S)

a natural estimate of g is provided by

gτ = S(z - φτβ(τ)) + φτβ(τ) = Sz + PT(I - S)z,

and the residual sum of squares can be written as

||* - ffT||2 = \\z -Sz- PT(I - S)z\\2 = | |(/ - PT)(I - S)z\\2. (3)

We propose estimating r0 by minimizing (3) as a function of r. Note that this
is equivalent to minimizing (2) jointly in (r,/3).

This problem simplifies because β is a scalar and Pτ is a projection. Since

- PT)(I - S)z\\2 = | |(J - 5)z| |2 - ||PT(7 - S)z\\\

minimizing (3) is equivalent to maximizing | |P τ (/-S)z | | 2 = β(τ)2φ'r(I' — S)2φτ

with respect to r. We will show in Lemma 4 below that φ'τ(I - S)2φτ is
essentially independent of r and β(τ) is consistent. Hence, it is asymptotically
equivalent to maximize (or minimize) β(τ) in r.

Several authors including Mύller (1992), Qiu (1992) and Wu and Chu
(1992) have used the difference of two kernel estimates to estimate the change
in a function value or derivative value at a point. For example, Miiller's
estimate of β at r is based on the difference of two one-sided kernel estimates
of the form

where K+ is a smooth kernel with support [—1,0], K- is a smooth kernel with
support [0,1], and K± consequently are both suitable kernels for estimating
the first derivative. Typically, one can take K'+(x) = -K'_(x). Then β(τ) =
g+(τ) - gL(τ) is an estimate of the change (if any) in g' at r analogous to

β(r)

In an asymptotic sense, the semiparametric method used here is closely
related. One consequence of Lemma 3 below is that there is a symmetric
function φ with support [-2,2] such that to a good approximation
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It follows that

for some constant B. As in Lemma 1 below, it can be shown that φ is symmet-
ric and satisfies the integral conditions Jo φ{u)du = 0, Jo uφ(u)du φ 0. Thus,
suitably rescaled, φ behaves like K+ on [-2,0] and like -Kf__ on [0,2]. Be-
cause the kernels K± of Mϋller (1992) have stronger smoothness assumptions
than we obtain for φ, Mύller's proofs do not carry over directly. However, his
methods are extended below to obtain the asymptotic behavior of t and β.

3. The Main Results. The method of proof is modeled on Mύller
(1992), and the approach is based on the following weak convergence result.
Assume TQ G (0,1), let

+ , ye[-A,A],
ynhό

where A > 0, and define a process in C[-A,A]

Cn(y) = nh3[β{τ)-β(τ0)].

In the following, the notation h ~ n~~a means nah —• c, where c is a constant
satisfying 0 < c < oo, and "=>" denotes weak convergence.

THEOREM 1. Ifh~ n~a for a > 1/5 and n -> oo,

Cn{ ) =» X( )

on C[—A, A], where

X(y) = -βoClV

2 + (C2Δ1X + C3σU)y,

Δi =/"(r0

+) - ΛηΠ,
and

L = lim nh4/Vnh3.
n—> o o

Tie constants are given by C\ = B4/B1, C2 = B3/B1 and C3 =
wiiere 5χ? ^3, B4 and B$ are defined in Lemmas 4, 7, 8 and 9 below respec-
tively.

The proof is postponed to Section 4.
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THEOREM 2. Under the conditions of Theorem 1,

REMARK 1. If h ~ n 1 ' 5 (the "optimal" rate for second order smoothing),

Theorem 2 gives

f - τ0 = O p (n" 2 / 5 ).

On the other hand, if h ~ n~~a for a > 1/5 implying that

r ,- nh4

L = lim / = 0,
n-oo /ffi

or if / " exists and is continuous at TQ SO that Δi = 0, then

PROOF OF THEOREM 2. Under Whitt's (1970) metric, the technique of

Eddy (1980) can be used to extend convergence of Cn from C[—A, A] to

C(-oo,oo) (cf. Mϋller, 1992). The process X( ) has a unique maximum if

βo > 0 (or minimum if βo < 0) at

C3σU
( 4 )

ΛϊβoCij yZβoCx

The result now follows from the functional mapping theorem (cf. Billingsley,

1968). I

THEOREM 3. Under the conditions of Theorems 1 and 2,

) - βo] Z N(C4A2L, C6), (5α)

and

Vntf[β{f) - β0] = V^[β(τ0) - βQ] + op(l), (56)

where L is defined in Theorem 1 and

The constants in equation (5a) are C 4 = B2/Bι and C$ = B\jB\, where Bι,

B\ and J32 are defined in Lemmas 4, 5 and 6 respectively.

The proof will be given in Section 4.
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REMARK 2. It is possible to show also that f and β{f) are asymptotically
independent. For brevity, the proof will not be given here.

REMARK 3. If h ~ n" 1/ 5, then Theorem 3 shows that β(f) — βo =
Op(n~1/5). This is exactly the classic "optimal" nonparametric rate for esti-
mating g'(τ0) when g 6 C2[0,1]. Note that it is possible to estimate ro better
than βo.

4. Proofs of Main Results. We begin with several preliminary defini-
tions and results. Let

Γ2

φ(t) = t+- K(t- v)v+dv, (6)
J-2

where t+ = max{0, t}. Note that φ{t) = 0 for \t\ > 1 by (A3) and φ{-t) = φ(t)
from the symmetry of K. We also tacitly assume that h is small enough so that
(r - 4Λ, T + Ah) G (0,1) for all y 6 (—A, A). Expression (6) can be simplified
somewhat by defining

= ί ujK(u)du.
7-1

It follows that

for t > 0.

We will also need a related kernel defined as K = 2K — K * K. This
new kernel is the result of "twicing" (Stϋtzle and Mittal, 1979) and is a fourth
order symmetric kernel with support [-2,2], i.e.,

f2 . - ί2

/ v?K(u)du = 0,j = 0,1,2,3, / tΛKXtOΛi ^ 0.

J-2 J-2

Let

φ(t) = t+- K(t- υ)v+dυ, (7)
J-A

and define
(/jSΓ)i(ί)= / ujK(u)du.

J-2
It can be shown that φ is symmetric with support [-2,2], and

^<) = <[i-(/ίr)o(<)]+(/ls:)i(*) (8)

for t > 0. We further assume that K is chosen so that

-uK(u)du φ 0.
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Several facts about φ are collected in the following lemma. The proof is
routine and is omitted.

LEMMA 1. Under the conditions above, φ is piecewise twice differentiabie,

ί # 0 , (9α)

ί2 ~ f2 ~ f2 ~
/ φ{u)du = / uφ{u)du = / uφ\u)du = 0, (96)

J-2 J-2 J-2
r2 l r2

/ u2φ(u)du =~— u4K(u)du φ 0, (9c)
j-2 12 y_2

and there exists a constant M < oo sucA tiat

hK«-ti;)-V<tO| <

for aJJ u, w.

LEMMA 2.

where qj = ^ - ^ * l s ^ e ^ Γ s t index such that qi > -1 and r = [2nh].

PROOF. Up to quadrature error, φ(qj) = 0 for all \tj - τ\ > h by the
second order assumptions (A2) and (A3). The result follows from standard
arguments and a substitution. I

LEMMA 3.

where qj is defined as in Lemma 2, i is the first index such that qι > —2 and
r = [4nh],

PROOF. It can be shown that 25 - S2 has typical element

nhK \TL

Because K is also a kernel, the result follows as in the last lemma. |

LEMMA 4. φ'Ύ(I - S)2φτ ~ Bλnh? for

r1

= 2 / φ(t)2dt.
Jo



138 ESTIMATION OF FUNCTIONS WITH DISCONTINUITIES

PROOF. Using Lemma 2,

φτ{I — S) φτ ~ h y, Ψ \9j)

gj€hi,i]

= n/i3 J φ2(u)du

The following result is similar, and the proof is omitted.

LEMMA 5. φ'τ(I - S)4φτ ~ Binh3 for

= 2 / ^(*)2<ft.
Jo

In the proof of the next lemma, we will use the fact that the assumptions
on / permit the decomposition f(t) = fo(t) + /i(ί) with

for Δi = f"(τ£) - /"(ro~). Here (ί - r o ) | = (t - r 0 ) 2 for t > τ0 and zero
otherwise. It follows that fo(t) € C2[0,l] and f{f(τ£) = /" ( r^) .

LEMMA 6.

T = τ0

where

PROOF. Assume first that / has two continuous derivatives at r. By
Lemma 3 with qι — (t{ - τ)/h and a Taylor series expansion,

t<€[τ-2Λ,τ+2Λ]

/ τ+2Λ
7lΛ

Λ-2Λ V Λ /

~nh2£j(u){f(T) + huf'(T)

= B2f"(τ)nh\

using the moment conditions (9b) and (9c) and finally (9a). This proves the
Lemma for r ^ TQ.
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Consider now the case τ = TQ. Arguing as above,

2
U£[τo,τo+2h]

r2
-^-nh4 I u2φ(u)du.
2 Jo

But by the symmetry of φ, this last expression is equal to

A ί2

—nh4 / u2ψ(u)du = B2A1nh4/2.

Thus for r = To,

~B2nh\f\τ-) + Δx/2)

= B2nh4A2.

LEMMA 7.

with
1 /

J53 = — / u3K(u)du.
6 Λ

PROOF. We again use the decomposition / = /o + /i Consider /i first
and recall that r = To + hy/Vnh3. Without loss of generality, take y > 0 and
apply Lemma 3 to obtain

t<6[τo,τ+2/ι]

nh4 Δi
/ [Φ(u - y/Vnh3) - φ(u)j u2du.

Now let

Using the fact that φ(2) = 0 and ^ is continuous and piecewise continuously
differentiate by (7), #i(0) = 0 and H{(0) = - /Q

2 u2φ\u)du. Integration by
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parts using (9a) shows that H[(0) = 2B3. Thus Hι(w) ~ 2wBz, and with
w = y/ynhβ we obtain

(φτ - φτj(l - S)2h ~ yBsAmh4/^.

The other term is handled similarly. Using a second order Taylor ex-
pansion for /o at To and (9b), it can be shown that (φτ — φTQ)f(I — S)2fo =
o(ynh4/Vnh3), hence the contribution from /o is negligible. I

LEMMA 8.

(φτ-φTQγ(I-S)2φT0~-B4y
2

for

B4 = l fuK(u)du.
* Jo

PROOF. Arguing as above,

(Φr - Φr0 )'(I - S)2φro - nh3 / [^(iι - y/VnΪP) - φ(u)} udu.
Jo

Letting

Hs(w) = / [ψ(u — w) - φ(u)]udu,
Jo

Lemma 1 implies that #3(0) = #3(0) = — /0 uψ'(u)du = 0. It can be shown

that H'z is differentiate at zero with #3 (0) = /0

2 uψ"{u)du = - JQ

2 uK(u)du,

so H^y/y/nhβ) - -B4y
2/(nh3). I

LEMMA 9. Let 7/ = ro + hz/y/nh3. Then

(φτ - <£T0)'(J - S)4(<^ - < τ̂o) - yzB5

with

B"=lolls έ{y)dy\ds

= 2 / / s(y - s)+K(s)K(y)dsdy.
Jo Jo

PROOF. Once again, by Lemma 3

(φτ-φT0)'(I-S)4(φη-φT0)

~ nh3 I (φ{u - y/V^hβ) - φ(uf) (ψ(u - z/y/ύh?) - ψ{uγ) du

= G(y/y/nlP, z/Vnh?),
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where

G(v, w) = / (φ(u - υ) - φ(u)j (φ{u — w) - φ(u)) du.

It can be shown that

0 £? 0,o) = 0,

z*2

( 0 , 0 ) = / ^ ' ( t t ) 2 ^ = #5 7̂  0.
7-2

Thus G(y/Vnh?, z/Vnh3) ~ B5yz/(nh3). I

LEMMA 10. Let ί = (l\,..., ίp)' be an arbitrary vector of length p, and let
y^j — l , . . . ,p, foe arbitrary elements of (-A,A). Then, Vn = Σj=i^j(0τ, ~

φτo)'(I ~ S)2ε 2> N(0,£'Σ£) with Σ = {yiyjB5}iij=hp, for B5 in Lemma 9 and

PROOF. We have E(Vn) = 0 and

= σ2 J E W " Φv>)V " ^)4(^fc - Φr0)

From Lemma 3

n n p

with summation in the first term above over the range

T = [r0 - Λ(2 + A/y/nh?),τΌ + h{2 + Ay

and C{ uniformly 0{{nh)~λ) in the last sum.

Let qi = (t{ — To)/h. Then, for r = TQ + hy/y/nh3, Lemma 1 yields

= \Φ(9i + y/vnh3) - φ(qi)\ <

It follows that the terms in the sum for ti G T have coefficients C{ of order
h/y/nh? = l/y/nh = 0{n-2^) if h ~ n"" for α > 1/5. Consequently, for any
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θ > 0, if the Si have common distribution function F e,

Y I (Cix)2dFε(x) < I'Σl I x2dFε(x)
i J\cix\>θ ~ Jmax\ci\\xi\>θ

= I'Hl I x2dFε{x) -> 0,
J\x\>cθy/nί^/h

and the Lindeberg condition holds. I

PROOF OF THEOREM 1. The mean, covariance and joint asymptotic nor-
mality conditions have been established in Lemmas 7-10. Thus to prove weak
convergence, we need only establish tightness. For this it suffices to show that

E(Cn(yi)-Cn(y2))2<c(yi-y2)
2

for some constant c and all n sufficiently large (Billingsley, 1968). But

E(Cn(yi) - Cn(y2))2 = Var(Cn(ifi)) - 2Cov(Cn(yi),Cn(W)) + Var(Cn(y2))

The approximation is uniform for y £ [—A, A].

PROOF OF THEOREM 3. To prove (5a), begin by writing

,#,(/-s)^ τ o

τ φ>τo(i-syφτj
The first term is asymptotic to

nh4B2A2

by Lemmas 4 and 6, establishing the asymptotic mean. The second term is
asymptotically equivalent to φ'TQ(I-S)2ε/(BιVnh3) by Slutsky's theorem and
Lemma 2 again, so it has asymptotic variance B\jB\. For normality, we have

+ Σ

For ti G [TO - h,τo + Λ], C{ = hψ(qi) with the other C{ = O^nh)'1). An
application of the Lindeberg condition gives the result.

It remains to establish (5b). Theorem 1 and the functional mapping
theorem imply that

nhΆ{β(τ)-β(τ0))Zy*
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with y* defined by (4). But this shows that y/nhs(β(τ) - β(τo)) = op(l), and
the proof is complete. I
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