
Change-point Problems
IMS Lecture Notes - Monograph Series (Volume 23, 1994)

CONFIDENCE SETS FOR A CHANGE-POINT
VIA RANDOMIZATION METHODS

BY LUTZ DUMBGEN

Uniυersitάt Heidelberg

Let X(i), i = 1, 2, , ra, be independent random variables with unknown
distributions P for i < nθ and Q for i > nθ. We investigate confidence sets for
the unknown change-point θ £ (0,1), which are based on randomization tests.
In a simple parametric model for P and Q these tests are chosen to be Bayes-
optimal in a certain sense. Then we imitate this method in a nonparameteric
framework. Asymptotic properties of the confidence sets are derived under weak
conditions allowing that θ tends to zero or one and P is getting closer to Q.

1. Introduction. For each n = 2,3,... let Xn = (Xn(l),Xn(2),...,
Xn(n)) be a vector of n independent random variables with values in a measur-
able space X. Suppose that Xn{ι) has distribution Pn for i < nθn and Qn oth-
erwise, where P n , Qn are unknown, different probability measures on X, and
the change-point θn is an unknown number in Θn := {1/n, 2/ra,..., ( n - l)/n}.
The problem treated here is to find a confidence set for θn.

There is an extensive literature on this problem for models, where Pn and
Qn are assumed to be in a specified parametric family of distributions. Sieg-
mund (1988) gives a good overview and references to other related work. Much
less is known about nonparametric confidence sets. One possible method,
which uses bootstrap tests, is described in Dumbgen (1991), but it relies on
asymptotic theory. Alternatively we investigate parametric and nonparametric
confidence sets that are both based on the classical method of randomization
tests; see also Worsley (1986) and Siegmund (1986, 1988): Let V be a class of
distributions containing Pn and Qn. For each τ 6 Θn let Sn = Sn{Xn) be
a sufficient statistic for the restricted model, where θn = r and P n ,Q n € V.
Then consider a version IP;1 \-\s) of £(Xn\Sn = s,θn = r) . For a given test
statistic Tn = Tn(Xn), one can compute the p-values pn(τ) = jδn(r, Xn), where

pn(τ,x) := F W ( T n > T n ( z
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Then
Cn = Cn{Xn) := {τeΘn: pn(τ) > a}

defines a confidence set for θn with level a £ (0,1/2). Note that this set is not
necessarily an interval. Now the problem is to find suitable test statistics Tn

and to study asymptotic properties of the corresponding sets Cn.

Most papers on estimators or confidence sets use restrictive conditions
on Pn - Qn and θn. One typical assumption is that θn is bounded away from
0 and 1, while Pn - Qn stays fixed or tends to 0 at a slow rate. A goal of the
present paper is to relax such restrictions.

In Section 2 we consider a simple normal shift model and derive a par-
ticular class of confidence sets, which are Bayes-optimal in a certain sense.
Various asymptotic properties of these sets are presented.

Motivated by the parametric methods in Section 2, we propose nonpara-
metric confidence sets in Section 3. They are based on permutation tests and
use a formal Bayes-test statistic. The validity is now guaranteed without any
restrictions on Pn and Qn. These sets have similar asymptotic properties as
the parametric confidence sets of Section 2. An interesting reference in this
context is Romano (1989), who discusses permutation tests of the hypothesis

Pn = Qn

The results of Sections 2 and 3 are proved in Section 4.

2. The Simple Normal Shift Model. In this section we assume that
Pn = Λ/"(μn,l) and Qn = N{vn,l) with unknown means μn,vn 6 R. Thus
Xn has an n-variate Gaussian distribution Af(m,I) with mean vector m =
miβrnμmVn) and identity covariance matrix /; generally m(r,α,6) denotes
the vector in R n with the first nr coordinates equal to a and the remaining
n — nr coordinates equal to 6.

At first let us discuss briefly what can be expected from any confidence
set Cn = Cn(Xn) with level α, where the size of Cn is measured by

dist(Cn,0n) := m a x | / - 0 n | .
tζC

For any fixed τ € Θn one can view l{r ^ Cn} as a test of the hypothesis
θn = T. Thus Ψ{r £ Cn} can not exceed the power of the Neyman-Pearson
test of (τ,a,b) vs. (θn^μn^un) with level α, which is given by

for any fixed α, b G R (Φ is the cdf of ΛΓ(0,1)). But with

Δ n := y/n{μn - vn)
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and k(s,t) := s A t — st, k(t) := k(t,t) for 0 < s,ί < 1 one can show that the

minimum of ||ra(0n,μn, vn) - ra(r, α, 6)|| over all α, b G R equals

{ k(θ )Δ 2

\τ-θn\Δ2

n.

Therefore a necessary condition for dist(Cn,0n) to tend to 0 in probability is
given by

k(θn)A2

n -> o o .

Furthermore the best possible result (in terms of rates of convergence) one can
expect is that

dist(C n A) = 0 p ( Δ " 2 ) .

Note that this lower bound for the size of Cn does not depend on θn. Another
interesting conclusion for # C n , the cardinality of Cn, is that

Therefore, if Δ 2 —> oo, a necessary condition for E ( # C n ) to be of order
0(nΔ~ 2) is given by

This follows from the known asymptotic expansion Φ(-x) = exp(-x2/2)/x (l+
a s x —>• o o .

Now we derive an explicit version of Cn. With Sn(t) := Σι<i<nt ^n(0?

the statistic Sn : = {Sn{τ)^Sn(l) - Sn(τ)) is sufficient and complete for the

restricted model, where θn = r. Therefore any confidence set Cn with exact

level a satisfies the condition

I l{τe Cn(x)} Έ>k\dx\s) = 1 - a for Lebesgue - almost all s 6 R 2 .

We want to minimize the Bayes-risk

ΛW(Cn) := Jl{τeCn(x)}M^(dx)

among all confidence sets with exact level α, where

M(τ) := ίλί(m(t,a + (l-t)b,a-tb),I^l{tφτ}Un(dt)H(da)db

for some finite measure H on the line and Un := n" 1 ΣtGΘn ^ ^n o ther words,
JHΓ is a prior for the mean θnμn + (1 - 0n)i/n of n " 1 ^ ! ) (which provides
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no information about 0n), Un (restricted to Θn \ {r}) is a prior for 0n, and
Lebesgue measure is a noninformative prior for μn - vn. This Bayes-risk is
finite, which is not obvious but can be shown quite easily. The density / of
Λf(τ) with respect to Λf(0, J) exists and has the form

f(Xn) = T'ng{SP)

for some function g > 0, where

T'n := Jk(t)-^2exP{Wn(t)) l{ί φ τ}Un{dt) ,

Tn := Jk(t)-^2exp{W

Wn(t) := k(t)-1Dn(t)2/2 ,

DnW

Furthermore, since

the Bayes-risk J?(τ)(Cn) can be written as

1 - r

Therefore the confidence set Cn, which is defined as in Section 1 with the
particular test statistic Tn above is Bayes-optimal among all confidence sets
with exact level α (note that T'n and Tn differ by a function of Sn only).

In the above derivation one could certainly replace Un with any other
finite prior for θn. From now on we consider the test statistic

Tn := Jk(t)βex?{Wn(t))Un(dt),

where β is any fixed number in [—1, oo). The resulting confidence sets Cn have
the following asymptotic properties:

THEOREM 1A. Suppose that

k(θn)A2Jloglogn ^ o o if β = - 1 ,

) - oo ifβ>-l.

Then
dist(Cn,θn) = 0p(A-2).
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There are two interesting special cases: Suppose first that μn — vn —

const φ 0. Then dist(Cn,0n) is of order Op(n~ι), provided that

((n0n)Λ ( n - n0 n ))/loglogn -> oo if β = - 1 ,

((nθn)A(n-nθn))/\ogn -» oo if/? > - 1 .

If 0n -> 0 e (0,1), then dist(C n,0 n) is of order O p ( Δ " 2 ) , provided that

Δ^/loglogn —• oo if β = - 1 ,

Δ£ -> oo if /? > - 1 .

The limiting behavior of Cn can be described as follows: Let pn(r) := 0

for r G [-oo,0] U [l,oo] and pn(r) := Pn{\p>r}/n) for r G [0,1] (the same type

of extension is used for any other process on Θ n ) . Further let ( ^ ( 0 ) r G R be

a two-sided Brownian motion on the line; i.e. (Z(r)) 7,> and ( ^ ( ~ 7 ' ) ) r > 0

 a r e

two independent Brownian motions.

THEOREM 2A. Suppose th&t the assumptions of Theorem 1A hold with

μ>n — vn —> 0. Then the process

{pn(θn + A ^ r ) ) r e H x > t 0 0 ]

converges in distribution in D[—oo,oo] to the process

{P(r))r6[-oo,oo] '

where p(-oo) := p(oo) := 0, and

p(r) := H{exp{-W(r)) Jexj>(W(t)) dt) ,

H(r) := P{ [exp(W(t)) dt > r\ ,

W(r) := Z(r) - |r|/2 forreΈL.

An explicit formula for H is given by Siegmund (1988). For our purposes

one only needs to know that H is continuous.

If μn - vn —> δ φ 0 one can obtain a similar result for the process (pn{θn +

j/n)) _ 0 ± 1 ±2 ' ^ e r e *^ e c o r r e s P ° n d i n g limit process (p*(j)) = 0 ± 1 ± 2 has
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the form

— OO<ί<OO

p*(j):=H*(exV(-W*(j))

H*(r):=ψ{ £ exv(W*(i))>r] ,
—oo<ι<oo

W*(j):=δZ(j)-δ2\j\/2.

Hence Cn behaves similarly as the optimal shift equivariant confidence set C5
in Siegmund (1988).

3. Nonparametric Confidence Sets. Here we make no parametric
assumptions on Pn and Qn. Similarly as in Section 2 define

Sn(t) := £ 6Xn(i) .

Again the statistic Sn '•= {Sn(τ),Sn(l) - Sn(τ)) is known to be sufficient
for the restricted model when θn = r and P n , Qn are arbitrary. An explicit
version of P ! T ) ( | S ! T ) ) can be described as follows: For r e Θn let π l τ ) be
uniformly distributed on the set of all permutations π of {l,2,...,n} such
that π(i) < nr for all i < nτ, and let Π^ and Xn be independent. Then

where πlτ)Xn := (xn(πlτ )(l)),.. .,Xn(πlτ)(n))).

As for the choice of Γn, let || | |n be a seminorm on the space of finite
signed measures on X, which can be a function of the random measure Sn(l).
Then we define

Tn := J k(tγexp(Wn(t))Un(dt) ,

Dn(t):=y/ίr\Sn(t)-tSn{l))

for some fixed β > — 1.

An essential technical requirement is that || | |n is bounded by a Kolmogorov-
Smirnov type norm || ||^ :

II \\n < II ||:F almost surely .

More precisely, \\m\\τ := supyG^ |ra(/)|, where T is a countable family of
measurable functions / : X —> [0,c], 0 < c < oo, and there are constants
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A, B > 0 such that the covering numbers

6 {1,2,...} : 3/χ, . . . , fk with man P((/ - /t )
2) < ί ί 2 V / G

are bounded by Au~B for all w G (0,1] and arbitrary probability measures P
on X. Different examples for || | |n and || \\jr can be found in Dύmbgen (1991).
When X = R one might take

\m\\nD := \V2 j m{x)n-1Sn{l){dx)

(proposed by Darkhovskiy, 1976), where m{x) := ra(-oo,#) - ra(z,oo) is a
symmetrized cdf of m. This seminorm || ||njr> is bounded by \[ΫΪ times the
usual Kolmogorov-Smirnov norm on the line.

The nonparametric confidence sets Cn have similar asymptotic properties
as the parametric ones of Section 2. With

the following result holds:

THEOREM 1B. Suppose that

k(θn) | |Δn |β/loglogn ->p oo if β = - 1 ,

k(θn) ||Δn||J/log(l/fc(βn)) - p oo if /J > - 1 .

Then

dist(Cn,fln) - 0 ( 2 )

Note that | | Δ n | | n is random in general. But it can often be approximated
by a nonrandom number. For instance it follows from Tshebyshev's inequality
that

I = δn + O p ( l) , (1)

where

δn := \/3 J An(x)Pn(dx) .

Here is a result about the limiting distribution of Cn for the particular semi-
norm || ||n£>. The proof in Section 4 could be extended to other seminorms;
see also Dύmbgen (1991).
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THEOREM 2B. Suppose that Pn, Qn converge weakly to a common con-
tinuous distribution P on the real line and

k(θn)δl/loglogn ^ o o if β = - 1 ,

k(θn)δ2

n/log(l/k(θn)) ^ o o ifβ>-l.

Then the process (pn(θn+δ~20)rcr_oo ooi converges in distribution in Z>[-oo, oo]

to the process (p(r)) r_ , defined in Theorem 2A.

In particular suppose that P n , Qn are normal distributions as in Sec-
tion 2, where μn — vn tends to zero. Then n~1(μn — vΎl)~2δ\ —> 3/π « 0.955.
Consequently the nonparametric p-values pn(0n + r) behave asymptotically as
the parametric p-values pn(θn + 3r/π).

4. Proofs. One can prove the preceding results in a common framework:
The quantities μn, P n , ι/n, Qn, Δ n as well as the random variables 5n(/), Dn(t)
are viewed as points in a normed linear space (B, || | | ) . In the normal shift
model B = R and || | | n : = | | | | : = | |, whereas in the nonparametric model
B is the space of bounded functions on T and || || := || ||JΓ In order to
distinguish between the cases β = — 1 and β > —1 we use superscripts ( ) ^
and ( )(>) respectively for Tn and other related quantities.

4.1. Auxiliary results, I. In this part we regard || | |n and Dn(θn) as fixed
and write

Dn{t) = k(t,θn)Yn + Zn(t) , Yn :=

so that Zn{θn) = 0. The following quantities play a crucial role:

Ln - m a x

Mn(σ) := σ"1/2 max | |Zn(ί) | | and
< e Θ | ί ί | <

m a x | ί - ^ Γ 1 ! ! ^ * ^ ) ! ! f o r σ > 0 .
t£Θn:\t—θn\>σ

Here is a crude but useful bound:

PROPOSITION 1. If Ln = 0p(l), then

and

θn)) +exV{4k(θn)
1'2Wn(θn)))
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PROOF OF PROPOSITION 1. One can write

wn(t) = ||

where

p(t,θ) :=

The function p( ,θ) is strictly increasing on (0,0] and strictly decreasing on
[θ, 1) with p(θ,θ) = k{θfl2. By the triangle inequality,

Wn(t) < p(t,θn)
2\\Yn\\2

n + log\og(l/k(t))Ln V ί e θ n . (2)

In p a r t i c u l a r ,

Wn(t) < 2Wn(θn) + \og\og(l/k{t))Ln < 2Wn(θn) + \og\og(2n)Ln,

and thus

j ^Unidt) (log(2n))Lnexp(2Wn(0n))

On the other hand one can easily show that p(t,θn)
2 < 2k(θn)

3/2, if θn < 1/2
and t > Jfc(0n)

1/2, or, if θn > 1/2 and ί < 1 - k{θn)
λl2. Consequently,

i » < Jk(tflog{l/k(t))Lnexv{p(t,θn)
2\\Yn\\2

n)Un(dt)

< Op(l)

0,(1) j k(ψ-VI2Un(dt) ^V(2k{θnfl
2\\Yn\\l)

^n)) + Op(l)exP(4k(θny/2Wn(θn)).

The bounds in Proposition 1 are useful for small values of k(θn) and
moderate values of Wn(θn). However, if Wn(θn) is sufficiently large, one can
approximate Wn(t) - Wn(θn) by

wn(t) := ||rn||n
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and Tn by ψnf^Wniθn)-1 exp(Wn(θn)) times

where Θlo) := {t e Θn : \t - θn\ < 2k(θn)}:

PROPOSITION 2. Suppose that Ln = Op(l), Mn(σn) = O p ( l ) and Nn(σn)
Op(l) for any ήxed sequence of numbers σn > 0. Further suppose that

k(θn)\\Yn\\2

n/loglogn -H. oo if β = - 1 ,

k(θn)\\Yn\\2

n/\og(l/k(θn)) - , oo i f / 3 > - l .

^iynllJ-oo, then

On the other hand, ifn'^YnWl = 0(1), then

fn = Op(l) , f-1 = Op(l) and

Tn =

PROOF OF PROPOSITION 2. At first some useful inequalities are listed that
can be proved with elementary calculations: For arbitrary t,θ £ (0,1),

< \t-θ\,

p(θ,θ)-p(t,θ) < k(θ)-V2\t - θ\ and (3)

\p{θ,θ)-p{t,θ)-k{θ)-V2\t-θ\l2\ < k(θ)-V2\t-θ\2 .

Further, let

η := (<V0(l-ίΛ0))/(<Λ0(l-<V0)) > 1.

Then,

η-1 < k{t)-λk(t,θ) < 1 and r/"1 < k(t)-χk(θ) < η. U

Now let λ > 1 and 7,7n > 0 be arbitrary fixed numbers such that ηn —>
oo. The set Θn is split into the two subsets Θn(λ) and Θn \ Θn(λ), where
Θn(λ) is the set of all t G Θn such that

λ"1 < ( ί ( l -0 n ) )/ (*n( l -<)) < λ .



118 CONFIDENCE SETS FOR A CHANGE-POINT

Then (2) and (4) imply that

/
Θ n\Θ n(λ)

! k(tfexp{Wn(t))Un(dt) = Op(exp(2λ-1Wn(θn))) for β > -1 .
</βn\Θn(λ) V '

(5)
Furthermore

max: | | J? n (ί)-*(ί,β n )y n | | = Op{k(θn)
1'2) . (6)

For Dn(t) - k(t,θn)Yn equals Zn(t), and ||Zn(<)|| is not greater than

( λ - l)^2k(θn)^2Mn{(X- l)k(θn))

for all t € Θn(λ), by (4).

Now the set θ n (λ) itself is split into two subsets Θn(λ,7) and Θn(λ) \
Θn(λ,7), where Θn(λ,7) is the set of all t G Θn(λ) with \t - θn\ < 7||yn | |^2.
On the one hand,

wn(t) - wn{θn) < -\t - θn\\-' (l + O p(i))| |yn |β/2

Vΐeθn(λ)\Θn(λ,7n)

For Wn(t) - Wn(θn) is not greater than

= - | ί - ^n|(A;(ί)-1fc(ί,(9n)(l - 2en) - kφ-^t - θn\e2

n)\\Yn\\2j2

<-\t-θn\\-\l-2en-X2e2

n)\\Yn\\2j2

for all t € θ«(λ) \ θ n ( λ , 7 n ) , provided that en := 7n1 / 2iV r a(7 n | |yn | |-2) < 1/2;
the last displayed inequality is a consequence of (4). In particular, if κn :=
λ " 1 ^ - 2en - X2e2

n)l2 > 0, then

k(t)βexV(Wn(t))Un(dt)

On)) I exp(-κn\t-θn\\\Yn\\2

n)Un(dt)
^Θn(λ)\θn(λ,7n)
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Consequently,

/ k(t)βexp(Wn(t))Un(dt)
Qn(λ)\®n(x,Ίn) ( 8 )

For the moment suppose that n" 1 ! ! !^!!^ tends to infinity. Tn is obviously

not smaller than

The bounds in (5) are of smaller order than that, provided that λ > 2. To-

gether with (8), where ηn := n~1 | |yn | |^/2, one can deduce that Tn is not

greater than n~1A;(^n)
/3exp(Wn(^n)) (l + op(l)). This establishes the first part

of Proposition 2, and for the rest of this proof we assume that ft""1!^!^ is

bounded.

As for the approximation Tn, note first that

Θn(3)cΘl°) and Θn(oo,7) C θ n (( l - WniβnY1 ft)'1)

whenever 0 < 7 < 2W(θn). This is a direct consequence of (4). In particular,

Θn(°o,τ) C Θn for sufficiently large n. Now one can show that

exp(Wn(ί))W»(Λ) = op(l) and
θiθ)\Qn(θO,Ίn)

ί
\\Yn\\l / exp(Wn(ί)) Un{dt)

Mo)nθn(oo,7)

/
\ Mo)nθn(oo,7) J

For 1^(0+1^-^111^11^/21 is not greater than | |yn | |n | |Zn(ί) | |nforaJlί G θLo),
and

i iy i i i izωi i < {
I 7n 1 / 2iVn( 7 n | |yn | |- 2) |t - θn\\\Yn\\l if ί ^ Θn(oo,7n) .

In particular, (9) implies the boundedness of Tn and T~x.

Finally,

max |WW(<) - Wn(θn) - Wn(t)\ = op(l) if T ^ A Γ 1 - 0 . (10)
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For W«(ί) - Wn(θn) - Wn(t) can be written as

g |n (\\p(t,θn)Yn + k{t)-ll2Zn

Yn - 2-lk{θn)-1l2\t - θn\Yn

+ (\\p(t, θn)Yn + k{t)-ι'2Zn{t)\\n - k{θnfl
2\\Yn\\n)

2 /2 ,

and thus its absolute value is not greater than

k{θnfl
2\\Yn\\l \p(θn,θn) - p(t,θn) - k{θn)-^\t - θn\l2\

+ (P(θn,θn)-p(t,θn))2\\γn\\l +

< (l + λ 1 /^ +1 + \&)ilk{9n)-χ\\rn\\-*,

where €n := ηZ ^n(7n||i'n||n2)? s e e (3) and (4). One can use (10) for showing
that

k(tγexj>(Wn(t))Un(dt) (11)

n(θn)-1 exv{Wn(θn)) fn (1 + op(l)) if l2

nWn{θny
ι -+ 0 .

Forθn(oo,7n)isasubsetof Θn(λn), where λn := (l - T n ^ ^ ) " 1 / ^ " 1 ^ 1;

in particular, Θn(λ,7n) = Θn(oo,7n) C Θn for sufficiently large n. Thus

k(tfexp(Wn(t)-Wn(θn)) = k(θn

where max ί 6 Θ n ( λ , 7 n ) |rn(<)| - op(l), by (4) and (10). Finally, k{θnf exp(ϊ7n(ί))

can be written as k(θn)
β+1Wn(θn)-1\\Yn\\lexp(Wn(t))/2, and one can deduce

(11) from (9).

The inequalities (5), (8) and (11) with λ > 2 yield the last assertion in
Proposition 2. |

Here is a result that can be used to verify the assumptions about i n , Mn

and Nn in Propositions 1 and 2:

LEMMA 1. Let (V(t)) Q be a B-vaiued stochastic process such that

< i ί e x p ( - L σ - y ) Vσ,7/>0,
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where K > 1, L > 0. Then

p{ max (nog\oξ(l/t))-1/2\\V(t)\\>η\ < CKexp(-Lη2/C) and
W€Θn:ί<exp(-2) >

< CKexp(-Lη2/C)

t

for all σ,η > 0, where C > 0 is a universal constant.

PROOF OF LEMMA 1. The function h(t) := (ίloglog(l/ί)) is nonde-

creasing on (θ,exp(-2)]. Therefore P{max ί e Θ n : ί < e x p ( _ 2 ) Λφ" 1 ! !^*) ! ! >

is not greater than

P i max \\V(t)\\ > hφ/^
. _ x / 1 lί€Θn:2 <nί<2 +l

0<ι<(logn-2)/log2 " "

< K J2 exp(-Xi/2/i(27n)2ii2-'-1)
0<J<(logn-2)/log2

= K Σ ( ) - L r ' 2 / 2

0<t<(logn-2)/log2

</ίΓ(log2)-1 / ° g n

Λ-log2

< iί(2/log2 - l)(Iτ/2

provided that Lη2/2 > 1. This yields the first assertion. As for the second

part,

max

t = l

4.2. Auxiliary Results, II. The p-values pn can be represented as follows:

For each r 6 Θn let Dn = (Diτ (0)^0 ^ e a s t o chastic process defined on

the same probability space as Xn such that

= Dn(τ) and £ ( ^ | X n ) = Ψ^(Dn\S^) . (12)
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For any statistic Gn = Gn(Dn,θn) let Gl τ ) := Gn(D(j\τ). Then

Mr) = nτt] > Tn\Xn) •

Explicitly, in the normal shift model let B be a Brownian bridge, which
is independent from Xn. Then Dn =c (k(t,θn)An + B(t))teΘ , and one may
define

where Z^τ\t) := B(t) - A;(r)-1fc(/,r)j0(r). The validity of (12) foUows essen-
tially from the fact that B(τ) and Z^ are independent.

In the nonparametric model let D^ be defined as Dn with lίn Xn in
place of Xn.

The following two results are essential in the proof of Theorems 1A-B
and 2A-B:

n^SnVn) - Pn\\ V \\(fl - T ^ ) " 1 {Sn(l) - Sn(θn)) - Qn\\

(in the normal shift model Pn and Qn stand for μn and vn respectively).
Moreover, there is a function b : (0, oo) —> [0,1] such that (for suitable versions

P(ZW > η\Xn)W(M<r\σ) > η\Xn) W ΊP{N^\σ) > η\Xn)

< b(η) VτeΘn Vσ,τ/>0 and b(η) -> 0 as η -» oo.

In the normal shift model, (13) is obvious, while (14) can be easily derived
from Lemma 1. For it is well-known that the Brownian bridge B satisfies the
assumptions of Lemma 1, and the process Z^ can be represented as

with two independent Brownian bridges B^ and

In the nonparametric model, (13) follows from a maximal inequality for

empirical processes such as in Alexander (1984); see also Dϋmbgen (1991,

Lemma 1). (14) follows from Lemma 1 and Lemma 2 below. Just note that

conditional on sίτ) the two processes (^n τ )(<)) t € θ n ίt< τ

 a n d {Zn]\t)) teθnlt>τ

are independent and behave similarly as the processes ( r 1 / 2 5 n τ ( / / r ) ) ί e Θ mf<τ

and ((1 - τ)χl2Bn-nτ ((ί - r)/(l - r))) respectively, where B2, B3,...

are defined as follows:
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Let xn = (xn(l), .,#n(ft)) be a fixed point in Xn, let Rn := n" 1 Σ?=i
δXn(i)<> and let Πn be uniformly distributed on the set of all permutations of
{1,..., n}. Then define

Bn(t) := V» 1

nt

LEMMA 2. TAere are constants K,l > 0 depending only on T such that

max | | 5 n ( ί ) | | j - > σ 1 / 2 τ/ j < Kexp(-Lη2) V σ , τ / > 0 .

PROOF OF LEMMA 2. Since (jBn(/)) ί€Θ =£ (~ΰ n ( l — *))teθn

?

J l l ^ W l l ^ ^ ^ } < 2P{max ||5
I t<σ J U<l/2

Hence one may assume without loss of generality that σ 6 Θn Π [0,1/2]. Now
define e := σλ'2η and

A, := {||5n(ί)||jr > € and | |5 n (θ) | |^ < e for s < t} .

Then,

Ψ(A) < V{\\Bn(σ)\\r > eβ} + ^ ψ{At Π {\\Bn(σ)\\r < c/4}} ,
Θ

and one can show with the triangle inequality that At Π j | |5 n (σ) | | j^ < β/4} is
a subset of

At Π {|| {Bn(σ) - Bn(t)) - (1 - t)-\σ - t)(Bn(l) - Bn(t))\\^ > eβ) .

The event At is measurable with respect to Π n ( l ) , . . . , Πn(nί), and conditional
on Π n ( l ) , . . .,Un(nt) the random measure (Bn(σ) - Bn(t)) - (1 - 0~ 1 ( σ ~
t)(Bn(l) - Bn(t)) behaves similarly as (1 - tf'2Bn.nt ((σ - ί)/(l - t)). Con-
sequently the asserted inequality follows via Tshebyshev's inequality from the
following one:

There exist K*,Lf > 0 depending only on T such that

< l + κ'\/(L' - λ) v,λ e (o, V) v* G θ n. ( 1 6 )
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The aforementioned maximal inequalities for empirical processes imply that
(16) is true, if Bn(t) is replaced with

nt

Sn(t) := xΛΓ'

where JEΊ,..., Xnt are independent with distribution Rn. But

for arbitrary convex functions h on the linear span of <$Xn(i),..., f*xn(n)i accord-
ing to Theorem 4 of Hoeffding (1963); see LeCam (1986, Lemma 16.7.2) for
an elegant proof. I

4.3. Proof of Theorems 1A-B. For any fixed number e > 0 let An be
events in the underlying probability space such that P(A n) > 1 — e + o(l).
All subsequent statements are meant to hold along (An)n. According to (13),
the An can be chosen such that (Yn)n meets the requirements of Proposition 2
and

n-nβnr^ίnClJ-ίnίβn^-Qnl = O^1 | |Δn | |n)

in particular, | |yn—Δn | | = o( | |Δ n | | n ) . Hence one has to show that dist(Cn,βn) =
θ( | | y n | |~ 2 ) . In addition one may assume that the following four conditions
hold:

Ln < ηi (17)

for some ηι > 0 (by (14));

Tn > η2k(θn)
β{\\Yn\\2

nAny1exV{Wn(θn)) (18)

for some 772 > 0 (by Proposition 2);

max NFnll^liyJ')-AKrΓ^rAM - 0, (19)

for any fixed λ > 4 (by (4) and (6));

Wn(τ)-Wn(θn) < -η3\r - θn\\\Yn\\2

n VrGθn(λ)\θ n (λ , ί ϊ 4 ) (20)

for some 7/3,̂ 4 > 0 (by (7)).

Note that Cn is a subset of {r 6 θ n : ?n(r) > Γn}, where qn(τ) stands

for the quantile max{r e R : P ( τ i τ ) > r\Xn) > a). According to (14) one
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may apply Proposition 1 to all processes Dn\ T G Θn. Together with (2) this
implies that

) m +exp(4??1A;(r)1/2loglog(l/A;(r))))

• exp(2 />(r,^)2 | |yn | |2)

<7?6exp(2/!)(r,^)2 | |yn | |2) and

< ί ? 6(lognΓexp(2 /o(r,^) 2 | |yn | |2)

for some 775,776 > 0 and for all n > n\ with a fixed integer n\. Together with
(4) and (18) this implies that

Cn C Θn(λ) Vn>n2

for a suitable n2 > πi. But (19) and (4) show that one can apply Proposition 2

to all Dn\ T G Θn(λ), simultaneously for proving that

gn(r) < η7k{τ)β(\\Ynr)\\2n Λ n)~l exp{Wn(τ))

r)) V r € 0 n ( λ ) Vra > n 3

for some 777,77s > 0 and some 713 > n2. Hence

C n n θ n ( λ ) C Θn(λ,τ?4V (ifcMogfo/ϊft))) V r c > n 3 ,

according to (18) and (20). I

4.4. Proof of Theorems 2A-B. For an arbitrary fixed β > 0 let the events
An be as in Section 4.3, and again all subsequent statements are meant to hold
along (An)n. According to (1) one may assume that

\\δ^An\\l - 1 , (21)

where δn := Δ n in the normal shift model and δn := Λ/3JAnPn(dx) in the
nonparametric model. In particular, H^^nlln "^ l The proof of Theo-
rems 1A-B shows that

max pn(θn + δ~2r) —>• 0 whenever ηn —• 00 .
V\>Ίn

Hence it suffices to show that (pn(θn + δ~2r))r€r 1 converges in distribution

to (̂ (7*)) r 1 for any fixed 7 > 0.
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Let λn := (1 - ηk{θn)-χδ-2)~l. Then 1 < λn -»• 1, and Θn(λn) contains
all r e Θn with \τ — θn\ < */δ~2. It is shown below that the (An)n can be
chosen such that

uniformly in (u.i.) r G Θn(λn) V7 > 0.

Further one may assume that

Tn =

Wn(τ) - Wn(θn) - Wn(τ) -> 0 u.i. r e Θn(λn) ,

according to Proposition 2 and (10). It follows from (4) and (19) that

k(τ)/k(θn) - , 1 , Wn(τ)/Wn(θn) - , 1 and U C ^ I I n - 1

ni . r € Θn(λn).

Consequently pn(τ) can be written as

^ > exp(-Wn(r))fn(l

where rn(τ) -> 0 u.i. r 6 Θn(λn). But now one can apply Proposition 2,

(9), (22) and the Continuous Mapping Theorem to all processes D n , Dn\

T G Θn(λn), for showing that

-7,7J

ίex?{W(t))dt)
-7,7]

and

c(Jexp(W(t))dή

u.i. r G Θn(λn). Since if is continuous, this implies that pn(τ) can be uni-

formly approximated by H(exp(-Wn(τ))Tnj, and the desired result follows.

It remains to prove claim (22). For notational convenience we first con-
sider the normal shift model: Here
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provided that

- yP2\t - r|/2| <

But min τ 6 Θ n ( λ n ) k(τ)Y^2 -> oo and

- r|/2|

- r|/2 - ί n ^ )

) + 7lCX ( τ ) 2 - 11/2

for all t <Ξ Θn with |ί - τ\ < jδ~2; see (23). Together with (14) it follows that

one may replace w£\i) with δnZ^\t) - Sl\t - τ|/2 when checking (22). But

one can deduce from (15) that for any fixed 7 > 0,

u.i. r G Θn(λn), and (22) follows for the normal case.

As for the nonparametric model, note first that

max \\(nτ)-1Sn(τ)-p\\v\\(n-nτ)-1(Sn(l)-Sn(τ))-p\\ - 0, (24)
τ G Θ n ( λ n ) II II II II

where || || stands for the Kolmogorov-Smirnov norm times y/Ϊ2. For H(nr)"1

Sn(r) - P\\ can be approximated by

Winτ^S^-inθ^SMW = ̂ -^(1 - τ)γM - (1 - $n)Yn\\ ,

and one can easily show that the right hand side tends to zero u.i. r £ Θn(λn);

see (19). The measure {n - nτ)~ι (Sn(l) - Sn(τ)) can be treated analogously.

Similarly as in the normal shift model one can show that Wn(t) may be

replaced with

J(x)Rn(dx) - δl\t-τ\/2

< T

-

when checking (22); here Rn denotes n 1 5 n ( l ) . One can write

i f ί <

τ



128 CONFIDENCE SETS FOR A CHANGE-POINT

where

Γ Rn(Xn(i)) - (nr)- 1 Σj<nr Rn{Xn(j)) i f * <
\/Tl X (%\ # = \

n \ Λn(Xn(i)) + (n - nr)-1 £ j > n τ Λ»(*»(i)) i f i >

These vectors Xn have coordinates in [—ŷ ~ > Λ/^~ ]> a n ( * ^oth Σί<nτ x n (0

and Σ ί > n τ ^ n (0 are zero. Moreover one can deduce from (24) that both

r-'ΣiKnr^ii)2 and (1 - r ) " 1 Σ t > n τ ^n\ι)2 converge to 1/3 u.i. r €
Θn(λn). Thus Lemma 3 below implies that the conditional distribution of

ί Z£\τ + 6-2r)(x) Rn(dx)) .

given Xn converges weakly to C( (Z(r)) ,~ .,J u.i. r 6 Θn(λ) for any fixed

7 > 0 . " I

In order to formulate Lemma 3 let the random permutation Πn be as
in Section 4.2, and let xn = (x n (l), . . .,xn(n)) be a vector in R n such that
Σ?=i χn(i) = 0 and ΣΓ=i xn(i)2 = 1. Then define

bn(t) :=
l<i<nt

LEMMA 3. Suppose that maxi<κn7~ 1xn(i) 2 —• 0, where ηn > 0 are
constants such that ηn —• 0 and nηn —>• oo. T i e n

V7 > 0 .

This can be proved with the techniques of Billingsley (1968, chapter 4).
For a different method of proof see Dϋmbgen (1993, Theorem 3).
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