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Suppose X\, X2, are independent observations, having an unknown con-
tinuous initial distribution, possibly becoming stochastically larger after an un-
known point of time v. We develop a nonparametric detection scheme which has
100% asymptotic relative efficiency for detecting a change of scale of exponen-
tial observations. We apply the scheme to detection of change of the residual
variance in a regression model. We use the scheme to construct a very effective
method for detecting a change of the success probability p of a Bernoulli process
with unknown baseline.

1. Introduction. Suppose observations accumulate sequentially, and
one is on the lookout for their becoming stochastically larger (or smaller).
If the initial distribution F$ is known, then one can apply classical surveil-
lance methodology, such as Shewhart (1931), Cusum (Page, 1954) or Shiryayev
(1963) and Roberts (1966) control charts. However, in many practical situa-
tions, the baseline FQ is not known at the onset of surveillance. For instance,
if one were interested in monitoring the thickness of the ozone layer in the
atmosphere over a certain region, previous knowledge may not be available to
provide a baseline. Recently, the Shiryayev-Roberts approach has been suc-
cessfully employed to deal with such situations. Pollak and Siegmund (1991)
studied detection of a change of a normal mean when the initial mean is un-
known. Gordon and Pollak (1990) provide a theorem for evaluating the ARL to
false alarm for a wide class of surveillance problems which admit an invariance
structure. In addition, they study (1989, 1991) nonparametric procedures for
detecting a change of stochastic order. These procedures are highly effective
for detecting a change of the mean in a sequence of normally or approximately
normally distributed observations. Their importance is three-fold: they enable
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a nonparametric treatment in case little is known about the distribution of the
observations, they do not require knowledge of baseline center and scale, and
they constitute robust methods in a wide variety of cases where a parametric
family is thought to be approximately appropriate. It should be noted that the
ARL to false alarm of parametric surveillance methods is notoriously sensitive
to misspecification of distribution characteristics (cf. van Dobben de Bruyn,
1968, Section 2.3).

Though highly efficient (well above 90% relative efficiency) for detecting
a change in the mean of a normal distribution, the aforementioned nonpara-
metric schemes are not generally as efficient for detecting a change in the scale
of exponential-like distributions, as shown by Table 1. (We will describe in
Section 3 how the figures in Table 1 are obtained.)

Table 1: Asymptotic relative efficiencies of Gordon and Pollak's (1991)
NPSRI scheme geared to detect a change from an exp(0) to an exp(7#)

distribution (7 fixed, θ unknown) with respect to the parametric
Cusum scheme (7 fixed, θ unknown), when the post-change distribution

actually is exp(7#).
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It is apparent from Table 1 that Gordon and Pollak's (1991) NPSRI
scheme is asymptotically very efficient for detecting a change from exp(0) to
exp(7#) when 7 < 1. It is also fairly efficient for 7 > 1 if 7 is not large. When
7 is moderately large (or larger) - and we will argue in Section 4 that this case
is of applied interest - efficiency decreases.

Here we develop a nonparametric surveillance scheme which has a 100%
asymptotic relative efficiency for detecting a 7-fold change in the parameter
of an exponential distribution. This procedure is simpler than the NPSRI,
both conceptually and technically. Because of this, and because of its higher
asymptotic relative efficiency in the exponenetial case, one would prefer this
procedure whenever observations are close to being exponenetial, such as geo-
metric observations or certain gamma-like observations. We develop operating
characteristics of this scheme. We apply the scheme to detection of a change
of the residual variance in a regression model. We also adapt this procedure to
the problem of detecting a change in the success probability p of a Bernoulli
sequence by regarding the geometrically distributed times between successes
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as the basic observations. This application is especially useful because it en-
ables a treatment of the problem without knowledge of the baseline p. We
find that the procedure is very efficient, even when the initial value of p is not
small.

2. The Procedure and its ARL to False Alarm. We follow Gordon
and Pollak's (1989, 1991) approach in constructing a Shiryayev-Roberts type
of stopping rule.

Our basic setup is one where a sequence of independent random variables
{Xi}ι<i<oo is being observed sequentially, such that Xi,...,X^_i ~ Fo and
Xv,Xί/+i, ~ F\. None of Fo, JFi, v is known, but it is assumed that FQ and
F\ are continous and the Xi,v < i < oo, are stochastically larger than the
Xj, 1 < 3 < v- Let rn be the nth sequential rank; i.e. rn = Σ?=i l(-^« - -^*)
We will base the surveillance on the sequence ri, Γ2, .

Let Pk and Ek denote probability and expectation under this setup when
v = k. When throughout the sequence there is no change, probability and
expectation will be denoted by P^ and EQO. The Shiryayev-Roberts approach
calls for computing the sequence of likelihood ratios

and the sequence of statistics

Rn =
k=\

and declaring at
NA = min{n|iίn > A}

that a change is in effect. The technical difficulty lies in computing Λ£: al-
though the denominator of Λj£ is obviously 1/rc! whatever Fo be, computation
of the numerator is obviously much more complex.

Gordon and Pollak (1989, 1991) proposed that one should try to find
any two distributions F^Ff such that if F = F£ and F\ = i^*, then it is
possible to compute the Λg's. The Λ '̂s (hence the .Rn's and NA) will thus
become well-defined statistics, their values depending on the values of the
Xi's only through their sequential ranks. One may study the distribution of
the sequence i2χ, i22, and of NA even if in reality the true pre-change and
post-change distributions differ from F£,Ff. This distribution is essential for
computation of E{NA\v = oo), the average run length (ARL) to false alarm,
which is the standard index for quantifying the propensity for false alarms of a
detection scheme. The crucial point in the argument is that when there is no
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change {y = oo), the distribution of Rι,R2,-' is the same for all F0's: even
if Fo differs from FQ , the increasing transformation ( F Q ) " 1 ^ applied to the
observations would transform them into F£-distributed observations without
changing their ranks. Hence, whatever the true F o be, the ARL to false alarm
will be the same as when the true pre-change distribution is F£. Therefore,
without loss of generality, the ARL to false alarm can be computed under the
assumption that Fo = F£.

As mentioned in the introduction, Gordon and Pollak (1989, 1991) chose
F0*,i7 with densities fξ(x) = exp{-|z|/2}/2, ft(x) = paexp{-ax}l(x >
0) + (1 - p)βexp{βx}l(x < 0), because they had in mind the problem of de-
tecting a shift of mean of normal-like observations. Here we are contemplating
detection of a change of scale of exponential-like observations. Our choice is
therefore

fζ(x) = exp{-x}l(x > 0)

/*(x) = aexp{-ax}l(x > 0)

where a φ 1 is a fixed (known) constant. (/£ is a representative of the post-
change distribution. We will deal later with specification of α.) To see that
this works, we need the following lemma (which can be proven directly or by
induction):

LEMMA 2.1 (Savage, 1956). Let ϊi,Ϊ2? be exp(l) iid random variables.
Let x\,x<ι, be a sequence of positive constants. Then

Now regard the numerator of ΛjJ:

Pk(ru ,r n ) = Pkl X i n d e x Of < X i n d e x o f < < ̂ index of)
v smallest 2nd smallest largest 'i n d e x Of i n d e x o f index of

smallest 2nd smallest largest
obs obs obs

1 or α 1 or a 1 or a

(1 or a)i

where (1 or α) t equals 1 or α depending on whether the serial index num-
ber of the ith smallest observation is less than k or not. Formally, denote
p(i,n) = Σj=i l(xj < xi) a n d define the inverse permutation r( ,n) via
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p(τ(i, n),n) = i for i = 1, , n. Define

(1 Ίίj<k

(ot a j > k.

Thus

and so

As mentioned above, our stopping time is

NA = min{n | iίn > A} (1)

where

The Poo-characteristics of NA are summarized in Theorem 2.2, whose proof is
given in Section 6.

THEOREM 2.2. Let α ^ l , 0 < α < oo be a specified parameter and iet
iV^ be as in (1). If, when v = oo, Xi,X2, are M and their distribution is
continuous, then

EooNA > A

and

d^f Πm EOONA/A={
A

{
^ α-l-logα Π α > 1.

We are now ready to describe our procedure, which we will denote by
NPSRE (for Non Parametric Shiryayev-Roberts geared to the Exponenetial
distribution).

The NPSRE Procedure. Suppose observations Xi,X2?
# are indepen-

dent, initially having an identical continuous distribution, and that at an un-
known time v they become stochastically larger (or smaller). Suppose further
that the requirement of a monitoring procedure for change-point detection is
that its ARL to false alarm be no less than a prespecified bound B. The
NPSRE scheme requires that the statistician

1. Compute the statistic Rn after each observation.
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2. Stop and declare after the first time that Rn exceeds A = B/A (where
Δ is defined in Theorem 2.2) that a change is in effect. (A conservative
choice for A is A = B.)

We discuss the choice of the tuning parameter a in the next section.

Note that the computations involved in implementing the NPSRE pro-
cedure are conveniently programmable. The following (Figure 1) was pro-
grammed in the MATLAB programming language, and is the basic code used
in the application in Section 4. See Math Works (1989) for a description of
the MATLAB language.

3. Speed of Detection, Choice of Parameter and Relative Effi-
ciency. Suppose the change is at time v and no false alarm was raised. If
N is the stopping time used to monitor the process, the lag in detecting the
change is N - (v - 1). We adopt EV(N — v+ 1\N > v) as a basic index of the
speed of detection. (See Lorden, 1971, for a different index.)

Because v is unknown, one's summary index of the speed of detection
has to be a functional of the sequence {Ek(N — k + 1\N > &)}; k = 1,2, .
Note that the case v = 1 cannot be differentiated from the case v = oo.
Therefore, EΎN = EooN « B. One would expect Ek(N - k + 1\N > k) to
be comparable to B when k is close to 1. In other words, one cannot expect
the procedure to detect an early change quickly. We follow Roberts (1966) in
choosing lim^oo Ek(N — k + 1\N > k) as our primary index of expected lag.
Frequently, Ek(N - k + 1\N > k) is well-approximated by its limit as k —• oo,
even for values of k which are small relative to B (cf. Gordon and Pollak, 1989
and 1991; Pollak and Siegmund, 1991).

Suppose that Go(x) is the real (continuous) initial c.d.f. of the obser-
vations, and that G\(x) (continuous) is the c.d.f. of the observations after a
change. Without affecting the ranks, one can transform the observations to
make their distribution prior to a change exp(l). The transformation is

Q(z) = -log(l-GoOr)). (2)

With this notation, we will state a result concerning the speed of detection of
the NPSRE.

THEOREM 3.1. Let Go and G\ be distributions as specified above where
it is known that GQ > G\ (or alternatively Go < Gι), and let /Q and /j* be as
in Section 2. Define

f = logα + (1 - α) Γ Q(x)dG1(x) (3)
J—oo
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where the transformation Q(x) is specified in (2) and where α < 1 (or α > 1

if Go < Gi). Denote by Bε the set (4ε, - log(6ε)). Let v(A) and ε{A) be

functions such that as A —>• oo

(i) (logA)P1{Q(X1)ίBε(A)}-*0

(ii) (logA)ε(A)log(ε(A))-0

(iii) v{A)ε\A)I'logA -> oo.

If 0 < i < oo, then

Ey(NA-v+l\NΛ>v) ^ 1
lim sup sup < 7.

The proof of Theorem 3.1 is analogous to that of Theorem 3 of Gordon

and Pollak (1991) and will be omitted. Note that Theorem 3.1 gives only an

upper bound to the expected lag. We conjecture that this upper bound is a

limit, but have not been able to prove it for change-points whose magnitude

is very large.

By virtue of Theorem 3.1, if Go and G\ are the suspected before and

after change distributions, then one should choose α so as to minimize f.

Differentiating (2) yields

α = 1/ Γ Q(x)dG1(x).
J—oo

For example, if Go = exp(0) and G\ = exp(7#) then α = 7. As another

example, if Go = N(0,σ2) and Gx = N(δσ,σ2), then α = 1 / / ^ -log(l -

Φ(x))φ(x - 6)dx. For 6 = 1 numerical evaluation yields α = .45.

We obtain a measure of the asymptotic relative efficiency (ARE) of the

NPSRE procedure as A —> 00 by comparing ξ~1logA to lim^oo Ek(Np —

k + 1\NP > k) where Np is the stopping time which would have been used in

the case that Go and G\ were definitely known to be the pre-change and post-

change distributions, and Np is designed to have the same false alarm rate as

NA (i.e.: E^N1* = E^NA)- By the results of Lorden (1971) (or Pollak, 1985),

limj^oo Ek(Np -k + l\Np>k) = (log A)/ f ^ log ((dG1/dG0)(x))dGλ{x) +

0(1), where 0(1) is bounded as A -> 00. Therefore, the ARE of the NPSRE

relative to both Cusum and Shiryayev-Roberts parametric procedures is

,. (logA)/jroolog((dG1/dG0)(x))dG1(x)
= limlim 7 τ r τ τ

A->oo ξ-1 log A + 0(1)



14 AN EFFICIENT NONPARAMETRIC DETECTION SCHEME

When Go = exp(0), GΊ = exp(7<9) and a = 7, the ARE of the NPSRE
procedure is 100%. Therefore, if the observations are approximately expo-
nential both before and after a change, the NPSRE procedure is a robust
surveillance scheme, and would be better than Gordon and Pollak's (1991)
NPSRI scheme (whose ARE is given in Table 1).

In the case Go = N(0,σ2), GΊ = iV(σ,σ2), the ARE of the NPSRE (with
a = .45) is 85%. So, if the problem is detecting a change in a normal mean,
the NPSRI scheme (which has an ARE of 97%) is preferable to the NPSRE.

4. An Application to Mass Calibration. One of the activities of
the National Institute of Standards and Technology (NIST) is precision mea-
surement of mass standards. Mass standards are calibrated at the NIST by
comparison measurements which relate the mass of a client's standard to the
NIST standard kilograms. The NIST has a large stake in monitoring its cal-
ibration process to ensure its validity and the validity of NIST statements
regarding the process. Surveillance is maintained by a series of check stan-
dards which are calibrated with the client's weights. The kilogram level is the
critical level in the calibration process because weights of higher and lower
denominations are calibrated relative to the NIST kilograms through a series
of intercomparison designs. The calibration design involves 6 intercomparison
measurements: t/i = the difference between the two NIST's 1 kg standards, t/2
= the difference between one of the NIST's two 1 kg standards and the client's,
i/4 = the difference between the other of the NIST's two 1 kg standards and the
client's, j/3 = the difference between the one of the NIST's two 1 kg standards
and the sum of the client's 500, 300, 200 gr standards, y5 = the difference be-
tween the other of the NIST's two 1 kg standards and the sum of the client's
500, 300, 200 gr standards, and ye = the difference between the client's 1
kg standard and the sum of the 500, 300, 200 gr standards. One can write

Vl = μi+€u ί/2 = μ2 + ̂ 2, 2/3 = μ3 + C3, 2/4 = ̂ 2-/^1+^4, 2/5 = ̂ 3~Ml+^5, 2/6 =
μ3 - A*2 + ̂ 6 where the €j are independent and identically distributed. The
standard assumption is that the €j have a JV(0,σ2) distribution, σ unknown.
Least squares estimates βι, μ2? A3? & of μi, μ2> A*3? 0 are easily obtained. Note
that under the normality assumption, 3σ2/σ2 ~ χj3y Croarkin, Hagwood and
Pollak (1993) applied Shiryayev-Roberts control charts to a sequence of μi's
and σ's. Their analysis of the σ sequence is based on the parametric assump-
tion of normality. In this section we will present a nonparametric analysis.
The data are based on check standard determinations made at a sequence of
217 (nonequally spaced) time points between 1975 and 1988, and are given in
Table 2. They are plotted in Figure 2.
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Table 2: Estimates in Milligrams of the Standard Deviations

of Weight Difference Measurements, made at the NIST between 1975 and 1988.

The figures are to be read from top to bottom.

.0217 .0339 .0275 .0179 .0182 .0321 .0260 .0307 .0102

.0118 .0250 .0376 .0423 .0173 .0162 .0291 .0237 .0445

.0232 .0391 .0482 .0228 .0305 .0296 .0415 .0381 .0454

.0210 .0365 .0290 .0211 .0340 .0663 .0267 .0279 .0240

.0265 .0164 .0326 .0256 .0392 .0266 .0326 .0459 .0409

.0317 .0203 .0338 .0170 .0407 .0241 .0147 .0142 .0570

.0194 .0274 .0381 .0221 .0367 .0204 .0578 .0504 .1492

.0316 .0317 .0373 .0196 .0124 .0140 .0355 .0310 .0469

.0274 .0338 .0245 .0192 .0387 .0233 .0323 .0241 .0275

.0361 .0399 .0212 .0237 .0207 .0222 .0323 .0349 .0180

.0362 .0399 .0194 .0294 .0094 .0267 .0582 .0233 .0106

.0320 .0275 .0216 .0422 .0430 .0267 .0309 .0175 .0252

.0096 .0362 .0322 .0315 .0167 .0117 .0102 .0539 .0523

.0238 .0177 .0482 .0424 .0167 .0500 .0521 .0349 .0275

.0224 .0356 .0165 .0303 .0351 .0102 .0459 .0246 .0376

.0117 .0424 .0272 .0159 .0412 .0267 .0514 .0503 .0215

.0175 .0487 .0336 .0289 .0134 .0306 .0498 .0206 .0403

.0314 .0413 .0452 .0363 .0143 .0147 .0191 .0388

.0445 .0463 .0459 .0423 .0226 .0324 .0191 .0332

.0122 .0431 .0359 .0140 .0320 .0079 .0483 .0226

.0132 .0275 .0251 .0132 .0373 .0143 .0309 .0456

.0409 .0724 .0254 .0290 .0252 .0398 .0590 .0156

.0206 .0297 .0243 .0132 .0454 .0205 .0427 .0377

.0295 .0054 .0284 .0251 .0226 .0205 .0590 .0471

.0391 .0340 .0094 .0234 .0241 .0247 .0486 .0592

It is of interest to detect a change in the standard deviation - both an

increase and a decrease should be detectable. We chose to represent an increase

by a change from σ to 2σ, and a decrease by a change from σ to σ/2. If we

were to choose an NPSRI statistic (Gordon and Pollak, 1991), then the optimal

choice of parameters is .2056, 1.2439, .8984 for a,β,p when monitoring for an

increase and 4.7435, .5316, .0237 for a, β, p when monitoring for a decrease; the

ARE's (relative to an underlying normal distribution of the observations) are

.9985 and .8828 for increase and decrease. If we choose the NPSRE method

of this paper, calculation of the optimal choice of α and the ARE by the

formulae of Section 3 yields a = .1992 and ARE = .9939 for detecting an
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increase and a = 5.9207 and ARE = .9926 for a decrease. The difference in
ARE is negligible when monitoring for an increase, but the NPSRE clearly
has an advantage when monitoring for a decrease. Since we are interested in
detecting any change, our statistic is Rn = \(Rn(a = .1992) + i2n(α = 5.9207))
(where Rn(a = x) is the Rn of Section 2 with x as the parameter value).
By Theorem 2.2, Δ α = . i 9 9 2 = 4.6703 and Δα=5.92o7 = 1.8415. By appealing
to Theorem 2 of Pollak (1987), we would expect that for our (two-sided)
procedure EOONA/A « l/(.5/Δα=.i992+.5/Δα=5.9207) = 2.6415. For instance,
if we'd require E^NA > 370 (the ARL to false alarm of the 2-sided Shewhart
scheme), we would choose A = 370/2.6415 = 140. A plot of Rn for the
data of Table 2 is given in Figure 3. (For diagnostics regarding underlying
assumptions, see Croarkin, Hagwood and Pollak, 1993. Among other things,
there is no evidence of serial correlation.)

For the sake of comparison, we bring the parametric analog in Figures 4
and 5 (see Croarkin, Hagwood and Pollak, 1993). Here E^NA is about the
same as in the nonparametric scheme for A = 140. (The parametric analog is
a 2-sided scheme for a change assuming normality and representing an increase
by a change from σ to 2σ and a decrease by a change from σ to cr/2.) For
an ARL to false alarm of 370, the NPSRE scheme would have stopped just a
little before the parametric scheme (at the 47th observation). The difference
between the schemes would be greater for larger ARL to false alarm; the
NPSRE discerns the change just before the 50th observation as a much clearer
one. Also, the NPSRE is much less sensitive to the outlier 207th observation.

5. Surveillance of a Bernoulli Process with Unknown Baseline.
A problem often encountered in practice is surveillance for an increase in the
success probability p in a sequence of Bernoulli trials. For example, when
conducting surveillance of congenital malformations in newborn infants, one
may monitor for a rise in the incidence rate of a particular malformation.
As another example, consider the percentage of washing machines requiring
service under the terms of a 3-year guarantee. The company manufacturing
the machine may be on the lookout for a deterioration (or an improvement)
of the service percentage. If the congenital malformation being monitored is
of a newly discerned type (for which no data have been collected in the past),
or if surveillance is started on a regional basis (where existing data do not
specify regionally), then the baseline incidence rate is unknown. Nonetheless,
surveillance for an increase in the incidence rate may be of interest. (The
same applies to the washing machine example.) The technical difficulty is
that classical procedures do not allow an unknown baseline, and Pollak and
Siegmund's (1991) approach will not work (due to Bernoulli variables lacking
an invariance structure).
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Here we will primarily regard the problem of surveillance for an increase
in the success probably p. In this case, it is quite clear that one will raise
alarms only right after a success occurs. (One would not conceive raising an
alarm right after the birth of a healthy baby.) Therefore, one may regard the
geometrically distributed number of Bernoulli trials between successes as one's
basic set of observations.

When p is small - as is often the case; e.g. surveillance of congenital mal-
formations - the geometric (p) distribution can be approximated by an exp(p)
distribution. When p is not very small - as may be the case in the washing
machine example - the quality of the approximation deteriorates. Since, as
mentioned in Section 1, the ARL to false alarm is very sensitive to misspecifi-
cation of the baseline distribution, employing parametric surveillance schemes
based on the exponential distribution may be undesirable.We propose to em-
ploy a NPSRE scheme instead. We show that the ARE of the NPSRE relative
to the schemes based on the geometric distribution with known baseline is
very high, even for relatively large values of p.

In order to apply the NPSRE, the observations must be continuous. To
overcome the discreteness of the geometric distribution, we propose that a
ί7(0, l)-distributed value be subtracted from each geometric observation, in-
dependently for each observation. (This may be interpreted as a way of dealing
with ties between observations.) We obtain Theorem 5.1, whose proof is de-
ferred to Section 6.

THEOREM 5.1 When monitoring a sequence of Bernoulli trials with an
unknown success probability p for an increase of the success probability, the
asymptotic relative efficiency (ARE) of the NPSRE scheme with parameter
α > 1 (applied to the geometric-£/(0,1) observations described above) rela-
tive to the parametric Cusum scheme monitoring a sequence of geometric(p)
observations for a change to geometric(αp) with known p(< 1/α) is

(The theorem is also valid for α < 1 - when the change is a decrease -
but in this case there is no justification to base the procedure on the geometric
observations.)

Figure 6 indicates that the ARE is very high for most practical purposes.
For example, when using a NPSRE with α = 2 for monitoring for a doubling
of the success rate, even at p = .25 the ARE is above 90%.
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6. Proofs.

PROOF OF THEOREM 2.2. To prove that EOONA > A, note that for fixed

fc, Λ£ is a PQO - martingale with unit expectation, so that Rn — n is a Poo -

martingale with zero expectation. Apply the optional sampling theorem to

obtain EOO(RMA - NA) = 0. Hence E^NA = E^RN^ But by definition

RNA > A. Hence E^NA > A.

To prove the second part of Theorem 2.2, we need to validate Conditions
1A, IB and 1C of Theorem 1 of Gordon and Pollak (1990). By virtue of
this theorem, the values of Δ appearing in the theorem are a result of the
memorylessness of the exponential distribution when a < 1 and standard
renewal theory when a > 1.

VERIFICATION OF CONDITION lA. Rewrite Λ£ as

Here g(x) = z logα - log( l + (α - l)x). Note that g(0) = g(l) = 0 and that g

is convex, so that g(x) < 0 for 0 < x < 1. Hence, given €1,62 > 0, there exists
63 > 0 such that g{{n -k + 1)1 n) < -63 for all e\n <k<{\- 62)^. Note that

'ϊίfeΣ]M7(r(j ,n),fc)V

Let m = 7163/(41 logo;|) and note that

n / 1 Σ71- l(τ(j n)
> —

Denote:

j=n+l-t

j = ί ^» - ^00^1 > _ e f o r a l l . ^ 1

I ^ooάl J
Note that there exist positive constants C\ and C2 such that for all e > 0

Therefore, there exist postive constants C3 and C4 such that

Poo(Hc) < C 2
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where Hc is the complement of H. On H, for small enough e,

j,n),k)
lQg Vlx^^bϊ 1 + 1 >Σlog(l-^)>-2ne

t=l \ n r α n / t=l

So, in taking e < 63/4, we get on H that

Λn

VERIFICATION OF CONDITION IB. This is completely analogous to the veri-
fication of Condition IB in Gordon and Pollak (1989), and is therefore omitted.

VERIFICATION OF CONDITION 1C. If a > 1, then Λ£+1/Λ£ < a for all
1 < k < n + 1, from which Condition 1C is clearly seen to hold. If α < 1, the
proof is completely analogous to the verification of Condition 1C in Gordon
and Pollak (1989), and is therefore omitted.

PROOF OF THEOREM 5.1. Here

G0(x) = P(geometric(p) - C/(0,1) < x)

Gι(x) = P(geometήc(ap) - 17(0,1) < x).

Clearly, a is the correct tuning parameter value for the NPSRE. In order to
compute ξ of (3), we must evaluate J Q(x)dG\(x). Here

G0{x) = 1 - q[x] + pq[x\x - [x]) for x > 0

= ap(l - ap)W for x > 0
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where q = 1 — p. Hence

J Q(χ)dG1(χ) = J - log(l - Gι(x))dGχ(x)
00 rk+1

= V / - \og(qk) - pqk(x - k))ap(l - apfdx
k=0 k

00 ,

= - ^ α p ( l - αp)fc< arlogζg* - pg*(a: - k)) - x+
I._n ^fc=o

kpqk)\og(qk-pqk(x-k)\\k+1

- P ? f c ί\k

k=o

= -^otp(l - ap)3-1 ij log q - -logq- l j

= 1+ 1 1 - -

Now

Γ-l

This accounts for Theorem 5.1.
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•/, This is a program for computing the sequence of

X statistics of a one-sided Shiryayev-Roberts

'/, nonparametric detection scheme based on Lehmann

'/, alternatives (Bell-Gordon-Pollak)

Ί% Input: data row of en data points

•/, alpha representative parameter of post-change

•/, distribution, alpha < 1 if post-change

'/, distribution is stochastically larger

'/, than pre-change

y, Output: RBGP row of en Shiryayev-Roberts statistics

en = length(data')

RBGP = zeros(l:en)

lambdank = zeros(en);

for n=l:en,

datan = data(l:n);

[dummy,invrankt] = sort(datan')

invrank = invrankt'

for k=l:n,

timegek = (invrank > =k)

timelk = ones(l:n) - timegek

g = alpha*timegek + timelk

reverse = cumsum(ones(l:n))

verse = reverse(n:-l:1)

sumg as cumsum(g(n:-l:l))

isumg = sumg(n:-l:l)

iavg = log(isumg./verse)

lndenom = sum(iavg')

lambdank(n,k) = exp((n-k+l)*log(alpha)-lndenom)

end

end

RBGP = (sumίUambdank)'))

Figure 1: A MATLAB program for computing the statistics Rn



C. BELL, L. GORDON, and M. POLLAK 23

Figure 2: Plot of the data appearing in Table 2
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Figure 3: A Plot of Rn for the 2-sided NPSRE (mass of .50 each for a
and a = 5.9207) applied to the data of Table 2
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n

Figure 4: A plot of Rn for the 2-sided parametric Shiryayev-Roberts scheme
(mass of .50 each for a change to 2σ and to σ/2) applied to the data of Table
2
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Figure 5: Detail of Figure 4
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Figure 6: AREE of NPSRE for detecting an increase of the success probability
p of a Bernoulli process, when a = 1/5 ( ), a = l/3( ) and
a = 1/2 ( ).




