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In this paper we review some current work on comparison of experiments

of some multivariate distributions. First we describe some results regarding

comparison of experiments of univariate distributions that belong to two-

parameters exponential families and that satisfy the semi-group property.

Then we discuss comparison of experiments of vectors that arise from an

additive model based on univariate two-parameter exponential families of

random variables. These models give rise to vectors of random variables

which are positively dependent and these are compared to vectors of in-

dependent random variables with the same marginals. It is shown that

positively dependent random variables contain less information than inde-

pendent random variables. Finally we describe some results regarding the

comparison of experiments of exchangeable and nonexchangeable normal

random vectors. In particular, we show how the majorization ordering can

be used to identify various information orderings of multivariate normal

random vectors which have a common marginal density.

1. Introduction

Let X = (Xi,X2? ,Xn) and Y = (YΊ, Y2,...,Yn) be two random vec-

tors such that Xι =d X2 =<* =d Xn =d Y\ =d Y2 =d =d Yn, where

'=</' denotes equality in law. That is, X and Y have the same univariate

marginal distributions and all these marginals are equal to each other. Let

θ G Θ be an unknown parameter and assume that the distributions of X and

Y depend on θ. Denote the distributions of X and Y by F$ and G#, respec-

tively. In this paper we will be concerned with the amount of information
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about θ that is contained in FQ and in Gβ We will review some current work
regarding comparison of experiments which are based on vectors which may
have dependent random variables. The basic intuitive conjecture, that we
can prove in some instances, is that if Xi,X2> ->Xn are more 'positively
dependent' than Yi,Y2> ,Yn then they should contain less information
about θ than the Ij's. This is clearly the case in the extreme case where the
Yj's are independent and identically distributed and the Xj's are all equal
to each other with probability one. But we will show that in some cases,
even if the Xj's are not necessarily totally dependent, but only positively
dependent, then they contain less information about θ than the Yj's. We
will show that in other cases the information content is a monotone function
of the 'strength of dependence' of the underlying random variables. In still
other cases the information content is shown to be monotone in the amount
of 'homogeneity' of the underlying random variables.

2. Background and Preliminaries

The notion of comparison of experiments, as introduced by Blackwell
(1951, 1953) and others, concerns a partial ordering of the information con-
tained in the experiments (or in the distributions of the underlying random
variables). For a review of the basic ideas and related results see Goel and
DeGroot (1979), Lehmann (1988) and Torgersen (1991).

DEFINITION 1 The experiment associated with Y is said to be at least as
informative for θ as that associated with X, in symbols X <(t j Y or FQ <^
GQ, if for every decision problem involving θ and every prior distribution on
Θ the expected Bayes risk from F$ is not less than that from GQ.

Recently many useful results have been obtained by researchers on the
comparison of various types of experiments. For example, Hansen and Torg-
ersen (1974) considered the comparison of normal experiments, Torgersen
(1984) and Stepniak, Wang and Wu (1984) studied the comparison of lin-
ear experiments, Hollander, Proschan and Sconing (1985, 1987) and Goel
(1988) gave results comparing experiments with censored data, and Lehmann
(1988) discussed the comparison of location parameter experiments. Re-
cently Eaton (1991) discussed a group action on covariances with applica-
tions to the comparison of linear normal experiments.

Lehmann (1959, p. 75) noted the following sufficient condition:

PROPOSITION 2 The information inequality X <(t ) Y holds if there exists a
function φ : IRn + r —• Πtn and an r-dimensional random vector Z (r > 1),
which is independent ofY and having a distribution which does not depend
on θ, such that X =d φ(Y,Z).
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Proposition 2 is the basic technical tool that we will use throughout this
paper. LeCam (1964) noticed that the condition of Proposition 2 is necessary
as well when the family {F$,θ G Θ} is dominated.

In certain cases an ordering, via comparison of experiments, can be ob-
tained for a given family of distributions. For example:

(a) Let Xi,X2? ->Xn be independent and identically distributed Pois-
son random variables with mean t\θ and let Yι,Y2>...,Yn be independent
and identically distributed Poisson random variables with mean t^β, where
*i < 2̂ &re known real numbers and θ is an unknown parameter. Then
X <(j) Y. This easily follows from Lehmann (1959, p. 77).

(b) Let Xι,X2,...jXn [Yi,Y2,...,yn] be independent and identically
distributed normal random variables with mean θ and standard deviation
σ<ι [σi], where θ is unknown and σ\ and σ2 are fixed such that 0 < σ\ < σ2.
Then X < ( ι ) Y (Goel and DeGroot (1979)).

(c) Let Xι,X2,.. -ί-Xn βiϊYiϊ ϊYn] be independent and identically
distributed gamma random variables with shape parameter a and scale pa-
rameter bθkl, [bθk2] where α > 0,6 > 0,&i > 0, and k2 > 0 are fixed and
θ > 0 is an unknown parameter. If hi < k2 then X <μj Y (Goel and
DeGroot (1979)).

Note that in each one of these examples the distributions of the Xt 's and
of the Yi's belong to a particular univariate family of distributions. More
explicitly, in each of the examples we have a family of univariate densities
ftfi-, with respect to the Lebesgue or the counting measure, depending on a
parameter (i,0) G Θi X Θ2 C Ht2 of the form

(1) fiβ{x) = c(t,θ)a{x,t)e«Θ>

where c,a, and φ are some real-valued Borel-measurable functions defined
on Θi X Θ2, Ht X Θi, and Θ2 respectively. In addition to the Poisson,
normal and gamma densities also the binomial and the negative binomial
densities, among others, are of the form (1). See Shaked and Tong (1990)
for the particular explicit expressions of the functions c,α, and φ for these
densities.

The families of density functions mentioned above also have the semi-
group property. Formally a family of density functions /tt#, with respect to
the measure μ, is said to have the semi-group property in the parameter
t e θ i , where 0 ! = (0,oo) or θ i = {1,2,...}, if

ftift * St2fi = Λi+t2,0> *i € θ i , t2 G θ

Here * denotes the convolution operation:

ft2A
χ) = J ftiMfkA* -
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Roughly speaking, if ftj has the representation (1) and also satisfies the
semi-group property then the parameter / can be thought of as a 'sample
size'. The following result then is not surprising (for a proof see Shaked and
Tong (1990)):

PROPOSITION 3 Let ftj be a density of the form (1) with 0χ = (0, oo) or
Θi = {1,2,...}, which has the semi-group property in t. Let Ftfi denote the
distribution function associated with the density ftyQ. Then

Ft2ft >(0 Ftuθ whenever t2 > t\.

By BlackweU (1953), (XUX2, . . .,*») <(*) (Yi, Y2,. - M when Xj <{i)

Yjj j = 1,2,..., n, and the coordinates of these two vectors are independent.
Thus from Proposition 3 we obtain:

COROLLARY 4 Let Xj and Yj have the densities fsβ and fτ<& of the form
(1) (j = l,2,...,n) for some functions c,a} and φ with Θi = (0,oo) or
Θi = {1,2,...}. Suppose that the Xj's are independent and that the Yj's
are independent. If SJ < Tj, j = 1,2,... ,n, and ftβ satisfies the semi-group
property in t, then

It follows, using Proposition 2, that X\ + X2 + h Xn <(*)

3. Comparison of Vectors of Independent and
Dependent Random Variables

In examples (a) - (c), or more generally in Corollary 4, the vectors X
and Y consist of independent random variables. The main thrust of this
section is to obtain results in which the assumption of mutual independence
of the Xj's is relaxed. In the next section we will also relax the assumption
of independence of the Y/s.

It is well known that in certain statistical applications the assumption
of independence is not realistic. For example, in many reliability problems
the lifetimes of components in a coherent system are positively dependent.
This happens when the system involves several common units or when the
components are subjected to the same set of stresses. In statistical decision
theory, if the random variables X\, X2,..., Xn are conditionally independent
and identically distributed given some random quantity Γ, and if the distri-
bution of Γ is nonsingular, then, after unconditioning, the joint distribution
of X\)X2, . ,Xn is positively dependent by mixture (Shaked (1977)). Thus
the random variables are not independent.
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In this section we let X = (Xi,X 2 , - - ,Xn) and Y = (Yi, Y2,..., Yn) be
two random vectors, the distribution of each depending on some parameter
0. We consider random vectors such that marginally Xj =d Yj whatever
the value of 0 is. We suppose that for each 0 the I j 's are independent but
the Xj's may be positively dependent in a certain fashion. Then one would
expect Y to be at least as informative as X. This can be easily seen in the
extreme case where P{X\ = X2 = ••• = Xn} = 1- Then the information
contained in X is the same as the information contained in one observation,
Yi, say, whereas the information contained in Y is larger, since it is based
on n observations.

Shaked and Tong (1990) proved that this is indeed the case for a special

model of dependence. They considered the following model. Let

X =

v{ \

andY =
U2 + V2

v n )
where i/i,t/2> ?tfn a r e mutually independent with distributions depend-
ing on 0; Vί,V2? ?Kι are independent and identically distributed, in-
dependent of the £/j's, and with a common distribution depending on 0;
U[,U2,.. , U'n, V{ are all independent; and for each 0,

U'j =d Uj and V{ = d Vu 3 = 1,2,...,n.

It is then seen that the Yj's are independent whereas the Xj's are positively

associated [e.g., in the sense of Esary, Proschan and Walkup (1967)].

In the following theorem it is assumed that all the univariate random

variables mentioned above have densities of the form (1) with respect to a

σ-finite measure μ and for some fixed functions c, α, and φ. More specifically

we suppose that the density of Uj and Uj is ftλfi and that the density of Vj

is ft2,θi j = l,2,...,ra (thus, in particular, the density of V\ is ft2iθ) As

before, μ will be either the Lebesgue measure or the counting measure. The

proof of the theorem can be found in Shaked and Tong (1990).

THEOREM 5 Let X and Y be two random vectors as described in the pre-
ceding paragraph. Then

(2) X <(,) Y.

Theorem 5 complements Corollary 4. In the latter two vectors of in-

dependent random variables are compared. In the former only one of the

vectors consists of independent random variables, but the two random vec-

tors have equal marginals.
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Theorem 5 shows how some multivariate Poisson random vectors [as de-
scribed, e.g., in Johnson and Kotz (1969, Chapter 11, Section 4) and refer-
ences therein] can be compared in the comparison-of-experiments ordering.
Similarly, multivariate gamma distributions [as, e.g., in Johnson and Kotz
(1972, Chapter 40, Section 2)] and multivariate negative-binomial distribu-
tions can be compared. Theorem 5 also shows (after some calculations) that
a normal random vector with independent and identically distributed com-
ponents, all with mean 0, is more informative than a similar normal random
vector with the same marginals but with positively correlated permutation
symmetric components, when the common variance is known. In the next
section we discuss even a more general result for normal random vectors.

4. Comparison of Normal Vectors with a
Common Marginal Distribution

Shaked and Tong (1990) proved the following monotonicity result. Note
that in the following result not only it is seen that independence is more
informative than positive dependence, but more than that, it is seen there
that negative dependence is even more informative than independence.

PROPOSITION 6 Let X and Y be two vectors of n normal random variables
with means θ, a common known variance σ2 > 0, and common correlation
coefficients p2 and p\, respectively. Then

X < m Y for all ^— < />i < p2 < 1.
w n — 1

Let Xp denote a multivariate normal random vector with means 0, a com-
mon variance σ2, and a common correlation coefficient p >
— l/(n — 1). Here the unknown parameter is θ and the parameter p in-
dexes the distribution of Xp. From the proof of Proposition 6 in Shaked
and Tong (1990) it is seen that, for a fixed />, the permutation symmetric
multivariate normal distribution is monotone in the sense <μj as a function
of the sample size n (the larger n is, the more informative is the vector X^
provided p < 1).

The Fisher's information corresponding to the distribution of Xp is

6 ( D

where Xp is the average of the components of X^ and
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Here R(/>) is the covariance matrix of X p . Thus, in this case, the two
experiments based on X P l and XP2 can be ordered in the ordering <^ if,
and only if, they can be ordered according to the Fisher's information. In
general the equivalence of these two orderings is not always true (see, e.g.,
Hansen and Torgersen (1974)).

In Shaked and Tong (1985) some notions of partial ordering of exchange-
able random variables by positive dependence are introduced, and for ex-
changeable normal variables the orderings reduce to the ordering of the
correlation coefficients. Consequently, from Proposition 6 it follows that
if exchangeable normal variables are more positively dependent then the ex-
periment is less informative. A question of interest is then what can be said
for normal variables which are not exchangeable.

Shaked and Tong (1992) provide an answer to this question by show-
ing how a more general partial ordering of positive dependence yields a
monotonicity result for nonexchangeable normal variables with a common
marginal distribution.

In order to introduce the partial ordering of positive dependence for
multivariate normal vectors we first need some preliminaries. Consider an
n-dimensional vector of nonnegative integers given by

5=1

for some r < n. (The assumption of monotonicity of ks in s is not an essential

restriction. If it does not hold then the random variables can always be

relabeled, if necessary, yielding the assumed monotonicity.) For arbitrary

but fixed 0 < p\ < p2 < 1 let us define a correlation matrix R(k) given by

(4)

1 for i = j ,

p2 ίovi^

Pi otherwise,

where fco = 0.

If X has a correlation matrix R(k) then its components belong to r
groups, with group sizes &i,&2> >&r, respectively, such that the correla-
tions within groups are p2 and the correlations between groups are p\. This
type of correlation matrices arise in many applied problems in linear mod-
els and multivariate analysis. For example, if in a family of four children
the first two [the last two] are brothers/sisters, but any pair between the
two groups are half brothers/sisters, then under the additive genetic model
the vector of measurements ( X L , X 2 > - ^ 3 > X | ) ? of a certain biological vari-
able, will have means 0, variances σ2, and a correlation matrix R(k) with
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k = (2,2,0,0). For references on the applications of such a correlation ma-
trix in an agricultural genetic selection problem see, e.g., Tong (1990, pp.
129-130).

Let k* be another vector of nonnegative integers such that

(5) k = ( * ? , . . . , * ; . , o , . . . , o ) , * Ϊ > * 5 > • . • > * ; • > ! ,
s=l

for some r* < n, and let R(k*) be defined similarly. Let X and Y have,
respectively, the multinormal distributions

(6) Λ/;(01,σ2R(k)) and Λ/;(01,σ2R(k*))

for some k, k* satisfying (3) and (5), respectively, where θ G IRis the common
mean, σ2 > 0 is the common known variance, and 1 = (1,...,1). Clearly
the Xj's and the ϊj's defined in (6) have a common univariate λί{θ,σ2)
distribution. In the special case k = (ra, 0,..., 0) and k* = (1,1,. . . , 1) both
X and Y are exchangeable normal vectors with correlation coefficients />2,/>i,
respectively. However they are not exchangeable otherwise. A result of Tong
(1989) states that if k y k*, where V denotes the majorization ordering,
then the Xj's tend to "hang together" more than the Y/s, hence are more
positively dependent in the sense that

n n

(7) E J ] φ{Xi) >Ej[ φ(Yi) for all φ : Ht -* [0, oo),
i = l ι=l

provided the expectations exist. [Note that (7) implies that
Coττ(φ(Xi),φ(Xj)) > Coττ(φ(Yi),φ(Yj)) for all φ] The question of inter-
est is whether this partial ordering of positive dependence also provides a
partial ordering for information on θ in the sense of Definition 1. Shaked
and Tong (1992) answered this question in the following theorem:

THEOREM 7 Assume that X and Y satisfy (6) where θ E IR is the unknown
parameter, σ2 > 0 is the common known variance, and 0 < p\ < P2 < 1 are
arbitrary but fixed. Ifky k*, then X <^ Y.

The proof of Theorem 7 given by Shaked and Tong (1992) depends on
an application of Torgersen (1984). Eaton (1991, Remark 2.3) noted that it
is also possible to give an alternative proof of the theorem based on a direct
verification.

A related result which follows from the remarks after Proposition 2.2 of
Eaton (1991) is the following. Let R(k) be as defined in (4), but now, in
order to point out the dependence of R(k) on pi and on ρ2 we write it as
RP l j P 2(k) where 0 < p\ < ρ2 < 1.
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THEOREM 8 Assume that X has the multinormal distribution
Λfn(θl,σ2ΊlPliP2(k)) and that Y has the multinormal distribution
Λfn(θl,σ2ΊlpιiPt (k)) where θ 6 IR is the unknown parameter, σ 2 > 0 is
the common known variance and k is fixed partition vector as described in
(3).

(a) Ifp2 = p'2 > pi > pi then X < ( f ) Y.
(b) Ifp2 > p'2 > pi = pi ίΛen X < ( i ) Y.

EXAMPLE 9 In order to illustrate the result in Theorem 7 let us consider

the special case n = 4. Let R4 [Ri] be the 4 x 4 correlation matrix with all

the correlation coefficients being P2 [pi], and let

R3 =

1 P2 P2 Pi

P2 1 P2 Pi

p2 P2 1 Pi

V Pi Pi Pi 1

and R2 =

1 P2 Pi Pi

P2 1 Pi Pi

Pi Pi 1 P2

Pi Pi P2 1 )

If 0 < pi < p2 < 1 and X and Y have the distributions Λ/4(01,σ2Rj+i)
and Λ/4(01,σ2Rj) respectively, where σ2 > 0 is known, then X <^\ Y holds
for j = 1,2,3. This follows from Theorem 7 and the fact that (4,0,0,0) y
(3,1,0,0) >-(2,2,0,0) X (1,1,1,1).

When we combine Theorem 7 with existing results, other useful results
can be obtained. For example, if X and Z have the Λ r

n(βl,σ2R(k)) and
Mniβl^ Σ) distributions, respectively, and if there exists a correlation matrix
R(k*) such that k y k* and σ 2 R(k*)-Σ is either positive definite or positive
semidefinite, then X <^ Z holds.

It is worthwhile to note that if X and Y satisfy (6) then, by a simple
calculation, the amounts of Fisher's information on θ in the density functions
of X and Y are, respectively, σ- 2(l(R(k))~ 1l /) and σ" 2 (l(R(k*))- 1 l / ).
Furthermore, the variances of the least-squares estimators of θ based on X
and Y are, respectively, σ 2 ( l(R(k))- 1 l / )" 1 a n d ^ ( l ί R ί k * ) ) - 1 ! ' ) " 1 . Thus
Theorem 7 yields a partial ordering for the Fisher's information and for the
variances of the least-squares estimators via a majorization ordering of k
and k* in the correlation matrices.

Finally we point out that smaller correlations are not necessarily indi-
cators of larger amounts of information. More specifically, if X and Y are
multivariate normal random vectors with the same marginal distributions
and with correlation matrices {pt,j}fj=i and {fy\j}?j=i> respectively, such
that pij > ηij for all i and j , then, in general, when σ2 is known, it is
not necessarily true that X <(,-) Y; some conditions must be imposed on
the structures of the correlation matrices in order to assure that X <^ Y.
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For example, such conditions can be found in Proposition 6 and in Theorem
8. Eaton (1991, Example 2.1) has shown that there exist multivariate nor-
mal random vectors X and Y such that X and Y have the same univariate
marginals, the coordinates of Y are independent and identically distributed,
the coordinates of X are positively correlated, but Y <(Λ X.
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