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EXTREMAL PROBLEMS FOR PROBABILITY
DISTRIBUTIONS: A GENERAL METHOD

AND SOME EXAMPLES

By L. MATTNER

Unίversitάt Hamburg

A general method for treating extremal problems for probability distribu-
tions is presented. It is based on a Lagrange multiplier rule for constrained
extremal problems in cones of Banach spaces. Some concrete problems are
discussed.

1. Introduction

The purpose of this article is to report on a general method for solving

extremal problems for probability distributions, as well as to present some

examples developed in detail in the author's thesis Mattner (1990a) of which

Mattner (1990b) is the relevant part in this context.

Additionally, a new and, hopefully, illuminating example (number 2 be-

low) is treated.

The idea underlying the method to be presented is quite simple, namely:

Just apply the existing Lagrange multiplier theory for extremal problems in

Banach Spaces and modify it slightly, in such a way that the essential side

condition of positivity is taken care of. This will lead to a necessary condition

to be satisfied by any solution of a given extremal problem, provided that the

functional to be extremized as well as functionals representing side conditions

are sufficiently well-behaved, e.g. continuously Frechet-differentiable.

Before stating a general theorem, let us look at a specific example which

in fact motivated my study.

EXAMPLE 1 Let X and Y denote independent and identically distributed

real random variables with

(1) E[X] = 0, Var(X) = 1.
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The problem is to maximize the expected distance of X and y , under
the above constraints:

(2) E[\X-Y\] = max.

This problem has received its solution a long time ago: the maximum is
attained if and only if X and Y are uniformly distributed over the interval
[—Λ/3,\/3]. In fact, Plackett (1947) considered a more general problem. He
gave an argument which, for the present case, essentially reduces to writing
the expected distance as

CO

(3) E[\X-Y\] = -2 J F(l-F)dx,
— CO

where F denotes the distribution function of X, and performing a variation
with respect to F. But he did this only formally, neither worrying about the
existence of a solution nor making sure in an adequate way that his vari-
ations where still distribution functions. Nevertheless, he somehow arrived
at the solution stated above. A proof of its correctness was first indicated
by Moriguti (1951, footnote 5, p. 534) and given explicitly by Hartley and
David (1954, p. 88), roughly speaking by applying the Cauchy-Schwarz in-
equality to the right-hand side of (3) after first manipulating that integral in
such a way as to make sure that equality will hold for the presumed solution
of Plackett.

2. A General Method

Thus it appears that the method used to solve Plackett's problem is

unsystematic and also intrinsically univariate, the latter since it relies on

manipulations involving the distribution function. These remarks apply as

well to a more recent proof based on Terrell (1983) and given in Baringhaus

and Henze (1990). Hence before trying to solve similar and perhaps more

complicated problems, one should look for a general method yielding Plack-

ett 4s result. To this end we observe that the problem may be viewed as an

extremal problem in a Banach space.

Namely, let

M := {μ : μ signed Borel measure with ||μ|| < oo},

where

(4) ||μ|| := | ( 1 + x2) \dμ(x)\

and |dμ(a;)| denotes integration with respect to the total variation of μ.
Plackett's problem, which I prefer to write as a minimization problem, may
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then be written as follows:
"Minimize

φo(μ) := - Jj \x -• y\ dμ(x) dμ(y)

subject to the constraints

Φι(μ) '•= fxdμ(x) = 0,
φ2(μ) := fx2dμ(x)-l = 0,

φ3(μ) := μ ( I t ) - l = 0,

μ > 0."

If the last condition were absent, we would just have an extremal problem in
a Banach space with finitely many one-dimensional side conditions. What
makes things slightly complicated is that μ > 0 is an inequality constraint of
infinite dimensional character. However, it may be written as μ G C, where
C is the cone of the positive measures in M. And in fact, there is a Lagrange
multiplier rule applicable in such cases:

THEOREM 1 Let Z be a Banach space,

ψo : Z -> IR,

ψi : Z -> H , t = l , . . . , m ,

φj : Z -• R , j = l , . . . , n ,

continuously Frechet-differenttable, and

(5) C a convex cone in Z.

Define
m n

C(z) := λoψo(z) + Σ χiΨi(z) + Σ ajΨi(z)

If z E Z minimizes ψo subject to

ψi(z) < 0, i = l , . . . , m ,
^j(^) = 0, .7 = 1,..., n,

z e c,

o, λ i , . . . , λm, OL\ , . . . , an € 1R with

(i) not all λt and ctj vanish,

(ii) λi > 0, i = 0,...,m,
(tit) (£'(*), w) >0, m e C ,
(it;) (£^),z> = 0 .
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This is proved in Mattner (1990a,b) by an application of an abstract mul-
tiplier rule given in Tikhomirov (1986). Here we try to explain the theorem
by looking at two special cases, which should make it easy to memorize it.

In case one we assume that C is the whole space. Then condition (iii)
may be applied to any w as well als to -w. So it just says that C'(z) is the
zero functional. This contains condition (iv), and the theorem reduces to
the ordinary Lagrange multiplier rule for Banach spaces.

In case two we assume that the ordinary constraints given by the ψi
and φj are absent. Consider a typical point z £ C. It will usually lie on
the boundary. In fact, it is easy to see, that the cone of positive measures
in Plackett's example has empty interior. If now z minimizes <po in C, then
those one-sided directional derivatives (φo(z)y w) oίφ0 for which w £ C have
to be nonnegative. This yields condition (iii) with C = ψo In the direction
of z we may even perform a two-sided derivative, which accordingly has to
vanish. This is condition (iv). So the theorem is seen to be true in both
cases, and it is at least plausible that it is true in general.

3. Examples

We will now look at several examples, beginning with Plackett's problem.

EXAMPLE 1 (CONT.) A standard argument involving tightness, Fatou's
lemma and integration to the limit of uniformly integrable sequences (see
Mattner (1990a), pp. 16-17, for details) shows that a solution of the ex-
tremal problem exists. The functionals involved here are either quadratic or
linear, and continuous by choice of the norm (4). Hence the derivative of
the Lagrange functional C is given by

{C'(μ),v) = -2\0 f f \x - y\ dμ(y) dv(x)
+ct2 J x2dv(x)

= fl(x)du(x),

where
«2(x) = -2λ0 I \x - y\dμ(y) + Oίχx + a2x

Assuming that μ is any solution, we may apply (iii) to any Dirac measure
v = δxy in order to get

v ' [ = 0, x £ supp μ,

where the equality in supp μ, the support of μ, follows from the nonnegativity
of I and (iv).
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This is the typical preliminary result obtained when working with the
above Lagrange multiplier rule: We have an integral relation for the extremal
measure μ consisting of an integral inequality in the whole space and an
integral equality in the support of μ. A difficulty is that we don't know the
support since we don't know μ. From this point on, the arguments to follow
will have to make use of the specific properties of the extremal problem at
hand.

Assume for a moment that λ0 vanishes. Then / is a nonnegative poly-
nomial of degree at most 2, not vanishing identically and hence having at
most one zero. This implies that the support of μ is a singleton, which is
impossible since the variance of μ equals one. This contradiction shows that
we may assume without loss of generality that 2 λo = 1.

It is now convenient to rewrite Z as
OO X

l(x) - /(I - F{x)) dy+ [ F{y) dy + aλx + a2x
2 + α3,

J J
x -oo

where F denotes the distribution function of μ and the familiar area for-
mula for the expectation of a random variable has been applied. Clearly, Z
possesses at least one-sided derivatives given by

l'{x±) = 2F(x±) - 1 + αi

We have

0 < 2 (F(x+) - F(x-)) = /'(*-) - l'(x+) < 0, x e supp μ,

the latter inequality holding because Z assumes its minimum value at every
x G supp μ. This shows that F is continuous and that /' exists and vanishes
in the support of μ. Hence

F(x) = a + &#, x E supp μ.

Using the continuity of F, it readily follows that μ is uniform over some
interval, which is determined by the mean and variance.

The purpose of the above example was to illustrate the multiplier method
in one of the simplest nontrivial cases, rather than to match other proofs
of Plackett's result in brevity. The remaining examples were not previously
treated by simpler methods and illustrate various aspects of the present
method.

EXAMPLE 2 This example will show that the problem of the support of the
extremal measure is not a trivial matter. Bentkus (1991) raised the question
of what happens if the constraint

E[\X\3} < β
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is added in Example 1.

It makes things slightly easier to omit the condition on the mean, which
turns out to be satisfied anyway if we replace (1) by

(6) E[X2] = 1, E[\X\3} < β.

The argument given in Example 1 applies virtually without change, leading
to the existence of a solution μ for every β > 1 and to the condition

(7) F(x) = - + bx + cx\x\ =: φ(x), x £ supp μ,

for the corresponding continuous distribution function F, where c is known
to be nonnegative.

In case b > 0, φ is strictly increasing, which forces F to agree with φ on
an interval symmetrical with respect to the origin, i.e. F has a density /
given by

(8) f(x) = b + 2c\x\, \x\<A.

However, in case b < 0,φ increases in (—oo, £], decreases in [£, — £], and

increases again in [— ̂ ,oo), strictly in each case. Now (7) and continuity of

F allow for several possibilities. In each case F has to coincide with φ in one

or two compact intervals and be constant in the complementary intervals.

Instead of calculating E[\X — Y\] for each of these possible F, it is more

convenient to observe that the extremal distribution has to be symmetrical

with respect to the origin, leaving a density given by

(9) f(x) = b + 2c\x\, - - <\x\<A
c

as the only possibility. In fact, if the distribution of X is extremal satisfying
(6), so is that of —X. The representation (3) shows that the functional to be
minimized is strictly convex on the set of the probability measures satisfying
(6). Hence, the solution is unique, i.e. X is distributed as —X.

Taking / fdx = f x2f(x)dx = 1 into account, we get from (8) and (9) by

trite calculations
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for b > 0 and

<

for b < 0, where in each case a is allowed to vary between zero and one.

We observe that, for the above densities /, Ef[\X - Y\] is strictly increasing

in /?(/), by considering both as functions of α. The largest value of /?(/) is

^ p , corresponding to the uniform density. Hence we may conclude that the

/ with β(f) = min (/?, ̂ p-J is the solution of our problem. The support of

these solutions is disconnected for 1 < β < ^ p and connected for ^p- <
β < oo, which was hardly obvious at the outset.

Incidentally, it follows from the above that we get an extremal problem
without solution if we replace (6) by

£J[Λ J = 1, -^ΊJ^ \ \ P

for some β > ^ p .
The next two examples concern multivariate extremal problems.

EXAMPLE 3 The expected distance makes sense also for multivariate ran-
dom variables. How large can it be given the second moment of the euclidean
norm? The answer is given by the following theorem.

THEOREM 2 If X and Y are independent and identically distributed random

vectors in d-space, then

E[\X - Y\] < Λ/2
π

76'

d=l,

d = 2,

nf-τ)nJ+τr -
where equality and E\X\2 — 1 occurs if and only if
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Here | | denotes the euclidean norm and U stands for uniform distribution.
This is proved in Mattner (1990a,b) and, independently and in a different

way, in Buja, Logan, Reeds and Shepp (1990). Of course, for d = 1 we just
get a reformulation of Plackett's result.

The case d = 2 is particularly interesting. A heuristic for it runs as
follows. The multiplier rule leads as before to an integral relation for a
measure μ maximizing the expected distance given J£[|X|2] = 1 :

do) - / | χ -

we
Let us formally apply the Laplacian to the above equality. Because of Δ| |
λ, valid in IR2, this should lead to something like

= 4 #2 (x € supp μ C IR2).
ΊR2 \x - y\

Now read this relation "three-dimensionally": under the plausible assump-
tion that the support of μ is a circular disk, it says that the spatial potential
of μ is constant on it and hence μ has to be the electrostatic equilibrium
distribution of unit charge on that disk. The latter is known and has, taking
the condition -E[|#|2] = 1 into account, the density given in the theorem.

For a rigorous proof note that the euclidean norm is a so-called negative-
definite function, which almost by definition implies that the functional

\x - y\ dμ(x) dμ(y)

is convex on the set of those probability measures with finite second mo-
ments. The convexity is in fact strict (This is true for arbitrary dimensions.
We encountered the one-dimensional and elementary case in the previous
example.). An application of the Kuhn-Tucker theorem shows that (10) is
also sufficient for μ to be extremal. A not completely trivial calculation
shows that the density of the theorem fulfills (10). See Mattner (1990a,b)
for details.

So far we have solved given extremal problems. Now we are reversing
the question and ask for an extremal problem having a given solution.

EXAMPLE 4 Can we characterize the uniform distribution over a ball in d-
space as the solution of an extremal problem similar to Plackett's? Replacing
\x — y\ by some unspecified function Kd{x,y) and proceeding formally as
above, we get

/ Kd(x, y) dμ(y) = aΎ + α 2 \x\2 (x G supp μ)
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as a necessary condition for any extremal μ. Applying again the Laplacian
to this equation, we get a constant on the right-hand side and want to
get /(x), a density of μ, on the left-hand side. This will be the case if
Δx/Q(#,ΐ/) (Laplacian with respect to x) is the Dirac measure located at
y. This suggests to take Kd(x,y) = u(x — y) with u a constant multiple
of a fundamental solution of the Laplacian. Thus we are led to guess the
following theorem, proved in Mattner (1990a,b).

THEOREM 3 //

-\x-y\, d=l,

Kd(x,y)={ p p
-υ\d-2 > d > 3,

and if X and Y are independent and identically distributed random vectors
in d-space with E[\x\2] = 1, then E[Kd(X,Y)] is minimal if and only if
X ^ U({x G H^ : \x\ < r^}) for some suitable r^.

EXAMPLE 5 Can we characterize any given probability distribution as
in Example 4? It is proved in Mattner (1990a,b) that the answer is "yes"
under some regularity conditions, as well as that it is often "no" if we try
K(x,y) = u(x — y) for some function u:

THEOREM 4 // \u(x)\ < Λ(l + x2) for some finite A and if E[u(X - Y)] is
extremal for X ~ iV(0,1) under the constraints (1), then u is a polynomial
of degree at most 2 and there are other extremal distributions.
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