
CHAPTER 5

MINIMUM DISTANCE ESTIMATORS

5.1. INTRODUCTION

The practice of obtaining estimators of parameters by minimizing a certain
distance between some functions of observations and parameters has long
been present in statistics. The classical examples of this method are the
Least Square and the minimum Chi Square estimators.

The minimum distance estimation (m.d.e.) method, where one obtains
an estimator of a parameter by minimizing some distance between the
empirical d.f. and the modeled d.f., was elevated to a general method of
estimation by Wolfowitz (1953, 1954, 1957). In these papers he
demonstrated that compared to the maximum likelihood estimation method,
the m.d.e. method yielded consistent estimators rather cheaply in several
problems of varied levels of difficulty.

This methodology saw increasing research activity from the
mid—seventy's when many authors demonstrated various robustness
properties of certain m.d. estimators. Beran (1977) showed that in the i.i.d.
setup the minimum Hellinger distance estimators, obtained by minimizing
the Hellinger distance between the modeled parametric density and an
empirical density estimate, are asymptotically efficient at the true model and
robust against small departures from the model, where the smallness is being
measured in terms of the Hellinger metric. Beran (1978) demonstrated the
powerfulness of minimum Hellinger distance estimators in the one sample
location model by showing that the estimators obtained by minimizing the
Hellinger distance between an estimator of the density of the residual and an
estimator of the density of the negative residual are qualitatively robust and
adaptive for all those symmetric error distributions that have finite Fisher
information.

Parr and Schucany (1979) empirically demonstrated that in certain
location models several minimum distance estimators (where several comes
from the type of distances chosen) are robust. Millar (1981, 1982, 1984)
proved local asymptotic minimaxity of a fairly large class of m.d. estimators,
using Cramer-Von Mises type distance, in the i.i.d. setup. Donoho and Liu
(1988 a, b) demonstrated certain further finite sample robustness properties
of a large class of m.d. estimators and certain additional advantages of using
Cramer-Von Mises and Hellinger distances. All of these authors restrict
their attention to the one sample setup or to the two sample location model.
See Parr (1981) for additional bibliography on m.d.e. through 1980.

Little was known till the early 1980's about how to extend the above
methodology to one of the most applied models, v.i.z., the multiple linear
regression model (1.1.1). Given the above optimality properties in the one-
and two- sample location models, it became even more desirable to extend
this methodology to this model. Only after realizing that one should use the
weighted, rather than the ordinary, empiricals of the residuals to define m.d.
estimators was it possible to extend this methodology satisfactorily to the
model (1.1.1).
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106 MINIMUM DISTANCE ESTIMATORS 5.2

The main focus of this chapter is the m.d. estimators of β obtained
by minimizing the Cramer-Von Mises type distances involving various
w.e.p.'s. Some m.d. estimators involving the supremum distance are also
discussed. Most of the estimators provide appropriate extensions of their
counterparts in the one- and two- sample location models.

Section 5.2 contains definitions of several m.d. estimators. Their
finite sample properties and asymptotic distributions are discussed in
Sections 5.3, 5.5, respectively. Section 5.4 discusses an asymptotic theory
about general minimum dispersion estimators that is of broad and
independent interest. It is a self contained section. Asymptotic relative
efficiency and qualitative robustness of some of the m.d. estimators of
Section 5.2 are discussed in Section 5.6. Some of the proposed m.d.
functionals are Hellinger differentiable in the sense of Beran (1982) as is
shown in Section 5.6. Consequently they are locally asymptotically minimax
(l.a.m.) in the sense of Hajek — Le Cam.

5.2. DEFINITIONS OF M.D. ESTIMATORS

To motivate the following definitions of m.d. estimators of β of (1.1.1), first
consider the one sample location model where Yi — 0, ...., Yn — θ are i.i.d.
F, F a known d.f.. Let

(1) FM^n^ΣJiYiiyl y e «.

If θ is true then EFn(y + θ) = F(y), V yeR. This motivates one to define

m.d. estimator θ of θ by the relation

(2) θ = argmin{T(t); teR}

where, for a G 6 DJ(R),

(3) T(t) := n/[F n (y + t) - F(y)]2 dG(y), t e R.

Observe that (2) and (3) actually define a class of estimators 0, one
corresponding to each G.

Now suppose that in (1.1.1) we model the d.f. of eni to be a known
d.f. Hni, which may be different from the actual d.f. Fni, 1 < i < n. How

should one define a m.d. estimator of β ? Any definition should reduce to θ
when (1.1.1) is reduced to the one sample location model. One possible
extension is to define

(4) A=argmin{K1(t); t eRp},

where
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(5) Kt(t) = n-ytJ^lCYni < y + x^t) - Hni(y)}]2 dG(y), teRp.

If in (1.1.1) we take p = 1, x n i i = 1 and Hni = F then clearly it reduces to

the one sample location model and βι coincides with θ of (2). But this is

also true for the estimator /L defined as follows. Recall the definition of

{Vj} from (1.2.1). Define, for y e R , t G Rp, 1 < j < p,

(6) 2j(y, t) := Vj(y, t) - £ x n i j Hn i(y).

Let

(7) K χ(t) := / / ( y , t X x ' x Γ ^ y , t) dG(y), t e Rp,

where I := (Zu ...., Zv) and define,

(8) βχ = argmin{Kχ(t), tGRp}.

Which of the two estimators is the right extension of θ ? Since {Vj,
1 < j < p} summarize the data in (1.1.1) with probability one under the

continuity assumption of {eni, 1 < i < n}, βχ should be considered the right

extension of θ. In Section 5.6 we shall see that /L is asymptotically

efficient among a class of estimators {/L} defined as follows.

Let D = ((dnij)), 1 < i < n, 1 < j < p, be an n«p real matrix,

(9) V jd(y, t) := J i dnij I(Yπi < y + xήit), y e R, 1 < j < p,

and

(10) KD(t) := .Et /[V j d (y, t) - Σt d n i j H n i (y)] 2 dG(y), t € Rp.

Define

(11) ^ = argmin{KD(t), teRp}.

If D = n"1/2[l,0, ..., 0]nxP then β = β{ and if D = XA then k = β
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where A is as in (2.3.32). The above mentioned optimality of /L is stated
-Λ.

and proved in Theorem 5.6a. 1.
Another way to define m.d. estimators in the case the modeled error

d.f. 's are known is as follows. Let

- .-1/2 ns
(12) M (s,y,t) := n" 1 / z £ {I(Yn i < y) - H n i(y - x n it)}, s 6 [0, 1], y € R,

(13) Q(t) := / lf {M (s,y,t)}2 dG(y) dL(s), t e Kp,

where L is a d.f. on [0, 1]. Define

(14) 0=argmin{Q(t), tGRp}.

The estimator β with L(s) = s is essentially Millar's (1982) proposal.
Now suppose {H ni} are unknown. How should one define m.d.

estimators of β in this case? Again, let us examine the one sample location
model. In this case θ can not be identified unless the errors are symmetric
about 0. Suppose that is the case. Then the r.v.'s {Yi — 0, 1 < i < n} have

the same distribution as {-Yi + 0 , 1 < i < n}. A m.d. estimator (f of θ
is thus defined by the relation

(15) f = argmin {T+(t), tGR}

where

(16) T+(t) := n " 1 / [ £ {I(Yi < y + t) - I(-Yi < y - 1 ) } ] 2 dG(y).

An extension of if to the model (1.1.1) is β* defined by the relation

(17) ^ = argmin{Kj(t), t G Rp}

where, for t G Rp,

(18) K^(t) := / ^ ( y , t )(χ / χ)" 1 V + (y, t) dG(y), Ψ'= {W\, .... V;),

V|(y, t) := J i Xnij{I(Yni < y+xήit) - I(-Yni < yxήit)}, y€lR, l<j<p.

More generally, a class of m.d. estimators of β can be defined as
follows. Let D be as before. Define, for y€K , 1 < j < p,,

(19a) Yj(y, t) := £ dnij {I(Yni < y + xήit) - I(-Yni < y - xήit)}.
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Let Yj'= (Yi, ... , Yj) and define

(19b) Kj(t) := /Yj'(y, t) Yj(y, t) dG(y), t e

and /ζ by the relation

(20) /ζ = argmin {Kj(t), teRp}.

Note that / ζ is 0j with D = XA.

Next, suppose that the errors in (1.1.1) are modeled to be i.i.d., i.e.,
Hni Ξ F and F is unknown and not necessarily symmetric. Here, of course,
the location parameter can not be estimated. However, the regression
parameter vector β can be estimated provided the rank of Xc is p, where
Xc is defined at (4.3.11). In this case a class of m.d. estimators of β is

defined by β^ of (11) provided we assume that

(21) J i dnij = 0, 1 < j < p.

A member of this class that is of interest is /L with D = XcAi, Ai as in

(4.3.11).
Another way to define m.d. estimators here is via the ranks. With

Rit as in (3.1.1), let

(22) T j d(s, t) := J i d n i j I(R l t < ns), se[0, 1], 1 < j < p,

, t6R p ,

where T = (Ti, ..., T p) and L is a d.f. on [0, 1]. Assume that D

satisfies (21). Define

(23) β\ = argmin{K*(t), teRp}.

Observe that {/L}, {{£} and {β} are not scale invariant in the

sense of (4.3.2). One way to make them so is to modify their definitions as
follows. Define

(24) KD(a, t) := . ^ / [Vjd(ay, t) - £ d n i j H n i (y)] 2 dG(y),

κ ί ( a ' *) : = /^ί 'Cv, t)Y;(ay, t) dG(y), t e Rp, a > 0.
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Now, scale invariant analogues of β^ and β^ are defined as

(25) ^ := argmin {KD(s, t), teRp}, fig := argmin {Kj(β, t), teRp},

where s is a scale estimator satisfying (4.3.3) and (4.3.4). One can modify

{Jf} in a similar fashion to make it scale invariant. The class of estimators

{/L} is scale invariant because the ranks are.

Now we define a m.d. estimator based on the supremum distance in
the case the errors are correctly modeled to be i.i.d. F, F an arbitrary d.f.
Here we shall restrict ourselves only to the case of p = 1. Define

(26) Vc(y, t) := Σ ^ - x) I(Yi < y + txi), t, y 6 R,

« ( t ) := sup {Vc(y, t); yeR},

2>ή(t):=-inf{Vc(y,t); yeR},

ΰn(t) := max { J*(t), />ή(t)} = sup{ | Vc(y, t) | yeR}, t e R.

Finally, define the m.d. estimator

(27) k := argmin{Z>n(t); teR}.

Section 5.3 discusses some computational aspects including the
existence and some finite sample properties of the above estimators. Section

5.5 proves the uniform asymptotic quadraticity of K , K* K and Q as

processes in t. These results are used in Section 5.6 to study the asymptotic
distributions and robustness of the above defined estimators.

5.3 FINITE SAMPLE PROPERTIES AND EXISTENCE

The purpose here is to discuss some computational aspects, the existence and
the finite sample properties of the four classes of estimators introduced in the
previous section. To facilitate this the dependence of these estimators and
their defining statistics on the weight matrix D will not be exhibited in this
section.

We first turn to some computational aspects of these estimators. To
begin with, suppose that p = 1 and G(y) = y in (5.2.10) and (5.2.11).

Write β, xi, di for β, x\u dn, respectively, 1 < i < n. Then
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(1) K(t) = / [ Σi di{I(Yi < y + xit) - Hi(y)}]2 dy

= Σi Σj didj /{I(Yi < y+xit) - Hi(y)}{I(Yj < y+ X j t ) - Hj(y)}dy.

No further simplification of this occurs except for some special cases.
One of them is the case of the one sample location model where xi Ξ 1 and
Hi = F, in which case

K(t) = /[Σi di{I(Yi < y) - F(y - 1 ) } ] 2 dy.

Differentiating under the integral sign w.r.t. t (which can be justified under
the sole assumption: F has a density f w.r.t Λ) one obtains

K(t) = 2/[Σi di{I(Yi < y + t) - F(y)} dF(y)

= -2Σid i{F(Yi-t )- l/2} .

-1/2
Upon taking di = n ' one sees that in the one sample location model θ of
(5.2.2) corresponding to G(y) = y is given as a solution of

(2) Σ i F ( Y i - * ) = n/2.

Note that this 0 is precisely the m.l.e. of θ when F(x) Ξ {1 + exp(-x)}"1,
i.e., when the errors have logistic distribution!

Another simplification of (1) occurs when we assume Σi di = 0 and
Hi = F. Fix a teR and let c := max{Yi -xtf; 1 < i < n}. Then

(3) K(t) = / [Σi diI(Yi < y + xit)]2 dy

= Σi Σj didj Jl[max(Yj - xjt, Yi - xtf) < y < c] dy

= - Σi Σj didj max(Yj - xjt, Yi - Xit).

Using the relationship

(4) 2 max(a, b) = a + b + | a—b |, a, b e R,

and the assumption Σi di = 0, one obtains

(5) K(t) = -2 J ^ didj I Yj - Yi - ( X j - X i ) t I

If di = Xi — x in (5), then the corresponding β is asymptotically
equivalent to the Wilcoxon type R-estimator of β as was shown by
Williamson (1979). The result will also follow from the general asymptotic
theory of Sections 5 and 6.
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If di = Xi — x, 1 < i < n, and Xi = 0, 1 < i < r; Xi = 1, r+1 < i < n
then (1.1.1) becomes the two sample location model and

K(t) = -2 .Σ .Σ I Yj - Yi -11 + a r.v. constant in t.

Consequently here β = med{| Yj — Yi|, r+1 < j < n, 1 < i < r}, the usual
Hodges—Lehmann estimator. The fact that in the two sample location model
the Cramer—Von Mises type m.d. estimator of the location parameter is the
Hodges—Lehmann estimator was first noted by Fine (1966).

Note that a relation like (5) is true for general p and G. That is,

suppose that p > 1, G 6 DJ(R) and (5.2.21) holds, then V t e Rp,

(6) K(t) = - 2 . | ^ Σ ^ dijdkj I G((Yk - x^t)-) - G((Yi - x'it)-) |.

To prove this proceed as in (3) to conclude first that

ΣK(t) = -2 Σ ΣΣ dijdkj G(max(Yk-xkt>Y i-x'it)-)
j = 1 11 i>>kln

Now use the fact that G((aVb)-) = G(a_)VG(b-), (5.2.21) and (4) to obtain

(6). Clearly, formula (6) can be used to compute β in general.

Next consider K+. To simplify the exposition, fix a teRp and let

ri := Yi - x'it, 1 < i < n; b := max{ri, -ri; 1 < i < n}. Then from (5.2.19)
we obtain

K+(t) = £ / [ Σi dij{I(ri < y) - I(-ri < y)}] 2 dG(y).

Observe that the integrand is zero for y > b. Now expand the quadratic and
integrate term by term, noting that G may have jumps, to obtain

K+(t) =.Σ Σ Σ dijdkj{2G(ri V -r k)} - 2J(n)
J" ' - G((ri V rk)-) - G(-n V

where J(y) := G(y) — G(y-), the jump in G at yeR. Once again use the
~ " G(aVb) = G(a)VG(b), (4), the ii
permutation and the definition of {ri} to conclude that
fact that G(aVb) = G(a)VG(b), (4), the invariance of the double sum under
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(7) K+(t) = lχ Σ Σ dijdkj[| G(Yi - x'it) - G(-Yk + x kt) | - J(Yi - x'it)

{
+ I G(-Y4 + x'it) - G(-Yk + xkt) I}].

Before proceeding further it is convenient to recall at this time the
definition of symmetry for a G e D1(R).

Definition 5.3.1. An arbitrary GeDl(R), inducing a σ-finite measure
on the Borel line (R, 3)y is said to be symmetric around 0 if

(8) I G(y) - G(x) I = | G(-x-) - G(-y-) |, V x, y e R.

or

(9) dG(y) = - dG(-y), V y 6 R.

If G is continuous then (8) is equivalent to

(10) I G(y) - G(x) I = | G(-x) - G(-y) |, V x, y e R.

Conversely, if (10) holds then G is symmetric around 0 and continuous.

Now suppose that G satisfies (8). Then (7) simplifies to

(7') K+(t) = £ Σi Σk dijdkj [ I G(Y4 - xίt) - G(-Yk + x kt) | - J(Y4 - x'it)

- I G(-Yi + xU) - G(-Yk + xit) I ].

And if G satisfies (10) then we obtain the relatively simpler expression

(7*) K+(t) = lχ Σi Σk dijdkj [ I G(Yi - x'it) - G(-Yk + x kt) |

- | G ( Y i - x ' i t ) - - G ( Y k - x k t ) | ] .

Upon specializing (7*) to the case G(y) = y, p = 1, di = n"1^ and
Xi = 1 we obtain

and the corresponding minimizer is the well celebrated median of the
pairwise means {(Yi+Yj)/2; 1 < i < j < n}.

Suppose we specialize (l.ϊ.l)"to a completely randomized design with
p treatments, i.e., take
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Xij = 1, mj-i + 1 < i < mj,

= 0, otherwise,

where 1 < nj < n is the j t h sample size, m0 = 0, mj = ni+ ... + nj, 1 < j < p,
m p = n. ^Γhen, upon taking G(y) = y, dy = xy in (7*), we obtain

P Πi 11 ί

K+ / A \ Γ» X* V / I V . . _l_ V , . 0 + . I I V . . V , . 1 1 • r Π)P

\ V — ^ ** ^ 11 * ij • * ki — ^ΐj I — 1 x ij — x Vj I j f t c IK ,
j = l i = l k = l

where Yy = the i t h observation from the j t h treatment, 1 < j < p.

Consequently, ft = {fa ... , /£) ' , where 0t = med {(Yii + Ykj)2"1,
l < i < k < n j } , 1 < j < p. That is, in a completely randomized design with p

treatments, /Γ corresponding to the weights di = Xi and G(y) = y is the
vector of Hodges—Lehmann estimators. Similar remark applies to the
randomized block, factorial and other similar designs.

The class of estimators 0* also includes the well celebrated least
absolute deviation (l.a.d.) estimator. To see this, assume that the errors are

continuous. Choose G = 6Q — the measure degenerate at 0 — in K+, to obtain

(11) K+(t) = 5 [ ϊ dij {I(Yi - x'it < 0) - I(Yi - x'it > 0)}] 2

= lxQx dij sgn(Yi - xU)) 2 , w.p.l, V t e Rp.

Upon choosing di = xi, one sees that the r.h.s. of (11) is precisely the square
of the norm of a.e. differential of the sum of absolute deviations

3>(\) := Σi |Yi — x i t | , teRp. Clearly the minimizer of 3){ϊ) is also a

minimizer of K+(t) of (11).
Any one of the expressions among (7), (77) or (7*) may be used to

compute β* for a general G. From these expressions it becomes apparent

that the computation of β* is similar to the computation of maximum
likelihood estimators. It is also apparent from the above discussion that both

classes {0} and {/f} include rather interesting estimators. On the one
hand we have a smooth unbounded G, v.i.z., G(y) = y, giving rise to
Hodges—Lehmann type estimators and on the other hand a highly discrete G,
v.i.z., G = £o> giving rise to the l.a.d.e.. Any large sample theory should be
general enough to cover both of these cases.

We now address the question of the existence of these estimators in
the case p = 1. As before when p = 1, we write unbold letters for scalars
and di, Xi for dϋ, xu, 1 < i < n. Before stating the result we need to define
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Γ(y) := Σt I(xi = 0) di{I(Yi < y) - I(-Y4 < y)}, y G K.

Arguing as for (7) we obtain, with b = max{Yi, —Yi; 1 < i < n},

(12) / | Γ | dG < Σ i l ( x i = 0)|di|[G(b.)-G(Y

Moreover, directly from (7) we can conclude that

(13)

Both (12) and (13) hold for all n > 1, for every sample {Yi} and for all real
numbers {di}.

Lemma 5.3.1. Assume that (1.1.1) with p = 1 holds. In addition,
assume that either

(14a) d i x i > θ , V l < i < n , o r (14b) dtxi < 0, V 1 < i < n.

Then a minimizer of K+ exists if either Case 1: G(R) = OD, or Case 2: G(R)
< GO and di = 0 whenever Xi = 0, 1 < i < n.

If G is continuous then a minimizer is measurable.

Proof. The proof uses Fatou's Lemma and the D.C.T. Specialize
(5.2.19) to the case p = 1 to obtain

K+(t) = /[Σi di{I(Yi < y + xit) - I(-Yi < y - X i t ) } ] 2 dG(y).

Let /^(y, t) denote the integrand without the square. Then

f(Y, t) = Γ(y) + P(y, t),

where

(15) JC*(y, t) = Σi I ( X i > 0) di{I(Yi < y + X i t ) - I(-Yi < y - x tt)} +

+ Σi I(xi < 0) di{I(Yi < y + Xit) - I(-Yi < y - x tt)}.

Clearly, V y, teR ,

|JC*(y,t)| < Σ i I ( X i # 0 ) | d i | =: o, say.

Hence
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(16) Γ(y) - a < f(y, t) < Γ(y) + α, V y, t G R.

Suppose that (14a) holds. Then, from (15) it follows that V y G R,

**(y> t) —i ± α as t —» ± σ,

so that V yGR,

(17) f{y, t) —* Γ(y) ± α, as t —> ± o .

Now consider Case 1. If α = 0 then either all xi Ξ 0 or di = 0 for
those i for which xi Φ 0. In either case one obtains from (13) and (16) that

V t G 91, K+(t) = fv dG < OD, and hence a minimizer trivially exists.

If a > 0 then, from (12) and (13) it follows that J ( Γ ( y ) ± a)2 dG(y)

= 00, and by (16) and the Fatou Lemma, lim inf ^± K+(t) = oo. On the

other hand by (7), K+(t) is a finite number for every real t, and hence a
minimizer exists.

Next, consider Case 2. Here, clearly Γ = 0. From (16), we obtain

{jT(y> t ) } 2 < α 2, V y, t G R,

and hence

K+(t) < α2G(R), V t G R.

By (17), t(y, t) —ι ± α, as t —ι ± GO. By the D.C.T. we obtain

K+(t) —i α2G(R), as | t | —»GD,

thereby proving the existence of a minimizer of K+ in Case 2.

The continuity of G together with (7*) shows that K+ is a
continuous function on R thereby ensuring the measurability of a minimizer,
by Corollarv 2.1 of Brown and Purves (1973). This completes the proof in
the case of (14a). It is exactly similar when (14b) holds, hence no details will
be given for that case. α

Remark 5.3.1. Observe that in some cases minimizers of K+ could be
measurable even if G is not continuous. For example, in the case of l.a.d.
estimator, G is degenerate at 0 yet a measurable minimizer exists.

The above proof is essentially due to Dhar (1991a). Dhar (1991b)
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rives proofs of the existence of classes of estimators {0} and {β*\ of
(5.2.11") and (5.2.20) for p > 1, among other results. These proofs are
somewnat complicated and wifi not be reproduced here. In both of these
papers Dhar carries out some finite sample simulation studies and concludes

that both, β and /Γ corresponding to G(y) = y, show some superiority over
some of the well known estimators.

Note that (14a) is a priori satisfied by the weights di = xi. α

Now we discuss β of (5.2.14). We rewrite

Q(t) = n^Σ Σ Lij/{I(Yi < y) - Hifr-x'^HltYj < y) - Hjίy-x^ldGfr)

where Ly = 1 — L((iVj)n"1), 1 < i, j < n. Differentiating Q w.r.t. t under
the integral sign (which can be easily justified assuming Hi has density hi
and some other mild conditions) we obtain

(18) Q(t) = 2n" * Σi Σj Lij /{I(Yi < y) - Hi(y - x l t M - xjt) dG(y) X j .

Specialize this to the case G(y) Ξ y, L(s) Ξ s, p = 1, Xi Ξ 1 and integrate
by parts, to obtain

Q(t) = -2n~2 Σi Σj min(n - i, n - j){Hi(Yi -1) - 1/2}

= -n~2 Σi (n - i)(n + i - 1) {Hi(Yi -1) - 1/2}.

Now suppose further that Hi = F. Then β is a solution t of

(19) Σi (n - i)(n + i - l){F(Yi -1) - 1/2} = 0.

Compare this β with θ of (2). Clearly β given by (19) is a weighted

M-estimator of the location parameter whereas θ given by (7) is an
ordinary M-estimator. Of course, if in (18) we choose L(s) = I(s > 1),

p = 1, Xi Ξ 1, G(y) = y then θ = β In general β may be obtained as a

solution of Q(t) = 0.

Next, consider β of (5.2.23). For the time being focus on the case

p = 1 and di = Xi — x. Assume, without loss of ceneralitv, that the data is
so arranged that xi < x2 < ... < xn Let o^:= {(Yj — Yi)/fxj — Xi); i < j ,
Xi < XJ}, ί0 := min{t"; tG <̂ } and <i := max{t; tG of}. Then tor Xi < x, , t <
ίo implies t < (Yj - Yi)/(xj - Xi) so that Ru < Rjt In other words the
residuals ίYj — txj; 1 < j < n} are naturally ordered for all t < ίo, w.p.l.,
assuming the continuity of the errors. Hence, with T(s, t) denoting the
Tid(s, t) of (22), we obtain for t < ί0,
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T(s,

K*

t)

(t)

= 0,

k = l

k 9

{A d U ι

k/n < s < (k+l)/n,

0 < s <

l < k

1/n,

<

s

t

n-l,

= 1.

Hence,

where Wk = [L((k+l)/n) - L(k/n)], 1 < k < n-l. Consequently

* n-l k 2

K (to-) = Σ α>k { Σ di} .

Similarly using the fact Σi di = 0, one obtains
* n-l k 2 *

K (t) = Σ Uk { Σ dif = K (ti+), t > tu
k = l ι i = l J v '

As t crosses over fo only one pair of adjacent residuals change their
ranks. Let Xj<x J + i denote their respective regression constants. Then

K*(f0-) - K*(ί0+) = °?) k̂ {ϊ di}2 -

Vd

But xi < X2 < ••• < x n , xj < Xj+i and Σi di = 0 imply

ΣJ J Σ 0.

Hence K*(ί0-) > K*(ίo*) Similarly it follows that K*(tu) > K*(ίi_).
Consequently, β\ and βi are finite, where

βι := min{t€ <% K*(t.) = i n f K*(Δ)},

β2 := max{te rff K*(t_) = i n f K*(Δ)},

and where <έf* denotes the complement of <ίf. Then β can be uniquely

defined by the relation β* = (ft + β2)/2.



5.3 FINITE SAMPLE PROPERTIES AND EXISTENCE 119

This β corresponding to L(s) = s was studied by Williamson (1979,
1982). In general this estimator is asymptotically relatively more efficient
than Wilcoxon type R-estimators as will be seen later on in Section 5.6.

There does not seem to be such a nice characterization for p > 1 and
general D satisfying (5.2.21). However, proceeding as in the derivation of

(6), a computational formula for K of (5.2.22) can be obtained to be

(20) K*(t) = -2 l=ι Σi Σj dijdjk I L((Rit/n)_) - L((Rjt/n)_) |.

This formula is valid for a general σ—finite measure L and can be used to

compute β .

We now turn to the m.d. estimator defined at (5.2.26) and (5.2.27).

Let di = xi — x. The first observation one makes is that for teR,

Dn(t) := sup I Σ di I(Yi < y + tdi)| = sup | Σ di I(R it< ns)|.
yeR i = 1 0<s<l i = 1

Proceeding as in the above discussion pertaining to β , assume, without loss
of generality, that the data is so arranged that xi < x 2 < ... < x n so that di <
d2 < ... < dn. Let rfί := {(Yj - Yi)/(dj - di); di < 0, <ζ > θj 1 < i < j < n}."

It can be proved that Di (Dΰ) is a left continuous non—decreasing (right
continuous non—increasing) step function on R whose points of discontinuity
are a subset of df\. Moreover, if -© = ίo < k i h < ••• < ίm < ίm*i = <D

denote the ordered members of <#ί, then 2>£(ii-) = 0 = />ή(ίm+) and Λί(ίm+)

= Σi dt = iΊ5(ίi-)) where dt = max (di, 0). Consequently, the following
entities are finite:

Ai := inf {teR; flί(t) > i?ή(t)}, βs2 := sup {teR; « ( t ) < Dή(t)}.

Note that β?2 > βs\ w.p.l.. One can now take βs = (/?si + A2)/
Williamson (1979) provides the proofs of the above claims and obtains

the asymptotic distribution of /?s. This estimator is the precise
generalization of the m.d. estimator of the two sample location parameter of
Rao, Schuster and Littell (1975). Its asymptotic distribution is the same as
that of their estimator.

We shall now discuss some distributional properties of the above m.d.

estimators. To facilitate this discussion let β denote any one of the
estimators defined at (5.2.11), (5.2.20), (5.2.23) and (5.2.27). As in Section

4.3, we shall write /?(X, Y) to emphasize the dependence on the data {(xi,

Yi); 1 < i < n}. It also helps to think of the defining distances K, K+, etc.
as functions of residuals. Thus we shall some times write K(Y — Xt) etc. for
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K(t) etc. Let K stand for either K or K+ or K* of (5.2.10), (5.2.19) and
(5.2.22). To begin with, observe that

(21) K(t - b) = K(Y + Xb - Xt), V t, b e Rp,

so that

(22) ftX, Y + Xb) = ftX, Y) + b, V b e Rp.

Consequently, the distribution of β— β does not depend on β.

The distance measure Q of (5.2.13) does not satisfy (21) and hence

the distribution of β — β will generally depend on β.

In general, the classes of estimators \β\ and {/Γ} are not scale
invariant. However, as can be readily seen from (6) and (7), the class {β}
corresponding to G(y) = y, Hi = F and those {D} that satisfy (5.2.21) and

the class {/f} corresponding to G(y) Ξ y and general {D} are scale
invariant in the sense of (4.3.2).

An interesting property of all of the above m.d. estimators is that
they are invariant under nonsingular transformation of the design matrix X.
That is,

/j(XB, Y) = B /3(X, Y) for every pxp nonsingular matrix B.

A similar statement holds for β.
We shall end this section by discussing the symmetry property of

these estimators. In the following lemma it is implicitly assumed that all
integrals involved are finite. Some sufficient conditions for that to happen
will unfold as we proceed in this chapter.

Lemma 5.3.2. Let (1.1.1) hold with the actual and the modeled d.f. of
ei equal to Hi, 1 < i < n.

(i) // either

i, l < i < n }
are continuous,

(ia) {Hi, 1 < i < n} and G are symmetric around 0 and
{Hi, l < i < n j

or

(ib) dy = - dn-i*i,j, xy = -xn-i*i,j and Hi = F V 1 < i < n,

1 < j < P,

then
*

β and β are symmetrically distributed around β, whenever they
exist uniquely.
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(ii) // {Hi, 1 < i < n} and G are symmetric around 0 and either

{Hi, 1 < i < n} are continuous or G is continuous,

then

ff is symmetrically distributed around β, whenever it exists uniquely.

Proof. In view of (22) there is no loss of generality in assuming that
the true β is 0.

Suppose that (ia) holds. Then #X, Y) = β(X, -Y). But, by
d

definition (5.2.11), flX, -Y) is the minimizer of K(-Y - Xt) w.r.t. t.

Observe that V t e Rp,

K(-Y - Xt) = £ / [ Σi dij{I(-Yi < y + x'it) - Hi(y)}]2 dG(y)

= l=i f [ Σi dij{l - I(Yi < -y - x'it) - Hi(y)}]2 dG(y)

= £ / [ Σi dij{I(Yi < y - x'it) - Hi(y-)}]2 dG(y)

by the symmetry of {Hi} and G. Now use the continuity of {Hi} to
conclude that, w.p.l.,

K(-Y - Xt) = K(Y + Xt), V t e Rp,

so that β(X, —Y) = — β(X, Y), w.p.l, and the claim follows because

-flX, Y) = argmin {K(Y + Xt); teKp}.

Now suppose that (ib) holds. Then

K(Y + Xt)

| *it) - F(y)}]2 dG(y)

/[Σ {( ή ) F()}]2
= Σ /[Σi dn-i+ljj{I(Yn-i+i< y+xή-i+it) - F(y)}]2 dG(y)

= K(Y-Xt), V teRp.

This shows that -^(X, Y) = ^(X, Y) as required. The proof for β is
d

similar.
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Proof of (ϋ). Again, ^(X, Y) = /f (X, -Y), because of the symmetry

of {Hi}. But,

κ+(- γ- χt)

£ /[Σ dijlC-Yi < y + xίt) - 1 + I(-Yi < -y + x'it)}]2 dG(y)

dy {I(Yi < y + xίt) - 1 + I(Yi < -y + x'it)}]2 dG(y)

= K+(Y + Xt), V t e Rp,

w.p.l, if either {Hi} or G are continuous. D

5.4. ASYMPTOTICS OF MINIMUM DISPERSION ESTIMATORS: A
GENERAL CASE

This section gives a general overview of an asymptotic theory useful in
inference based on minimizing an objective function of the data and
parameter in general models. It is a self contained section of broad interest.

In an inferential problem consisting of a vector of n observations ζn

= (Cni, •—j (nn)', not necessarily independent, and a p-dimensionaJ

parameter 0eRp, an estimator of 0 is often based on an objective function
Mn(Cn, 0), herein called dispersion. In this section an estimator of θ
obtained by minimizing Mn(Cn, •) will be called minimum dispersion
estimator.

Typically the sequence of dispersion Mn admits the following
approximate quadratic structure. Writing Mn(0) for Mn(£n, 0), often it
turns out that Mn(0) — Mn(0o), under 0o> is asymptotically like a quadratic
form in (θ— θo)> for θ close to ΘQ in a certain sense, with the coefficient of
the linear term equal to a random vector which is asymptotically normally
distributed. This approximation in turn is used to obtain the asymptotic
distribution of minimum dispersion estimators.

The two classical examples of the above type are Gauss's least square
and Fisher's maximum likelihood estimators. In the former the dispersion
Mn is the error sum of squares while in the latter Mn equals -logLn, Ln

denoting the likelihood function of θ based on £n. In the least squares
method, Mn(0) — Mn(0o) is exactly quadratic in (θ — 0o), uniformly in θ
and 0o The random vector appearing in the linear term is typically
asymptotically normally distributed. In the likelihood method, the well
celebrated locally asymptotically normal (l.a.n.) models of Le Cam (1960,
1986) obey the above type of approximate quadratic structure. Other well
known examples include the least absolute deviation and the minimum
chi-square estimators.
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The main purpose of this section is to unify the basic structure of
asymptotics underlying the minimum dispersion estimators by exploiting the
above type of common asymptotic quadratic structure inherent in most of
the dispersions.

We now formulate general conditions for a given dispersion to be
uniformly locally asymptotically quadratic (u.l.a.q.d.J. Accordingly, let Ω

be an open subset of Rp and Mn, n > 1, be a sequence of real valued functions

defined on RnχΩ such that Mn( , β) is measurable for each θ. We shall
often suppress the ζn coordinate in M ? and write Mn(0) for M n (£ n , θ).

In order to state general conditions we need to define a sequence of
neighborhoods Nn(θo) := {θ e Ω, \δn(θo)(θ- 0o)|<B}, where ΘQ is a fixed
parameter value in Ω, B is a finite number and {όn(0o)J is a sequence of
pxp symmetric positive definite matrices with norms J|£i(0o)|| tending to
infinity. Since θ0 is fixed, write δn, Nn for όn(0o), Nn(0o), respectively.
Similarly, let P n denote the probability distribution of ζΏ when θ = ΘQ.

Definition 5.4.1. A sequence of dispersions {Mn(0), θ ei\Γn}, n > 1, is
said to be u.l.a.q. (uniformly locally asymptotically quadratic) if it satisfies

condition (AΪ) — (A3) given below.

(AΪ) There exist a sequence of pχl random vector Sn(0o) and a sequence
of pxp, possibly random, matrices Wn(0o), such that, for every 0 <
B < oo, and for all θ£NΏ}

Mn(0) = Mn(0o) + (0- 0o)'sn(0o) + 3 ( 0 - 0o) 'w n (0 o ) (0- ΘQ) + 5P(1),

where " o p ( l ) f l is a sequence of stochastic processes in θ converging to
zero, uniformly in θ 6iVn, in Pn-probability.

(A2) There exists a pxp non-singular, possibly random, matrix W(0o)
such that

o p (l), (P n).

(A3) There exists a pχl r.v. Y[θ0) such that

where J&, Jf denote joint probability distributions under P n and in the
limit, respectively.

Denote the conditions (AΪ), (A2) by (Al) and (A2), respectively,
whenever W is non-random in these conditions. A sequence of dispersions
{Mn} is called uniformly locally asymptotically normal quadratic (u.l.a.n.q.) if

(Al), (A2) hold and if (A3), instead of (A3), holds, where (A3) is as follows:
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(A3) There exists a positive definite pxp matrix Σ(0O) such that

^ N(0, Σ(0O)), (P n).
d

If (AΪ) holds without the uniformity requirement and (A2), (A3) hold
then we call the given sequence M n locally asymptotically quadratic (l.a.q.).
If (Al) holds without the uniformity requirement and (A2), (A3) hold then
the given sequence M n is called locally asymptotically normal quadratic.

In the case Mn(0) = —in Ln(0), the conditions non—uniform (Al),

(A2), (A3) with | | ^ | | = O(n1 / 2), determine the well celebrated l.a.n. models
of Le Cam (1960, 1986). For this particular case, W(0O), Σ(0O) a n d t h e

limiting Fisher information matrix F(0o), whenever it exists, are the same.

In the above general formulation, M n is an arbitrary dispersion

satisfying (AΪ) - (A3) or (Al) - (A3). In the latter the three matrices
W(0o), Σ(0o) a n ( * F(0o) are not necessarily identical. The l.a.n.q.
dispersions can thus be viewed as a generalization of the l.a.n. models.

Typically in the classical i.i.d. setup the normalizing matrix δn is of
the order square root of n whereas in the linear regression model (1.1.1) it is

of the order ( X X ) ' . In general δn will depend on 0O and is determined
by the order of the asymptotic magnitude of Sn(0o)

An example where the full strength of (AΪ) — (A3) is realized is
obtained by considering the least square dispersion in an explosive
autoregression model where for some \p\ > 1, Xi = pXi-i + βi, i > 1, and
where {βi, i > 1} are i.i.d. r.v.'s. For details see Koul and Pflug (1990).

We now turn to the asymptotic distribution of the minimum
dispersion estimators. Let {M n } be a sequence of u.l.a.q.d.'s. Define

(1) θn = argmin{Mn(t), teΩ}.

Our goal is to investigate the asymptotic behavior of θn and M n(0 n).
Akin to the study of the asymptotic distribution of m.l.e.'s, we must first

ensure that there is a ΘΏ satisfying (1) such that

(2) | « n ( 0 n - 0 θ ) | = O p ( l ) .

Unfortunately the u.l.a.q. assumptions are not enough to guarantee
(2). One set of additional assumptions that ensures (2) is the following.

(A4) V c > 0 ] a 0 < Z ί < B ) and Nic such that

Pn(|M n (0 o ) | <
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(A5) V e > 0 and 0 < a < α>, Ξ an N2« and a b (depending on c and a)
such that

P n ( inf Mn(t) > a) > 1 - e, V n > N2 £.
||On(t-0o)||>b

It is convenient to let

Qn(#, *o) := ( # - θo)'sn(θo) + ( l / 2 ) ( # - ί o ) ' w n ( ί 0 ) ( ί - * ) , θt Rp,

and θn := argmin{Qn(0, ΘQ), feRp} Clearly, ΘΏ must satisfy the relation

(3) # ~ ^

where 3Ώ := ^Wpf i 1 , where Wn = Wn(0o)
Some generality is achieved by making the following assumption.

(A6)

Note that (A2) and (A3) imply (A6). We now state and prove

Theorem 5.4.1. Let the dispersions M n satisfy (AΪ), (A4) — (A6).
Then, under P n ,

(4)

(5) udKQ MΏ{ff) - Mn(*o) = - (1/2)A - 0o)'Wn {θn - ΘQ)

Consequently, i/(A6) ί5 replaced by (A2) and (A3),

(6) A 1

(7) i n f ^ M»(J) - Mn(0o) = -(1/2) S».

//, instead of (AΪ) - (A3), M n

and (A5) hold then also (4) - (7) hold and
//, instead of (AΪ) - fA3), M n saίzs^es (Al) - (A3), and i/(A4)

(8) fcΛ-ft) -? N(O,Γ(0O)),
a

Proof. Let Ze be as in (A4). Choose an a > Ze in (A5). Then
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[|Mn(ft)| < Zt, inί Mn(ft + Λ ) > a]
|h |>b

C [ inf Mn(ft + Λ ) < Ze, inί Mn(ft + Λ ) > α]
| k |<b " |k |>b

C [ inf Mn(ft + *Λ) > inf Mn(ft + «Λ)]
|k |>b | k | < b J

Hence by (A4) and (A5), for any e > 0 there exists a b (now depending
only on c) such that V n > NieVN2€,

(9) Pn( inf Mn(ft + fify > inf Mn(ft + fi^)) > 1 - e,
|k |>b |h |<b

This in turn ensures the validity of (2). Having verified (2), (AΪ) now yields

(10) M n(0 n) = Mn(0O) + Qn(0n, to) + Op(l), (P n).

From (A6), the inequality

l inf^^ Mn(0) - i n f ^ ^ [Mn(θ0) + Qn(», fc)]|

< suPflEJNΓn |M n ( l ) - [Mn(Oo) + Qn(# f ft)] I

and (Al), we obtain

(11) Mn(ft) = Mπ(ft) + Qn(^π, to) + Op(l), (P n).

Now, (10) and (11) readily yield

Qn(0n, θo) = Qn(^n, ft) + Op(l), (P n),

which is precisely equivalent to the statement (4). The calim (5) follows
from (3) and (11). The rest is obvious. α

Remark 5.4.1. Roughly speaking, the assumption (A5) says that the
smallest value of Mn(0) outside of NΏ can be made asymptotically
arbitrarily large with arbitrarily large probability. The assumption (A4)
means that the sequence of r.v.'s {Mn(ft)} is bounded in probability. This
assumption is usuallv verified by an application of the Markov inequality in
the case E n jM n(ft) | = OflΛ, where E n denotes the expectation under P n .
In some applications Mn(0o) converges weakly to a r.v. which also implies
(A4). Often the verification of (A5) is rendered easy by an application of a
variant of the C-S inequality. Examples of this appear in the next section
when dealing with m.d. estimators of the previous section. α
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We now discuss the minimum dispersion tests of simple hypothesis,
briefly without many details. Consider the simple hypothesis Ho: θ = ΘQ. In
the special case when Mn is —In Ln, the likelihood ratio statistic for testing
Ho is given by -2 inf{Mn(0) - Mn(0o); &Ω}. Thus, given a general
dispersion function Mn, we are motivated to base a test of Ho on the
statistic

(12) T n = -2inf{Mn(^-Mn(0o); 0eΩ},

with large values of T n being significant.
To study the asymptotic null distribution of Tn, note that by (7),

T n = SnWόή^ήVSnίf lo) + op(l), (Pn). Let Y} W etc. stand for Y(0O),
W(0O), etc.

Proposition 5.4.1. Under (AΪ) — (A3), (A4), (A5); the asymptotic null

distribution of Tn is the same as that of Y W Y
Under (Al) — (A5), the asymptotic null distribution of Tn is the same

as that of Z B Z where Z is a N(0, I p x p) r.υ. and B = Σ1 / 2W - 1Σ1 / 2. α

Remark 5.4.2. Clearly if W(0O) = Σ(0O) t h e n t h e asymptotic null

distribution of T n is χp. However, if W Φ Σ, the limit distribution of T n

is not a chi-square. We shall not discuss the distribution of T n under
alternatives. α

A class of examples of the u.l.a.n.q.d.'s where (Al) — (A5) are
satisfied with typically W Φ Σ is given by Huber's M—dispersions for the
model (1.1.1), v.i.z.,

Mn(t) = Σi/>(Yi--χ/it), t eR p ,

where p is a convex function on R with its almost everywhere derivative ip.
As mentioned in Chapter 4 the estimators obtained by minimizing Mn are
studied extensively in the literature, see Huber (1981) and references there
in. These estimators include the least square and the ί.a.d. estimators of β.
Now, let gΓ(t) := J [ φ ) - ψ(x - t)]*dF(x), teR, r = 1, 2, and suppose that F

and Ψ are such that jψάF = 0, 0 < J^ dF < <D, gi is continuously
differentiable at 0 and that g2 is continuous at 0. Then it can be shown,
under (NX), that Huber's dispersion is l.a.n.q. with

= g(O)x'x, W = g(O)IPχp, and Σ = f/dF I p x p .

This together with the convexity of p and a result in Rockafeller (1970)
yields that the above dispersion is u.ί.a.n.q.d. See also Heiler and Weiler
(1988) and Pollard (1991).
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ψ\
For ρ(x) = |x | and F continuous, ψ(x) = sgn(x) and gΓ(t) =

) — F(θ) I. The condition on gi now translates to the usual conαition
on F in terms of the density f at 0. For p(x) = χ2, ψ(χ) = 2x, gi(t) = 2t,

so that gi is trivially continuously differentiate with gi(0) = 2. Note that

in general W Φ Σ unless g(0) = \ψ> dF which is the case when ψ is
related to the likelihood scores.

The next section is devoted to verifying (Al) — (A5) for various
dispersion introduce in Section 4.2.

5.5. ASYMPTOTIC UNIFORM QUADRATICITY

In this section we shall give sufficient conditions under which K , K* of

Section 5.2 will satisfy (5.4.A1), (5.4.A4), (5.4.A5) and K* and Q of

Section 5.2 will satisfy (5.4.A1). As is seen from the previous section this
will bring us a step closer to obtaining the asymptotic distributions of
various m.d. estimators introduced in Section 5.2.

To begin with we shall focus on (5.4.A1) for KD, K* and KD Our

basic objective is to study the asymptotic distribution of β^ when the actual

d.f.'s of {eni, 1 < i < n} are {Fni, 1 < i < n\ but we model them to be
{Hni, 1 < i < n}. Similarly, we wish to study tne asymptotic distribution of

/£ when actually the errors may not be symmetric but we model them to be

so. To achieve these objectives it is necessary to obtain the asymptotic
results under as general a setting as possible. This of course makes the
exposition that follows look somewhat complicated. The results thus
obtained will enable us to study not only the asymptotic distributions of
these estimators but also some of their robustness properties. With this in
mind we proceed to state our assumptions.

(1) X satisfies (NX).

(2) With d,.* denoting the jth column of D, | |d , .J | 2 > 0 for at least

one j ; l |d ( j ) | |
2 = 1 for all those j for which | | d ( j ) | |

2 > 0, 1 < j < p.

(3) {Fni, 1 < i < n} admit densities {fni, 1 < i < n} w.r.t. λ.

(4) {Gn} is a sequence in DI(R).

(5) With dni = (dnii, ... , dniP), the ith row of D, 1 < i < n,

i lldπill2 F n l ( l -F n i ) dGn = 0(1).
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(6) With 7 n := Σi | |dn i | |
2 fni,

lim supn J J 7n(y + x) dGn(y) dx = 0

for any real sequences {a n}, {bn}, an < bn, b n — an —» 0.

(7) With dnii = dϊtij - dήij, 1 < j < p; c n i = Ax n i , «ni:= | |c n i | | , 1 < i < n,
V δ>θj |M|<B

lim supn .Σ^ J*[Σi dnij{Fni(y + v 'c n i

- F n i (y + VCni - δϋni)}]2 dGn(y) < k δ2,

where k is a constant not depending on v and δ.

(8) With Rn j := Σi d n l j x n i fni, ifaj := ARnj, 1 < j < p,

.Σ i/||»/n j | |
2dGn = O(l).

(9) With /ίnj(y, u) := Σi dnijFni(y + cn iu), for each u GKP,

(y, π) -M5,(y, 0) - π'i/nj(y)]2dGn(y) = o(l).

(10) With mnj : = Σj dnij[Fni - H n i ] , 1 < j < p; m^ = (m n i , . . . , m n p )

/ | | i n D | | 2 d G n =

(11) With Γn(y) := (i/nl(y), ...., unp{j)) = D A (y)XA, where A is

defined at (4.2.1), and with Γn := JTn g n dGn, where gneLΓ(Gn), r =
1, 2, n > 1, is such that gn > 0,

0 < lim infn Jgn dGn < lim supn Jgn dGn < αo,

and such that there exists an a > 0 satisfying

lim infn inf{0'f n0 flERp, ||0|| = 1} > a.

(12) Either

(a) 0'dniχήiA0> 0 V 1 < i < n and V βERp, \\S[\ = 1.

Or

(b) 0'dnixήiA0< 0 V 1 < i < n and V flERp, \\0[\ = 1.
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In most of the subsequent applications of the results obtained in this
section, the sequence of integrating measures {G n } will be a fixed G.
However, we formulate the results of this section in terms of sequences {G n }
to allow extra generality. Note that if Gn Ξ G, GeDl(R), then there always
exists a geLΓ(Gj, r = 1, 2, such that g > 0, 0 < Jg2dG < α>.

Define, for y e R, u e Rp, 1 < j < p,

(13) S?(y, π) = Vjd(y, An), Yfty, u) := Sfty, u) - μfty, u).

Note that for each j , Sj, μ°, Yj are the same as in (2.3.2) applied to Xni =
Yni, cni = Axni and dni = dnij, 1 < i < n, 1 < j < p.

Notation. For any functions g, h : Rp+1 —»R,

| g u - h v | 2 := /{g(y, u) -h(y, v)}2dGn(y).

Occasionally we write |g|n for |go|n

Lemma 5.5.1. Let Yni, ... , Ynn be independent r.υ.'s with respective
d.f.'s Fni,... , F n n . Then (5) implies

(14) E . ^

Proof. By Fubini's Theorem,

l\ lS / Σ | | | | 2
(15) E l\ YjolS = / Σ i ||di||2 Fi(l - Fi) dGn

and hence (5) implies the Lemma. •

Lemma 5.5.2. Let {Yni} be as in Lemma 5.5.1. Then assumptions
(1) - (4), (6) - (10) imply that, for every 0 < B < α>,

(16) E sup .Σ|Y?u-Y?0 | ίί = o(l).

I M I < B J = 1

Proof. By Fubini's Theorem, V u ei^B),

(17) E.ΣjYfu- Y?o|2 < /Σi ||di||2|Fi(y + cU) -Fi(y)|dGn

where b n = B maxi /ci, j n as in (6). Therefore, by assumption (6),
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(18) E j Σ i |Y} B -Y} 0 | ϊ = o(l)> V ueRp.

T o c o m p l e t e t h e proof o f ( 1 6 ) , b e c a u s e o f t h e c o m p a c t n e s s o f

Jί{B) : = { u e R p ; | | π | | < B } , i t suffices t o s h o w t h a t Ϋ e > 0 3 a ί > 0 s u c h
t h a t V veJ/(B),

p
lim supn E sup #Σ | Lju — LJV| < c,

where

Lju:= |Yju-Yjo|S, πeR p , 1 < j < p.

Expand the quadratic, apply the C—S inequality to the cross product
terms to obtain

(20) |L J B-L j τ | <

Moreover,

(21) |Yj.-Yjτ |ϊ<2{|S}.-S} τ |J+

ς+ I 2 ,ςO I 2 <

l<H\Ul+ \^-μ]γ\lh 1 < j < P,

where Sj,/ίj are the Sj, μ° with dy replaced by dy, dtj := max(0, dy),

dTj :=di j -d i j , l < i < n , 1 < j < p.

Now, ||u — v|| < δ, nonnegativity of {dij}, and the monotonicity of
i} yields (use (2.3.1~5) here), that for all 1 < j < p,

I Mj» " μ*r\ I < JPi dtj{Fi(y + cW + δm) -

- F i ( y

Therefore, by assumption (7),

(22) lim supn sup Σ |μ°\u - μ]v\ I <

lM<ίJ > 1

c'iV-Λci)}]2dGn(y).

By the monotonicity of Sj and (2.3.15), ||u - v|| < δ implies that for
all 1 < j < p, yeK,
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- Σi dtj l(-δκi < Yi - v'Ci - y < 0)

< S}(y, u) - Sf(y, v)

< Σi dtj 1(0 < Yi - v'Ci - y < Λβi).

This in turn implies (using the fact that a < b < c implies b2 < a2 + c2 for
any reals a, b, c)

{Sj(y,u)-Sΐ(y,v)} 2

< {Σi dtj 1(0 < Yi - y - V Ci < δκi)}2 +

+ {Σi dtj l(-δκι < Yi - y - v'Ci < 0)}2

< 2 {Σi dtj ϊ(-δκι < Yi - y - v'Ci < ί«i)}2

for all 1 < j < p and all y e 9i. Now use the fact that for a, b real, (a + b)

< 2a2 + 2b2 to conclude that, for all 1 < j < p,

(23) ISju-SjvlίS

< 4 /{Σi dtj[lH«i < Yi - y - v'Ci < δm) -

-Pi(y,M)]} 2 dG n (y) +

+ 4/{ΣidtjPi(y,v,*)}2dGn(y)

= 4{/j + /7j}, (say),

where pi(y, v, ί) = Fi(y + v'Ci + δκ\) - Fi(y + v'Cj - δκ{).

But (dtj)2 < d2j for all i and j implies that

EΣfi = jΣ i /Σi(dtj)2

 P i(y, v, δ) (1 - P i ( y , v, ί))dGn(y)

</Σi||di| | pi(y, v, £)dGn(y) < J (/7n(y + s)dGn(y))ds,

by (3) and Fubini, where an = (—B — ί)maxi /ci, bn = (B + ί)maxi κ\, and
where j n is defined in (6). Therefore, by the assumption (6),

(24) E.Σ Jj = o(l).
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From the definition of //} in (23) and the assumption (7),

(25) limsupn .Σ /ij < kδ2.

From (21) - (25), we obtain

(26) Urn supn E sup Σ | Y% - Y? v | I < 40k δ2.

I M < * J B 1

Thus if we choose 0 < δ < (e/40k)1/2, then (19) wiU M o w from (26), (20)
and (18). This also completes the proof of (16). α

To state the next theorem we need

(27) KD(t) := .Σt /{YKy, 0) + t'Rj(y) + m j ( y ) } 2 dGn(y).

In (28) below, the G in KD is assumed to have been replaced by the

sequence Gn, just for extra generality.

Theorem 5.5.1. Let Yni, ... , Ynn δe independent r.v.'s with
respective d.f.'s Fni, ... , F n n . Suppose that {X, Fni, Hni, D, G n } satisfy (1)
- (10). Then, for every 0 < B < OD,

(28) E s p I KD(Au) - KD(Au) | = o(l).

Proof. Write K, K etc. for KD, KD etc. Note that

K(Au) = l^ /[S5(y, π) - fi(γ) + m j (y)] 2 dGn(y)

}(y, π) - Y?(y) +

where Yj(y) = Yj(y, 0), μ°(y) = μfty, 0). Expand the quadratic and use the
C—S inequality on the cross product terms to obtain

(29) |K(Au)-K(Au)|

} -u'i/j|„]
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In view of Lemmas 5.5.1, 5.5.2 and assumptons (8) and (10), (28) will
follow from (29) if we prove

P 2

(30) sup Σ | μ j u — μ? — U'I/J | n = o(l).

IMI<B j = 1

L e t β \ u •= I μ ju — μj — u ' v \ | n, 1 < j < p, u e K p . I n v i e w o f t h e c o m p a c t n e s s
o f Jfφ) a n d t h e a s s u m p t i o n ( 9 ) , i t suf f ices t o p r o v e t h a t V e > 0 , 3 a ί > 0
3 V v<

p
(31) Urn supn sup Σ | £ j u - £ j v | < e.

But

Uiu-ίjv! < 2 {\μ]u-μU2» + h-A2 Mi

Hence, from (22) and the assumption (9),

l.h.s. (31) < 2 {4k^ + ^(a + 2k1/2a1/2)} = k /
P 2 2

where a = lim supn .Σ ||i/j||n Therefore, choose δ < e/kχ to obtain (31),

hence (30) and therefore the Theorem. α

Our next goal is to obtain an analogue of (28) for K .̂ Before stating

it rigorously, it helps to rewrite Kj in terms of standardized processes {Yj}

and {μ°} defined at (9). In fact, we have

κ (Au) = Σχ / [ S j (y, π) - Σi dy + S? (-y, π)]2 dGn(y)

= lχ / M (7, n) - Yj (y) + YJ (-y, π) -Yj (-y)

+ u'iί(y) + Wj (y) + mj (y)]2 dGn (y)

where
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W}(y) := Yfty) + Y}(-y), u](y) = φ) + itf-y),

mfty) := Σi dy {Fi(y) - 1 + Fi(-y)}

rf(-y)-Σidy, yeR, 1 < j < p.

Let

(32) K^Au) =.Σ J[Wj + m} + u'i/]]2 dGn, u €RP.

Now proceeding as in (29), one obtains a similar upper bound for

IK *(Au) — K *(Au) I innvolving terms like those in r.h.s. of (29) and the

terms like | Y j u - Yj | -n, |μ°ju - μ] - u'VJ I -π ||«51|-n, | Yj I -n, where for

any function h: Rp+1 — R, | h u | ? n := Jh2(-y, u) dGn(y). It thus becomes
apparent that one needs an analogue of Lemmas 5.5.1 and 5.5.2 with Gn( )
replaced by G n(—). That is. if the conditions (5) — (10) are also assumed
to hold for measures {G n (—)} then obviously analogues of these lemmas
will hold. Alternatively, the statement of the following theorem and the
details of its proof are considerably simplified if one assumes Gn to be
symmetric around zero, as we shall do for convenience. Before stating the
theorem, we state

Lemma 5.5.3. Let Yni, ... , Ynn δe independent r.v.'s with respective
d.f.'s F n ί, ... , Fnn Assume (1) - (4), (6), (7) hold, {G n } satisfies (5.3.8)
and that (33) hold, where

(33) / Σ i ||dni||2 {F n i (-y)+l-F n i (y)} dGn(y) = 0(1).

Then,

(34a) EJj

and

(34b) E sup Σ |Y}β-Yjβ|?ii = o(l) l V 0 < B < *. α
||π||<BJ = 1

This lemma follows from Lemmas 5.5.1 and 5.5.2 because under
(5.3.8), l.h.s.'s of (34a) and ί34b) are equal to those of (14) and (16),
respectively. The proof of tne following theorem is similar to that of
Theorem 5.5.1.

Theorem 5.5.2. Let Yni, ... , Y n n he independent r.v.'s with
respective d.f.'s F n i , ... , F n n . Suppose that {X, F n i, D, G n } satisfy (1) -
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(4), (6) - (9), (5.3.8) for all n > 1, (33) and that

(35) .Σ i /{ml(y)} 2 dG n (y) =

Then, V 0 < B < m,

(36) E BJΦ I K^An) - KJ(Au) | = o(l). o

Remark 5.5.1. Recall that we are interested in the asymptotic

distribution of A " 1 ^ - β) which is a minimizer of K^(β + An) w.r.t. u.
A

Since β^ satisfies (5.3.22), there is no loss of generality in taking the true β

equal to 0. Then (28) asserts that (1/2)KD satisfies (5.4.A1) with

(37) 0o = 0, δn = A"1, S n = A " 1 ^ , Wn = A J2fn A,

ST* := -/r n (y){Yj(y) + mjj)} dG»(y),

where Γn(y) = AxΆ*(y)D, A* as in (4.2.1), Yj':= (Y^, ...., Y£) and

π ^ := ( m b ...., mp).

In view of Lemma 5.5.1, the assumptions (5) and (10) imply that
EKD(0) = 0(1), thereby ensuring the validity of (5.4.A4).

Similarly, (36) asserts that (1/2)K* satisfies (5.4.A1) with

(38) 0o = 0, δn = A"1, S n = A"1 S ί , Wn = A 3t A,

dG»(y),

where Γί(y) := AxΆ + (y)D, Λ+(y) := A*(y) + Λ*(-y), y € Rp,

W;':= (Wt, ..., W;) and mj':= (mt, ..., m^.
In view of (12), (31), (33) and (5.3.8) it follows that (5.4.A4) is

satisfied by Kj(0).

Theorem 5.4.1 enables one to study the asymptotic distribution of β

when in (1.1.1) the actual error d.f. Fni is not necessarily equal to the
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modeled d.f. Hni, 1 < i < n. Theorem 5.4.2 enables one to study the

asymptotic distribution of 0ί when in (1.1-1) the error d.f. Fni is not

necessarily symmetric around 0, but we model it to be so, 1 < i < n. α

So far we have not used the assumptions (11) and (12). They will be

now used to obtain (5.4. A5) for K and K*

Lemma 5.5.4. In addition to the assumptions of Theorem 5.5.1 assume
that (11) and (12) hold. Then, V e > 0, 0 < Z < < D , 3 N (depending only on
e) and a B (depending on e, z) 3 0 < B < αo,

(39) P( inf KJAu) > z) > 1 - e, V n > N,
|M|>B

(40) P( inf Kn(Au) > z) > 1 - c, V n > N.
IMI>B

Proof. As usual write K, K etc. for KD, KD etc. Recall the

definition of Γn from (11). Let kn(0) := 0'Γn0, 0 £&. By the C-S
inequality and (11),

(41) sup | | f l | |=1 \U<!)\2< llfπll2 < jΣJhllί |βn|S = 0(1).

Fix an c > 0 and a z€(0, αo). Define, for teKp, 1 < j < p,

V j W ^ / ί Y j + t'Bj + mjjgπdGn,

Kj(t) := /[V j d (y, t) - J t d n i j Hn i(y)] gn(y) dGn(y).

Also, let V:= {Vu ...,FP), V := (Vu - Vp), η/Ώ := |g n | 5 , 7 •= ϋm supn 7n

Write a ueRp with ||u|| > B as n = τθ, |r| > B, ||^ || = 1. Then,
by the C—S inequality,

infK(Au)> inf (θ
N I > B " |Γ|>B,Γ ••

inf ίC(Au) > inf {θ V{τkβ)flΊτι.|| " | | | | φ
It thus suffices to show that 3 a B 6(0, OD) and N 9
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(39) P( inf {θ V(τA0))2/jn > z ) > 1 - e, V n > N,
|r|>B,|H|=l

(40) P( inf (θ F(rA0))2/7n > z) > 1 - e, V n > N.
|r|>B,|H|=l

But, V ueRp,

Thus, from (11), (16) and (30), it Mows that V Be(O, α>),

<4 2) s u pιiπ| |<B II 7 ( A n ) - v ( A l l ) l l = opW

Now rewrite

θ V{τAΘ) = Θ T + τ ka(ff), T := (Tu ...., Γp) with

Γj := /{Yj + mj} gn dGn, 1 < j < p.

Again, by the C—S inequality, Fubini, (16) and the assumptions (10) and
(11) it follows that 3 Ni and b, possibly both depending on c, such that

(43) P( | |Γ | |<b)> l-(c/2) , n > N,.

Now choose B such that

(44) B > (b + (za)1/2) a~\

where a is as in (11). Then, with αn := inf{|kn(0)|; | |^| | = 1},

(45) P( inf (ΘV(iAff))2ha>z)
|r|=B,||φl

(AίOI ( ) 1 / 2
= P(| θ F(rAίOI > (z7n)1/2, V ||β|| = 1, |r| = B)

> | - | r | |kn(<0||>(z7n)1/2,V |M| = 1, | r | = B )

< -(z 7 π) 1 / 2 + B αn) > P(|| T \\ < - (z 7 ) 1 / 2 + B α)
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In the above, the first inequality follows from the fact that | |d | — | c | | <

I d + c|, d, c reals; the second uses the fact that | θ T \ < \\ T || for all

||0|| = 1;
B αn);

= 1; the third uses the relation (^o, -{zi)1^2 + B a) C (-*>,
) while the last inequality follows from (43) and (44).

Observe that θ V (rA0) is monotonic in r for every ||0|| = 1.

Therefore, (45) implies (40) and hence (40) in a straight forward fashion.

Next, consider 0 V(τAΘ). Rewrite

θ V(τA0) = f ^(0 άφiYm < y + rx^Afl)) - Hni(y)] gn(y) dGn(y)

which, in view of the assumption (12), shows that θ F(rA0) is monotonic
in r for every \\θ \\ = 1. Therefore, by (42) 3 N2, depending on e, 3

P( inf (ΘV(τAσ))2/Ίa>z)
| | | H ||r >B,|H|=l

inf (0'v
|r |=B,| |φl

inf (ί'V(rA^)2/7n>z)-(c/2), V n > N2,
|r |=B,| |φl

> 1 - e, V n > N2VN!,

by (45). This proves (39) and hence (39). D

The next lemma gives an analogue of the previous lemma for K*

Since the proof is quite similar no details will be given.

Lemma 5.5.5. In addition to the assumptions of Theorem 5.5.2 assume
that (11+) and (12) hold, where (11+) is the condition (11) with Γ n replaced

by Γn := {vί, -—i^p) and where {vj} are defined just above (32).

Then, V c > 0 , O < Z < O D , 3 N (depending only on c) and a B
(depending on e, z) 3

(46) P( inf K!(Au) > z) > 1-c, V n > N,

INN

(47) P( inf K!(Au) > z) > 1-6, V n > N. •
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The above two lemmas verify (5.4.A5) for the two dispersions K and

K+. Also note that (40) together with (5) and (10) imply that || A~*( A - β)\\

= Op(l), where A is defined at (49) below. Similarly, (47), (5), (35) and

the symmetry assumption (5.3.8) about {Gn} imply that | |A" 1(Δ+- β)\\ =

Op(l), where Δ+ is defined at (53) below. The proofs of these facts are
exactly similar to that of (5.4.2) given in the proof of Theorem 5.4.1.

In view of Remark 5.5.1 and Theorem 5.4.1, we have now proved the
following theorems.

Theorem 5.5.3. Assume that (1.1.1) holds with the modeled and actual
d.f. }s of the errors {eni, 1 < i < n} equal to {Hni, 1 < i < n} and {Fni, 1 < i
< n} ; respectively. In addition, suppose that (1) — (12) hold. Then

(48) (βΏ - A) 'A" 1 3 a λ-% - A) = op(l),

where Δ satisfies the equation

(49) Λ n A " 1 ( A - Λ = ?n

// in addition,

(50) 3n exists for n > p,

then,

(51) A " 1 ^ - β) = rf 3Tn + op(l),

where SΊi and JBn are defined at (37). D

Theorem 5.5.4. Assume that (1.1.1) holds with the actual d.f's of the
errors {eni, 1 < i < n} equal to {Fni, 1 < i < n}. In addition, suppose that
{X, F n i , D, Gn} 'satisfy ( l H 4 ) , (6) - (9), ("5.3.8) for aU n > 1, (11), (12)
and (33). Then,

(52)

where Δ+ satisfies the equation

(53) Λl A - 1 (A + - β) =

If, in addition,

(54) ( #n) * exists for n > p,

then,
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(55) A^/ζ - 0) = ( Si)'1 K + op(l),

where 3^ and 3n are defined at (38).

Remark 5.5.2. If {Fi} axe symmetric about zero then ΠL Ξ 0 and

is consistent for β even if the errors are not identically distributed. On the
other hand, if the errors are identically distributed, but not symmetrically,

then /£ will be asymptotically biased. This is not surprising because here

the symmetry, rather than the identically distributed nature of the errors is
relevant.

If {Fi} are symmetric about an unknown common point then that
point can be also estimated by the above m.d. method by simply augmenting
the design matrix to include the column 1, if not present already. D

Next we turn to the K* and 0* (5.2.22) and (5.2.23). First we state

a theorem giving an analogue of (28) for KD Let Yj, μ\ be Yd, βd of

(2.3.1) with {dni} replaced by {dnij}, j = 1, ...., p, Xni replaced by Yni

and cni = Ai(xni — xn), 1 < i < n, where Ai and xn are defined at
(4.3.11). Set

(56) Rj(s) := Σi (dnij - dnj(s))(xni- ϊ n ) qni(s),

where, for 1 < j < p, dnj(s) := n Σi dnij 4i(s), 0 < s < 1, with {ίn(} as in

(3.2.35) and qni Ξ fniίH"1), 1 < i < n. Let

(57) K^(t) := Σ /'{ Yj(s, 0) - t'R*(s) + φ t 0)}2 dLn(s).

In (59) below, L in K is supposed to have been replaced by Ln.

Theorem 5.5.5. Let Yni, ..., Ynn be independent r.v.'s with respective
d.f.'s F n l , ... , F n n . Assume {D, X, Fn i} satisfy (1), (2), (3), (2.3.3b),
(3.2.12), (3.2.35) and (3.2.36) with Wi = dy, 1 < j < p, 1 < i < n. Let {Ln}
be a sequence ojd.f. }s on [0, 1] and assume that

(58) lχ /o V
2(s, 0) dLn(s) = 0(1).

Then, for every 0 < B < OD,

(60) sup |κJ(An)-κJ(Aiι)|=θp(l).
IWI<B
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Proof. The proof of (60) uses the a.u.l. result of Theorems 3.2.1 and
3.2.4. Details are left out as an exercise. •

The result (60) shows that the dispersion K satisfies (5.4.A1) with

(61) θo = 0, δn = AT1, Sn = A71 Sζ, Wn = AtJsl A
b

••= -// Γπ(s){li(s) + φ} dL»(β),

where rf(s) = AΊXCΛ(S)D(S), D(S) := ((dn« - cUs)), l<i<n, l<j<p; A(s)
as in (2.3.32), 0 < s < 1; Xc as in (4.2.11); ^ := \γb ..., F p ) ' , ^ := (μu

..., μp) with Yj{s) = 7j(s, 0), φ) = μj(s, 0).

Call the condition (11) by the name of (11*) if it holds when (Γn ,

Gn) is replaced by (Γn, Ln). Analogous to Theorem 5.5.4 we have

Theorem 5.5.6. Assume that (1.1.1) holds vήth the actual d.f.'s of the
errors {eni, 1 < i < n} equal to {Fni, 1 < i < n}. In addition, assume that

{D, X, F n i } satisfy (NX*), (2), (3), (2.3.3b), (3.2.12), (3.2.35), (3.2.36) with
Wi = dij, 1 < j < p, 1 < i < n, (11*) and (12). Let {Ln} be a sequence of
d.f. 's on [0, 1] satisfying (58). Then

(62)

where Δ satisfies the equation

(63) #*n A~\Δ*-β) = sζ.

If, in addition,

(64) (3 Ώ ) ~1 exists for n > p,

then,

(65) A"1^* -/?) = ( ̂  )"1 Sri + op(l),

where ^n and 3n are defined at (61).

The proof of this theorem is similar to that of Theorem 5.5.3. The
details are left out for interested readers. See also Section 4.3. α
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Remark 5.5.3. Discussion of the assumptions (1) — (10). Among the
assumptions (1) — (10), the assumptions (7) and (9) are relatively harder to
verify. First, we shall give some sufficient conditions that will imply (7), (9)
and the other assumptions. Then, we shall discuss these assumptions in
detail for three cases, v.i.z., the case when the errors are correctly modeled to
be i.i.d. F, F a known d.f., the case when we model the errors to be i.i.d. F
but they actually have heteroscedastic gross errors distributions, and finally,
the case when the errors are modeled to be i.i.d. F but they actually are
heteroscedastic due to difference in scales.

To begin with consider the following assumptions.

(66) For any sequences of numbers {ani, bni}, ani < bni,
i (bni - a n i ) —> 0,

lim supn rnaxi (b n ra n i ) J ^ . J {fni(y+z)-fni(y)} dGn(y) dz = 0.

(67) rnaxi / & dGn = 0(1).

Claim 5.5.1. Assumptions (1) - (4), (66), (67) imply (7) and (9).

Proof. Use the C—S inequality twice, the fact that (dij) < dfj for all
i, j , and (2) to obtain

{Fi (y + c'iv + δκι) - F i (y + c v - δm)}]2 dGn(y)

< 2 Σi i|di||2 /Σi 6m f&.lf{ (y + z) dz dGn(y)

< 4pV maxi {2δκi)~ί f^ /f? (y+z) dGn(y)dz, (by Fubini),

where ai = — κ\δ + Civ, bi = κ\δ + Civ, 1 < i < n. Therefore, by (66), (67)
and (1),

l.h.s. (7) < 4p2ί2k, (k = lim supn maxi | f i | 2 ),

which shows that (7) holds.
Next, by (2) and two applications of the C-S inequality

l.h.s. (9) = . | /[Σi dij {Fi (y + c'iu) - Fi(y) - c'iufi(y)}]2 dGn(y)

< p / Σ i {Fi(y + c'iu) - Fi(y) - c'iufiίy)}2 dGn(y)
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= p{/Σt [/Q

Cl ' (fi(y + z) - fi(y))dz]2 dGn(y)

< 2p {/[Σt cm / Q

C l " {fi(y + z) - fi(y)}2 dz

' (y + z) - fi(y)}2 dz] dGn(y)

c'u

)-fi(y)}2dGn(y)dz].

.4pΣi(c u)2,

where Σt (Σi) is the sum over those i for which CiU > 0 (ciU < 0). Since

Σi (c'iπ)2 < pB for all U€JM(B), (9) now follows from (66) and (1). π

Now we consider the three special cases mentioned above.

Case 5.5.1. Correctly modeled i.i.d. errors: F n i = F = Hni, Gn = G.
Suppose that F has a density f w.r.t. λ. Assume that

(68) (a) 0</fdG<0D, (b) 0 < /f2 dG < *.

(69) j F ( l - F ) d G < ( D .

(70) (a) lim /f(y + z) dG(y) = fί dG

(b) lim ff(γ + z) dG(y) = /f2 dG.

Claim 5.5.2: Assumptions (1), (2), (4) with Gn Ξ G, (68) - (70)
imply (1) - (10) with Gn = G.

This is easy to see. In fact here (5) and (6) are equivalent to (68a),
(69) and (70a); (66) and (67) are equivalent to (68b) and (70b). The LHS
(10) = 0.

Note that if G is absolutely continuous then (68) implies (70). If G
is purely discrete and f continuous at the points of jumps of G then (70)
holds. In particular if G = δo, i.e.. if G is degenerate at 0, α> > fίO) > 0uviu.u xii. ^/uiuv/iuui xx VJI — vyj} x v/ 11 >m ID vxv/̂ vyxi v/xu*vv u»v v/j uu ^ ^ XΛ

and f is continuous at 0 then (68j, (70) are trivially satisfied. If G(y) = y,
(68a) and (70&) are a pήoή satisfied while (69) is equivalent to assuming
that E |e i~e 2 [ < a), ei, e2 i.i.d. F.
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If dG(y) = {F(y)(l - F(y))} * dF(y), the so called Darling-
Anderson measure, then (68) — (70) are satisfied by a class of d.ί.'s that
includes normal, logistic and double exponential distributions.

Case 5.5.2. Heteroscedastic gross errors: En\ Ξ F, Fni= ( 1 — t f n i ) n i
Fo. We shall also assume that Gn = G. Let f and fo be continuous
densities of F and Fo. Then {Fni} have densities fni = f + ίni (fo )
< i < n. Hence (3) is satisfied. Consider the assumption

(71) 0 < ί n i < l , maxiίni—»0,

(72) J | F 0 - F | dG<QD.

Claim 5.5.3. Suppose that fo and f satisfy (68) and (70), F satisfies
69), and suppose that (1), (2) and (4) hold. Then (71) and (72) imply (5) -

Proof. The relation f\ Ξ f + δ\(U — f) implies that

i/j - Σi dij Ci f = Σi dij Ci δι (f0 - f), 1 < j < p,

and

7π-Σi | |di | | 2 f=Σi | |di | | 2 ί i(fo«f).

Because Σi ||di|| < p, Σi ||ci|| = p, we obtain

|/[ 7 n (y+x)-Σi | |d i | | 2 f (y +

< p maxi δi I / [f0(y + x) - f(y + x)]dG(y) |, V XGR.

Therefore, by,(71), (68a) and (70a), it follows that (6) is satisfied. Similarly,
the inequality

I /1|*5 - Σi dij Ci f||2 dG < 2p2 maxi d\ {/f? dG + /f2 dG}

ensures the satisfaction of (8). The inequality

| /Σi | | d i | | 2 {Fi( l -F i )-F( l-F)}dG| < 2p maxi δi f | F 0 - F | dG,

(69), (71) and (72) imply (5). Next,
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χ)-fi(y)}2dG(y)

< 2(1+2$ /{f(y + x) - f(y)}2 dG(y) + Aδ\ /{f o(y + x) - fo(y)}2 dG(y).

Note that (68b), (70b) and the continuity of f imply that

l im/{f(y + x)-f(y)}2dG(y) = 0

and a similar result for f0. Therefore from the above inequality, (70) and
(71) we see that (66) and (67) are satisfied. By Claim 5.5.1, it follows that
(7) and (9) are satisfied. α

Suppose that G is a finite measure. Then (Fl) implies (68) — (70)
and (72). In particular these assumptions are satisfied ί>y all those rs that
have finite Fisher information.

The assumption (10), in view of (72), amounts to requiring that

(73) I (Σ dij δif = 0(1).

But

2 - λ2 ^ ^
(74) Σfi dijfcr = £ £ di ίi dk ίk < (Σ

This and (2) suggest a choice of δ\ = p"1/2 ||di|| will satisfy (73). Note that

if D = XA then ||di||2 = x ί ί x ' x ) " ^ ! .

When studying the robustness of βΎ in the following section, δ\ =

! is a natural choice to use. It is an analogue of n~ ' —
i h i i dcontamination in the i.i.d. setup.

»
Case 5.5.3. Heteroscedastic scale errors: Hni = F, Fni(y) = F(rniy),

Gn = G. Let F have continuous density f. Consider the conditions

(75) τni Ξ σni + 1 ; σni > 0, 1 < i < n; maxi σni —» 0.

(76) lim / |yM*fk(sy) dG(y) = / |y|ifk(y) dG(y), j = 1, k = 1;

j = 0, k = 1, 2.

Claim 5.5.4. Under (1), (2), (4) with Gn = G, (68) - (70), (75) and
(76), the assumptions (5) — (9) are satisfied.

Proof. By (41), (43), (49) and Theorems Π.4.2.1 and V. 1.3.1 of

Hajek-Sϊdak (op. cit.),
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(77) 1 im limsup maxi f |f(ri(y + x)) - f(y + x) | Γ dG(y) = 0,

l i m / | f ( y + x)-f(y)| rdG(y) = 0, r = 1, 2.

Now,

||di||2 {Fi(l - Fi) - F(l - F)} dG |

< 2pmaxi/ | F(riy) - F(y) | dG(y) < 2p maxi/^/ | y | f(sy) dG(y) ds

= o(l), by (48) and (49) with j = 1, r = 1.

Hence (69) implies (5). Next,

| / 7 n(y + x)dG(y)-^ | |d i | | 2 /fdG|

< Σi l|di||2ri /{If(ri(y + x)) - f(y + x) I +1f(y + x) - f(y) | }dG(y)+

+ maxi σi p f fdG.

Therefore, in view of (48), (77) and (68) we obtain (6). Next, consider

i(y + χ)-fi(y)}2dG(y)

/ {[f(ri(y + x)) - f(y + x)]2 + [f(y + x) - f(y)]2 +

+ [f(riy)-f(y)]2}dG(y)

Therefore, (75) and (50) imply (39), and hence (7) and (9) by Claim 5.5.1.
Note that (50) and (41b) imply (40). Finally,

< p /{τif(τiy) -f(y)} 2 dG(y)

< 2p2 rnaxi τ\ [/{f(τiy) -f(y)} 2 dG(y) + /f2

by (75), (70b), (77). Hence (70b) and the fact that .Σ ||Σ dy Ci||2 < p2

implies (8). •
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Here, the assumption (10) is equivalent to having

(78) ^ / [ Σ dij{F(τiy) - F(y)}]2 dG(y) = 0(1).

One sufficient condition for (78), besides requiring F to have density f
satisfying

(79) li m / (yf(sy))2 dG(y) = / (yf(y))2 dG(y) < . ,

is to have
n Λ

(80) h σ\ = 0(1).
i = l

One choice of {σi} satisfying (80) is σ\ = n " 1 ' 2 and the other choice is σ2

Again, if f satisfies (Fl), (F3) and G is a finite measure then (68)
(70), (76) and (79) are a priori satisfied. α

Now we shall give a set of sufficient conditions that will yield (5.4. Al)
for the Q of (5.2.13). Since Q does not satisfy (5.3.21), the distribution of
Q under (1.1.1) is not idependent of β. Therefore care has to be taken to
exhibit this dependence clearly when formulating a theorem pertaining to Q.
This of course complicates the presentation somewhat. As before with
{Hni}, {Fni} denoting the modeled and the actual d.f.'s of {eni}, define for

0 < s < 1, y e R , t e Rp,

(81) Hn(s, y, t) := n ι Σ Hni(y - x n i t),

ns
mn(s, y) := n~ι/z.^{Fnifr - x n i # - Hni(y - x n i

Mln(s, y) := n 1/2^ {I(Yni < y) - Fn i(y - xniβ)},

dαn(s, y) := dLn(s) dGn(y).

Observe that

Q(t) = /[M l n (s, y) + mn(s, y) - n1/2{Hn(s, y, t)-Hn(s, y, β)}f dαn(s, y).

Note thathat the single integral is over the set [0, l|χR.
Assume that {Hni} have densities {hni} w.r.t λ and set
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— _i/o ns /

(82) Rnts, y) := n 1 / 2 Σ x n i h n i(y - xni0),

h2(y) := n"1 £ h2i(y - x n i # , se[O, 1], y e R,

vn := AKn, aim := J Pn Vn* dαn.

Finally define, for t € Kp,

(83) Q(t) := / [M l n ( s , y) + mn(s, y) + t ' ϊ ί n (s, y)] 2 dαn(s, y).

Theorem 5.5.7. Assume that (1.1.1) holds with the actual and the
modeled d.f. 's of the errors {eni, 1 < i < n} equal to {Fn\, 1 < i < n} and
{Hni, 1 < i < n}, respectively. In addition, assume that (1) holds, {Hni, 1 < i <
n} have densities {hni, 1 < i < n} w.r.t. λ, and the following hold.

(84) |hϊ | n

(85) V v € Jί{B), V 6 > 0,

-1 z ^11^ /• 2 '

lim supn maxi (2i«ni) J ^ . J hni(y - xniβ + z) dGn(y) dz

= lim supn maxij*hni(y - x n i # dGn(y) < oo,

where ani = -ί«ni - cniv, bni = i«ni-cniv, «ni = ||cni||, cni = Axni, 1 < i < n.

(86) V ue^(B),

/{n 1 / 2[H n(s, γ,β+ An) -H n (s , y, β)] + u'P n} 2 dαn(s, y) = o(l).

(87) / n " 1 . ^ Fni(y - x ^ (1 - Fni(y - x ^ ) dGn(y) = 0(1).

(88) /m 2 (s, y) dαn(s, y) = 0(1).

Then, V 0 < B < α>,

(89) E sup |Q(0+Au)-Q(An)| = o(l).

11-11 <B
The details of the proof are similar to those of Theorem 5.5.1 and are

left out as an exercise for interested readers.
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An analogue of (51) for β will appear in the next section as
Theorem 5.6a.3. Its asymptotic distribution in the case when the errors are
correctly modeled to be i.i.d. will be also discussed there.

We shall end this section by stating analogues of some of the above
results that will be useful when an unknown scale is also being estimated. To
begin with, consider K of (5.2.24). To simplify writing, let

(90) Kj(β, n) := K^Usn" 1 / 2 ), An), s E R, u e Rp.

Write as := (1 + sn~1/2). Then from (5.2.24) and (90),

(91) Kj(β, u) = Σχ f {Y?(yas, n) + ^(ya s , u) - Σ dy Hi(y)}2dGn(y)

where Hi is the d.f. of βi, 1 < i < n, and where μ°, Yj are as in (9) and

(13), respectively. Writing μ°(y), Yj(y) etc. for /Xj(y, 0), Yj(y, 0) etc., we
obtain

(92) Kj(s, u) =.Σ i /{Y5(ya s, n) - Y](y) + μj(yas) - μ]{7) - syu*(y)

+ Yj(y) + ^ / j /i(y) + s y ^ y ) + m i (y )

+ μ$(yas, u) - μj

where i/j is as in (8) and

(93) u](y) := n" 1 / 2 Σ d n i j fn i(y), 1 < j < p.

The representation (92) suggesting the following approximating candidate:

(94) Kj(s, u) :=^ f{Y] + U'I/J + syi/j + mj}2 dGn.

We now state

Lemma 5.5.5. With γ n as in (6), assume that V | s | < b, 0 < b < α>,

(95) 1 im lim supn J7n((l+sn"1'2)y+x)dGn(y)

= lim supn /7n(y)dGn(y) < CD,

and
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(96) 1 im lim supn f \y\ 7n(y+zy) dGn(y)

= Urn supn / |y17n(y) dGn(y) < «D.

Moreover, assume ίΛcίV (s, v)e[—b, b]*i/(B) =J\, andV δ> 0

(97) Urn supn.^ f [ J dίij{Fn i(ya s + cήiv + £(n~1/21 y | + Kni)) -

- F n i (ya 8 + ciiv - tf(n~1/2|y | + «ni))}]2 dGn(y)

for some k not depending on (s, •) and δ.
Then, V 0 < b, B < α>,

(98) E sup l=i /{Y?((l+sif 1/2)y, π) - Y?(y)}2 dGn =

where the supremum is taken over (s,

Proof. For each (s, u)eifi, with a s = 1 + s n 1 ' ,

E.Σi/{Y](yas,u)-Y5(y)}2dGn(y)

° /7n(yas+z) dGn(y)dz + f ° f |y| 7n(y+zy) dGn(y)dz

where B n = B maxi \\m\\, b n = b n ' 1 / 2 . Therefore, from (95) and (96), for
every (s, n)eJfι,

E £ /{Y?(yas, u) - Y;(y)}2 dGn(y) = o(l).

Now proceed as in the proof of (16), using the monotonicity of Vjd(a, t),

^j(a, π) and the compactness of J/Ί to conclude (98). Use (97) in place of
(7). The details are left out as an exercise. D

The proof of the following lemma is quite similar to that of (30).

Lemma 5.5.6. Let Gn(y) = Gn(y/ar). Assume that for each fixed

(r, u)e^i, (8) and (9) hold with Gn replaced by Gn. Moreover, assume the
following:
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(99) I

(100) £ /{Mj(yaβ) -Mj(y) - ^ j ( y ) } 2 dGn(y) = o(l), V | s | < b.

Then, V 0 < b, B < OD,

p

(101) sup .Σt J {μ°(yas, u) - μ° (ar y) - u' i/j(ar y)} 2 dGn(y) = o(l),

and

(102) sup £ / {μ}(ya.) - μ}(y) - TJU](J)}2 dGn(y) = o(l).

where the supremum in (101), (102) is taken over (s, u) eΛί, | s | < b,
respectively.

Theorem 5.5.8. Let Yni, ..., Ynn be independent r.v.'s with respective
d.f.'s F n l, ..., F n n . Assume (1) - (5), (8), (10), (95) - (97) and the
conditions of Lemma 5.5.6 hold. Moreover assume that for each | s | < b

(103) lχ / |kj(ya s) - ι/j(y)||2 dGn(y) = o(l).

ΓΛen, V 0 < b, B < oo,

(104) E sup I Kj(r, n) - Kj(r, n) = o(l).

where the supremum is taken over (s, u)ei/Ί.

The proof of this theorem is quite similar to that of Theorem 5.5.1. D

5.6. ASYMPTOTIC DISTRIBUTIONS, EFFICIENCES AND
ROBUSTNESS

5.6a. Asymptotic Distributions and Efficiences

To begin with consider the Case 5.5.1 and the class of estimators

Recall that in this case the errors {e n i} of (1.1.1) are correctly modeled to
be i.i.d. F, i.e., Hni = F Ξ Fni. We shall also take Gn Ξ G, GeDl(lR).
Assume that (5.5.68) — (5.5.70) hold. The various quantities appearing in
(5.5.37) and Theorem 5.5.3 now take the following simpler forms.
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(1) rn(y) = AX/Df(y), y€R, 3n = Ax'ϋ D'XA fί dG,

Note that &ΰ will exist if and only if the rank of D is p. Note
also that

(2) 3 ? ^ = -(D'XA)"1 /Yj fdG /

y

where V(y) = / fdG, yeK

Because Gn = G e DI(R), there always exists a geLΓ(G) such that g
> 0, and 0 < Jg2dG < α>. Take gn = g in (5.5.11). Then the condition
(5.5.11) translates to assuming that

(3) lim infn inf I 0DXA0I > a for some a > 0.
" Ί=i

Condition (5.5.12) implies that θ D XA0 > 0 or ί D X A 9 < 0 , V
= 1 and V n > 1. It need not imply (3). The above discussion together

with the L-F Cramer-Wold Theorem leads to

Corollary 5.6a.l. Assume that (1.1.1) holds with the error r.v.'s
correctly modeled to be i.i.d. F, F known. In addition, assume that (5.5.1),
(5.5.2), (5.5.12), (5.5.68) - (5.5.70), (3) and (4) hold, where

(4) (D'XA)"1 exists for all n > p.

Then,

(5) A " 1 ^ - 0) = (D'XA ffάG)'1 J i dni Meni) - E^eni)] + op(l).

//, in addition, we assume

(6) ffβ J d n i i i 2 = °(1)'
then

(7) J^A-^-fl) - . N(0,τ2Ipxp)

where

'D)"1, T* = Var ip{eι)/{ffάG)2. α
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For any two square matrices Li and L2 of the same order, by
Li > L2 we mean that Li — L2 is non—negative definite. Let L and J be

two p*n matrices such that (LL ) exists. The C-S inequality for
matrices states that

(8) Jj' > JL(LL'^Ll ' with equality if and only if J <x L.

Now note that if D = XA then 5L = IpXp. In general, upon choosing

J = D , L = AX in (8), we obtain

D D > DXA AXD or ^ > I p x p

with equality if and only if Dα XA. From these observations we deduce

Theorem 5.6a.l. (Optimatity of j8χ). Suppose that (1.1.1) holds with

the error r.v.'s correctly modeled to be i.i.d. F. In addition, assume that
(5.5.1), (5.5.4) with Gn = G, (5.5.68) - (5.5.70) hold. Then, among the class

of estimators {β^ D satisfying (5.5.2), (5.5.12), (3), (4) and (5)}, the

estimator that minimizes the asymptotic variance of b A (β — β), for

every beRp, is βχ - the β^ with D = XA. α

Observe that under (5.5.1), D = XA a priori satisfies (5.5.2), (3), (4)
and (6). Consequently we obtain

Corollary 5.6a.2. (Asymptotic normality of βχ.) Assume that (1.1.1)

holds with the error r.v.'s correctly modeled to be i.i.d. F. In addition,
assume that (5.5.1) and (5.5.68) - (5.5.70) hold. Then,

Δ~\βχ-β) -3 N(0,r2Ipxp). D

Remark 5.6a.l. Write βJG) for β^ to emphasize the dependence

on G. The above theorem proves the optimality of βχ(G) among a class of

estimators {/L(G), as D varies}. To obtain an asymptotically efficient

estimator at a given F among the class of estimators {/ίχ(G), G varies}

one must have F and G satisfy the following relation. Assume that F
satisfies (3.2.a) of Theorem 3.2.3 and all of the derivatives that occur below
make sense and that (5.5.68) hold. Then, a G that will give asymptotically

efficient /L(G) must satisfy the relation
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-f dG = (l//(f)) d(f/f), J(f) := /( f/ f ) 2 dF.

From this it follows that the m.d. estimators ^ χ ( G ) , for G satisfying the

relations dG(y) = ί2/3)dy and dG(y) = 4dίo(y), are asymptotically
efficient at logistic ana double exponential error d.f.'s, respectively.

For /fχ(G) to be asymptotically efficient at N(0, 1) errors, G

would have to satisfy f(y)dG(y) = dy. But such a G does not satisfy
(5.5.58). Consequently, under the current art of affairs, one can not estimate

β asymptotically efficiently at the N(0, 1) error d.f. by using a /L(G).

This naturally leaves one open problem, v.i.z., Is the conclusion of Corollary

5.6a.2 true without requiring JfdG < o, 0 < jί dG < α>? D

Observe that Theorem 5.6a. 1 does not include the estimator β\ — the

/L when D = n ' [1, 0, ..., 0 ] n x p i.e., the m.d. estimator defined at (5.2.4),

(5.2.5) after Hni is replaced by F in there. The main reason for this being
that the given D does not satisfy (4). However, Theorem 5.5.3 is general
enough to cover this case also. Upon specializing that theorem and applying
(5.5.49) one obtains the following

Theorem 5.6a.2. Assume that (1.1.1) holds with the errors correclty
modeled to be i.i.d. F. In addition, assume that (5.5.1), (5.5.68) — (5.5.70)
and the following hold.

(10) Either

n~1/20ixήiA0 > 0 for all 1 < i < n, all \\0\\ = 1,

or

n~1/20!XniA0< 0 foraU 1 < i < n, all \\0\\ = 1.

(11) liminfn inf |n 1 / 2 ^xήA^| > a > 0,
" Ί=l

where x n is as m(4.2a.ll) and θ\ is the first coordinate of θ. Then

where

Zn = n" 1 ' Σi {ψ{eni) — EV{eni)}, with ψ as in (2).

Consequently, n 1^ 2xn(A — β) w asymptotically a N(0, r 2) r.v. α
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Next, we focus on the class of estimators {/ζ} and the case of i.i.d.

symmetric errors. An analogue of Corollary 5.6a. 1 is obtained with the help
of Theorem 5.5.4 instead of Theorem 5.5.3 and is given in Corollary 5.6a.3.
The details of its proof are similar to those of Corollary 5.6a.l.

Corollary 5.6a.3. Assume that (1.1.1) holds with the errors correctly
modeled to be i.i.d. symmetric around 0. In addition, assume that (5.3.8),
(5.5.1), (5.5.2), (5.5.4) with Gn = G, (5.5.68), (5.5.70), (3), (4) and (13) hold,
where

(13) f*(l-F)aG<a>

Then,

(14) A~\β^ -β) = - {2AX'D jVdG}"1./w+(y) f(y)dG(y) + op(l),

where fϊy) := f(y) + f(-y) and W*(y) is W*(y, 0) of (5.5.32). //, in
addition, (6) holds, then

(15) Έ^A-^-β) -> N(0, τ2Ipxp). D

Consequently, an analogue of Theorem 5.6a. 1 holds for /£ also and

Remark 5.6a. 1 applies equally to the class of estimators {βt(G), G varies},

assuming that the errors are symmetric around 0. We leave it to interested

readers to state and prove an analogue of Theorem 5.6a.2 for β\.

Now consider the class of estimators {/?D} of (5.2.23). Recall the

notation in (5.5.61) and Theorem 5.5.6. The distributions of these estimators
will be discussed when the errors in (1.1.1) are correctly modeled to be i.i.d.
F, F an arbitrary d.f. and when Ln = L. In this case various entities of
Theorem 5.5.6 acquire the following forms.

μ^ΞO] 4i(s)sl ; D(s) = D, under (5.2.21);

Γn(s) Ξ A^cD q(s), q = fίF'1);

y* = - A^cD JΎD qdL = A^cD £ dni Po(F(eni);
• f t /• 9

oίrn = ^AiA c U U A cAiJ I q QL,

where Xc and Ai are defined at (4.2a. 11) and where

q(s)dL(s), 0 < u < 1.
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Arguing as for Corollary 5.6a. 1, one obtains the following

Corollary 5.6a.4. Assume that (1.1.1) holds with the errors correctly
modeled to be i.i.d. F and that L is a d.f.. In addition, assume that (Fl),
(NXC), (5.2.21), (5.5.2), and the following hold.

(16) liming inf I flDXcA^I > a > 0

(17) Either

fl'Mxni-irO'A^O, V l < i < n , V

or

fl'Mxni-irO'A^O, V l < i < n , V

(18) (D'XCAO" 1 exists for all n> p.

Then,

(19) AT1^* - β) = (D'XcA! fQ VdL)" 1 J i dn i φ(F(eni)) + op(l).

//, in addition, (6) holds, then

(20) (Σ^A^/ζ-/*) -* N(0,

where ίζ = (D'XcA^'^'DίA^cD)"1, σ\ = Var p(F(ei))/(/

(21) ^(β^-β) - J N(0, σ

2

0 I p x p )

and {/L } is asymptotically efficient among all {/7 , D satisfying above

conditions}. π

Consider the case when L(s) = s. Then

<Λ = (/^Wdx)"2 ff\F(py)-nx)F(j)]?{x)?(j) dxdy.

It is interesting to make a numerical comparison of this variance with
2 2 2 2

that of some other well celebrated estimators. Let σw, σiadj 0"is and σns
denote the respective asymptotic variances of the Wilcoxon rank, the least
absolute deviation, the least square and the normal scores estimators of β.
Recall, either from Chapter 4 or from Jaeckel (1972) that
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) dx}"2; σLd = (2 f(0))"2; σ\s = σ2;

dχ}"2;

where σ is the error variance. Using these we obtain the following table.

Table I

F ^*^^>^^
Double Exp.

Logistic

Normal

2

1.2

3.0357

1.0946

2
σw

1.333

3

π/3

2

1

4

τr/2

2

τ/2

1

2
σ
2

ir2/3

1

It thus follows that the m.d. estimator β (L), with L(s) = s, is

superior to the Wilcoxon rank estimator and the l.a.d. estimator at double
exponential and logistic errors, respectively. At normal errors, it has smaller
variance than the l.a.d. estimator and compares favorably with the optimal

estimator. The same is true for the m.d. estimator 0

Next, we shall discuss β. In the following theorem the framework is

the same as in Theorem 5.5.7. Also see (5.5.82) for the definitions of Pn,
3 etc.

Theorem 5.6a.3. In addition to the assumptions of Theorem 5.5.7
assume that

(22) liminfn inf I fu'n άaΏθ\ > α, for some a > 0.

s> IH=i J

Moreover^ assume that (10) holds and that

(23) 3^ exists for all n > p.

Then,

(24) A'\β -β) = - ^ π 1 / / ^ , y){Λ!in(s, y) + mn(s, y)} dαn(s, y) +

Proof. The proof of (23) is similar to that of (5.5.51), hence no details
are given. α

Corollary 5.6a.5. Suppose that the conditions of Theorem 5.6a.3 are
satisfied by Fn\ = F = Hni, Gn = G, Ln = L, where F is supposed to have



5.6a DISTRIBUTIONS, EFFICIENCES, AND ROBUSTNESS 159
Asymptotic Distributions and Efficiencies

continuous density f. Let

(25) C= / / / / / / [ { A iΓ1 F l\ xiχ;fi(y)fj(y) A} (sΛt)

.{F(yΛz)- F(y)F(z)}]dα(s,y)dα(t,z),

where ΐ\(y) = f(y - x\0), and dα(s, y) = dL(s)dG(y). Then the asymptotic

distribution of A~\β-β) is N ( 0 , Σ o ( # ) where Σ0(β) = 3 ^ ^

Because of the dependence of ΣQ on β} no clear cut comparison

between β and βχ in terms of their asymptotic covariance matrices seems

to be feasible. However, some comparison at a given β can be made. To
demonstrate this, consider the case when L(s) = s, p = 1 and β\ = 0.
Write Xi for xu etc.

Note that here, with τ\ = Σ xi,
i = 1

3^ = Tχ f n .Σ xi.Σ xj ds fr dG,

_« /»1 Λ 1 _•) ns n t

C=τx J J n \Σ xi .Σ XJ (sΛt) dsdt

ff[F{yhz) -F(y)F(z)] d^(y) d^(z).

Consequently
_o /. 1 /. 1 . _i ns nt

τx J f ( s Λ t ) n X . Σ Xi.Σ XJ dsdt

Σ0(0) = — r2 = rn τ\ say.
ι 1 _ i

Recall that r2 is the asymptotic variance of τx(βx - /?). Direct
integration shows that in the cases XJΞ 1 and Xi = i, rn —» 18/15 and
50/21, respectively. Thus, in the cases of the one sample location model and
the first degree polynomial through the origin, in terms of the asymptotic

variance, β% dominates β with L(s) = s at β = 0. o
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5.6b. Robustness

In a linear regression setup an estimator needs to be robust against
departures in the assumed design variables and the error distributions. As

seen in Section 5.6a, one purpose of having general weights D in β was to

prove that βχ is asymptotically efficient among a certain class of m.d.

estimators {/L, D varies}. Another purpose is to robustify these estimators
against the extremes in the design by choosing D to be a bounded function
of X that satisfies all other conditions of Theorem 5.6a. 1. Then the

corresponding β would be asymptotically normal and robust against the

extremes in the design, but not as efficient as β . This gives another

example of the phenomenon that compromises efficency in return for

robustness. A similar remark applies to {/£} and {/L}.

We shall now focus on the qualitative robustness (see Definition 4.4.1)

of βχ and βχ. For simplicity, we shall write % /Γ, for /fχ, βχ in the rest

of the section. To begin with consider β. Recall Theorem 5.5.3 and the
notation of (5.5.37). We need to apply these to the case when the errors in
(1.1.1) are modeled to be i.i.d. F, but their actual d.f.'s are {Fni}, D = XA
and Gn = G. Then various quantities in (5.5.37) acquire the following form.

(1) Γn(y) = AxV(y)XA, άtΏ = Ax' f Λ*ΠΛ* dG XA,

«7n = /rn(y)Ax'[αn(y) + Δn(y)] dG(y) = Zn + bn, say,

where
(2) Π := X ^ ' x ^ x ' ; bn := /rn(y)Ax'Δn(y) dG(y);

αsni(y) := I(eni < y) - Fni(y),

Δni(y) := Pni(y) - P(y), 1 < i < n, y e R;

ttn : = (ttnl, Λn2, ...., «nn), Δ n : = ( Δ n i , Δ n 2 , — ., Δ n n ) .

The assumption (5.2.1) ensures that the design matrix X is of the

full rank p. This in turn implies the existence of 3n and the satisfaction
of (5.2.2), (5.2.12) in the present case. Moreover, because Gn = G, (5.2.11)
now becomes
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(3) liminfn inf kn(0) > 7, for some 7 > 0,

IMM
where

kn(0) := flΆx'JY gdG XA0, ||0|| = 1,

and where g is a function from K to [0, ©], 0 < JgΓ dG < α>, r = 1, 2.
Because G is a σ—finite measure, such a g always exists.

Upon specializing Theorem 5.5.3 to the present case, we readily obtain

Corollary 5.6b.l. Assume that in (1.1.1) the actual and modeled d.f.'s
of the errors {eni, 1 < i < n} are {Fni, 1 < i < n} and F, respectively. In
addition, assume that (5.5.1), (5.5.3) - (5.5.10) with D = XA, H n i = F,
Gn Ξ G, and (3) hold. Then

(4) Δ~\β-β) = - ^ { Z n + bn} + θp(l). D

Observe that ^ n b n measures the amount of the asymptotic bias in

the estimator β when Fni Φ F. Our goal here is to obtain the asymptotic

distribution of A (β — β) when {Fni} converge to F in a certain sense.
The achievement of this goal is facilitated bv the following lemma. Recall
that for any square matirx L, ||L|| = sup{||t'L||; | |t | | < 1}. Also recall the

fact that

(5) | |L| |β<{tr.LL'}1/2,

where tr. denotes the trace operator.

Lemma 5.6b.l. Let F and G satisfy (5.5.68). Assume that (5.5.5)
and (5.5.10) are satisfied by Gn Ξ G, {Fni}, H n i = F and D = XA.
Moreover assume that (5.5.3) holds and that

(6) pn := / ( Σ i ||xπiA||2 | f n i - f | ) 2 d G =

Then with I = Ip x p,

(i) | | * n -

(ii) | | ^ π 1

(iii) |tr. 3
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(iv) |Jj||,/j||
2dG-p/f2dG|=o(l).

(v) ||bn - / AX'Δn(y)f(y)dG(y)|| = o(l).

(vi) ||Zn - /AX' αn(y)f(y)dG(y)|| = op(l).

(vii) sup | k n ( 0 ) - / f g d G | = o ( l ) .

Remark 5.6b.l. Note that the condition (5.5.10) with D = XA,
Gn = G now becomes

(7) / | | A x ' Δ n | | 2 d G = O(l).

Proof. To begin with, because AX XA = I, we obtain the relation

Γn(y)Γ;(y) -f2(y)I = Ax'[Λ*(y) -f(y)I]XA Ax'[Λ*(y) -f(y)I]XA

= Ax'c(y)XA Ax'c(y)XA

where C(y) := A*(y) - 1 f(y), % ) := Ax'c(y)XA, y 6 R. Therefore,

(8) \\3n-if fdGW^ < snp f \\t mi(y)\\ dG(y) < f{tτ.LL

where L = 7D . Note that, by the C—S inequality,

(9) tr. LL' = tr. W11< {U.W }2.

Let tfi = fi-f, l < i < n . Then

(10) I Xτ.W I = I tr. Σi Σj Axi x'iA AXJXJ A

= |Σ iΣ J ί i ί j (x J AAxi)
2|

= (Σ i | |Ax i | |
2 | ί i | )

2 = /,n.
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Consequently, from (8) — (10),

(11) | |.2n-l/f2dG|| ( D < /(Σi HAxiflfi-fl^dG = o(l), by (6).

This proves (i) while (ii) follows from (i) by using the determinant and
cofactor formula for the inverses.

Next, (iii) follows from (6) and the fact that

(12) I tr. # n - pffdG I = I ftτ.W dG | < />n, by (10).

To prove (iv), note that with D = XA,

j/lhlfdG = £ J t /x'iAAxk xUAxi fi(y)fk(y) dG(y).

Note that the r.h.s. is p J^dG in the case fi = f. Thus

(13) | j Σ i /| | i/ j | |
2 dG-p/f 2 dG| = \ftτ.WdG\<pn.

This and (6) proves (iv).

Similarly, with dj(y) denoting the j t h row of 3>(y), 1 < j < p,

||bn - /Ax'Δn fdG||2 = H / Ϊ A X ' Δ dG||2

(14) < P n / | | A x ' Δ n ( y ) | | 2 d G ( y )

and

(15) ||Zn - / A X ' αn(y) f(y)dG(y)||2 < pn / | |AX' αn||
2dG.

Moreover,

(16) E / II AX' ttn||2 dG = / Σ i ||x'iA||2 Fi(l - Fi) dG.

Consequently, (v) follows from (6), (7) and (14) whereas (vi) follows from

(5.5.5), (6), (15) and (16). Finally, with ^ / 2 = A x ' c 1 / 2 , V θ,
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\kn(0)-ffgdG\ = |# '/f gdG θ\=f\\ΘΊfL/2\\2gdG.

Therefore,

iSupJkn(ίO-/fgdG|</{Σ i | |Ax i | |
2 |f i-f|}gdG

<Pn{/g2dG}1 / 2 = o(l), by (6). D

Corollary 5.6b.2. Assume that (1.1.1) holds with the actual and the

=1

Then, (5.5.8) and (2) are satisfied and

(17) AT\p-0) = - (ffdOy1 {Zn + bn} + op(l)

where

Zn := fλX nh(y) d^y) = A Σi xni [#e n i) - J φ ) d F n i ( x ) ] ,

bn := / AX'Δnίy) d^(y) = / Σ 4 Axni [Fn i - F] d^

V α 5 *n (5.6a.2).

Consider Zn. Note that with σni := Var{^eni)|Fni}, 1 < i < n,

E Z n Z n = Σi AxniXniA σ n i

One can rewrite

σ2. = J J[Fni(xΛy) - Fni(x)Pni(y)l d φ M y ) , 1 < i < n.

By (5.5.68a), Ψ is nondecreasing and bounded. Hence maxi | |F n i — F|| —» 0

readily implies that maxi σni —» σ2, σ2 := Var{^(e)|F}. Moreover, we
have the inequality

|2<Σ| |Ax n i |

F CLT th

N(0, σ Ipxp), if maxi ||Fni - F|| —» 0. Consequently, we have

It thus readily follows from the L-F CLT that (5.5.1) implies that Zn —ι
d
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Theorem 5.6b. 1. (Qualitative Robustness). Assume the same setup
and conditions as in CoroUary 5.6b.2. In addition, suppose that

|β
(18) m a x i | | P n l - P | | β =

(19)

n

Then, the distribution of β under Jl Fn\ converges weakly to the degenerate

distribution, degenerate at β.
Proof. It suffices to show that the asymptotic bias is bounded. To

that effect we have the inequality

b n | | 2 < / | |AX'Δ | | 2 dG < *, by (7).

From this, (17), and the above discussion about {Zn}, we obtain that V η >
0 3 Kη such that Pn(E?y) —» 1, where P n denotes the probability under

Π Fni and Eη = {IIA" 1 ^- β)\\ < Kη}. Theorem now follows from this and
i = 1

the elementary inequality \\β-β[\ < \\A\\ \\A~\β-β)\\. π
' O D 1

Remark 5.6b.2. The conditions (6) and (18) together need not imply
(5.5.7), (5.5.9) and (5.5.10V The condition (5.5.10) is heavily dependent on
the rate of convergence in (18). Note that

(20) ||bn | |2 < πdnί^/ l lAX'ΔH^, (fί2άG)f\\AxΆfάG}.

This inequality shows that because of (5.5.68), it is possible to have

Ubnll2 = 0(1) even if (7) (or (5.5.10) with D = XA) may not be satisfied.
However, our general theory requires (7) any way.

Now, with φ = ψ or G,

(21) f ||AX' Δ||2dy> = / Σ i Σj x'iAAxj Δi ΔJ dφ

Thus, if

(22) Σi ||AxiU I Fi(y) - F(y) | < k Δ^(y), y e R,

where k is a constant and Δ n is a function such that
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(23) lim supn f(Δn)
2dφ < o,

then (7) would be satisfied and in view of (20), | |bn | | = 0(1).
Inequality (22) clearly shows tnat not every sequence {Fni}

satisfying (6), (18) and (5.5.3) - (5.5.9) with D = XA will satisfy (7). The
rate at which Fni => F is crucial lor the validity of (7) or (22). α

We now discuss two interesting examples.

Example 5.6b.l. F n i = (1 - ί n i )F + ίni FO| 1 < i < n. This is the
Case 5.5.2. From the Claim 5.5.3, (5.5.5) - (5.5.9) are satisfied by this
model as long as (5.5.68) - (5.5.70) and (5.5.1) hold. To see if (6) and (7)
are satisfied, note that here

pn = / ( Σ i ||Axi||2 δi |f-fo| |)2dG < 2 maxi δ\ p 2 . [/(f2 + f?)dG],

and

| P i - P | = Σ i | | A x i | | « i | P - P 0 | .

Consequently, here (6) is implied by (5.5.68) for (f, G), (fo, G) and by
(5.5.71), while (7) follows from (5.5.72), (21)-(23) upon taking

Δ n = IF — F o | , provided we additionally assume that

(24) Σi ||Axi||*i = 0(1).

There are two obvious choices of {δ\} that satisfy (24). They are:

(25) (a) 5ni = n " 1 / 2 or (b) δni = p " 1 / 2 ||Axni||, 1 < i < n.

The gross error models with {δ\} given by (25b) are more natural
than those given by (25a) to linear regression models with unbounded
designs. We suggest that in these models, a proportion of contamination one

can allow for the i t h observation is p^'^IAxiH. If δ\ is larger than this in

the sense that Σi||Axi||#i—><D then the bias of β blows up.

Note that if G is a finite measure, f uniformly continuous and iδ\}
are given by (25b) then all the conditions of the above theorem are satisfied
by the above {Fi} and F. Thus we have

Corollary 5.6b.3. Every β corresponding to a finite measure G is
qualitatively robust for β against hetroscadastic gross errors at all those F's
which have uniformly continuous densities provided {δ\} are given by (25b)
and provided (5.5.1) and (19) hold. u



5.6c DISTRIBUTIONS, EFFICIENCIES, AND ROBUSTNESS 167
Locally Asymptotically Minimax Property

Example 5.6b.2. Here we consider (Fni) given in the Case 5.5.3.
We leave it to the reader to verify that one choice of {σni} that implies (7)
is to take

(26) σ n i =| |Ax n i | | , 1 < i < n.

One can also verify that in this case, (5.5.68) - (5.5.70), (5.5.75) and (5.5.76)
entail the satisfaction of all the conditions of Theorem 5.6b. 1. Again, the
following corollary holds.

Corollary 5.6b.4. Every β corresponding to a finite measure G is
qualitatively robust for β against hetroscedastic scale errors at all those F's
which have uniformly continuous densities provided {σni} are given by (26)
and provided (5.5.1) and (19) hold. u

As an example of a σ—finite G with G(R) = oo that yields a robust
estimator, consider G(y) = (2/3)y. Assume that the following hold.

(i) F, Fo have continuous densities f, fo; 0 < Γrdλ, Γfo dλ < αo.

(ii) J F ( 1 - F ) d λ < α > . (iii) J | F - F o | d λ < α D .

Then the corresponding β is qualitatively robust at F against the
heteroscedastic gross errors of Example 5.6b.1 with {δn{} given by (25b).

Recall, from Remark 5.6a.l, that this β is also asymptotically

efficient at logistic errors. Thus we have a m.d. estimator β that is
asymptotically efficient and qualitatively robust at logistic error d.f. against
the above gross errors models!!

We leave it to an interested reader to obtain analogues of the above

results for /Γ and β . The reader will find Theorems 5.5.4 and 5.5.6 useful
here. D

5.6c Locally Asymptotically Minimax Property

In this subsection we shall show that the class of m.d. estimators {β*} are
locallv asymptotically minimax (l.a.m.) in the Hajek — Le Cam sense (Hajek
(1972), Le Cam (1972)). In order to achieve this goal we need to recall an
inequality from Beran (1982) that gives a lower bound on the local
asymptotic minimax risk for estimators of Hellinger differentiable functionals
on the class of product probability measures. Accordingly, let Qni, P n i be
probability measures on (K,^), μni, i>ni be a σ—finite measures on (R,^)
with ι/ni dominating Qni, Pni; qni := dQni/di/ni, pni := dPni/di/ni; l<i<n.
Let Qn = Qniκ .. κQnn and P n = Pniχ....χPnn and Πn denote the class of
all n—fold product probability measures {Qn} on (Rn, $n).
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Define, for a c > 0 and for sequences 0 < ηnι —> 0, 0 < 7/Π2 —> 0,

2dvni < C2},

< ηnh

where V := (r/m,

DEFINITION 5.6c. 1. A sequence of vector valued functional {S n :

Π* -* Rp, n > 1} is Hellinger-(H-) differentiable at {P* e Π»} if there exists
a triangular array of p*l random vectors {fni, 1 < i < n} and a sequence of
pxp matrices {AΏ, n > 1} having the following properties:

(i) /fnidPni = 0, /HfnifdPni < », l<i<n; Σifξniξn^ dP n i Ξ I p x p .

(ii) For every 0 < c < α>, every sequence ηn —» 0,

sup||^n{Sn(Qn) - Sn(Pπ)} - 2 Σi/ ξni piftq^i 2 - pj{2) dvni\\ = o(l)

where the supremum is over all Q n e <^(Pn,c,77n).

(iii) For every e > 0 and every αeK p , with ||α|| = 1,

Σ i / ( α ^ n i ) 2 I ( | α ^ π i | > e) dP n i = o(l).

Now, let Xni, ..., Xnn be independent r.v.'s with Q n l, ..., Q n n

denoting their respective distributions and S n = Sn(Xni, •-., Xnn) be an
estimator of Sn(Qn). Let ΪC be a nondecreasing bounded function on [0, α>]

to [0, αo) and define the risk of estimating S n by S n to be

(1) Rn(Sn, Qn) = Eπ{ tf(μn{Sn - Sn(Qπ)}||},

where E n is the expectation under Qn.

Theorem 5.6c. 1. Suppose that {S n: Πn -* Rp. n > 1} is a sequence of
H-differentiable functional^ and that the sequence {P n eΠ n } is such that

(2) maxijpϋi dμni = 0(1).

Then,
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(3) lim lim infn inf sup Rn(Sn, Qn) > E
C^° §n Q n e ^ ( p n , c , ^ ) ' "

where Z is a N(0, I p x p) r. v.

Sketch of a proof. This is a reformulation of a result of Beran (1982),
pp 425-426. He actually proved (3) with o^(Pn,c,7n) replaced by
^ n ( P n , c ) and without requiring (2). The assumption (2) is an assumption
on the fixed sequence {Pn} of probability measures. Beran's proof proceeds
as follows:

Under (i) and (iii), there exists a sequence of probability measures
{Qn(h)} such that for every 0 < b < <D,

(4) sup Σi /{qίfth) - p ^ 2 - (1/2) h'

IWI<*
Consequently,

(5) limn sup

IWI<*
and for n sufficiently large, the family {Qn(h), ||h|| < b, heRp} is a subset

of <^n(Pn,(b/2)). Hence, V c > 0, V sequence of statistics {Sn},

(6) liminfninf s u p Rn(Sn,Qn)
^()

> lim infn infΛ sup Rn(Sn,Qn(h)).
S n ||H||<2c

Then the proof proceeds as in Hajek — Le Cam setup for the parametric
family {Qn(h), | |h| | < b}, under the l.a.n. property of the family {Qn(h),
| |h| | < b} with b = 2c, which is implied by (4).

Thus (3) would be proved if we verify (6) with c^ n(P n,c) replaced by
^ n (P n ,c,τ/n), under the additional assumption (2). That is, we have to show
that there exist sequences 0 < ηΏi —• 0, 0 < 7/Π2 —» 0 such that the above
family {Qn(h), ||h|l < b} is a subset of ^(Pπ,Γb/2),ifo) for sufficiently
large n. To that eifect we recall the family {Qn(h)} from Beran. With fni
as in (i) — (iii), let ^nij denote the jth component of fni, l < j < P , l < i < n .
By (iii) there exist a sequence eΏ > 0, c n | 0 such that

Now, define

Σ f £2ij



170 MINIMUM DISTANCE ESTIMATORS 5.6c

/ £ j dP
n i ,

? n i : = (ξnih .", ?nip)', 1 < i < n.

Note that

(7) Ulnill < 2pen, /?n idP n i = 0, l < i < n .

For a 0 < b < oo, ||h|| < b, 1 < i < n, define

qn i(h) = (1 + h'Ini)pn i, e n < (2bp)"1,

= Pni, e n > (2bp)-1.

(7), {qnifh), ||h|| < b, 1 < i < n} ai
(Q n i(h); J h | < b, 1 < i < n} dene
res and Qn(h) = Q n i(h)x....xQ n n(h).

Because of (7), {qni(h}, ||h|| < b, 1 < i < n} are probability density
functions. Let {Qni(h); ]}h[| < b,_ 1 < i < n) denote the corresponding
probability measures

Now, note that for ||h|| < b, 1 < i < n,

i = 0 , €n > (2bp)~\

en < (2bp)"1.

Consequently, since cn 1 0, en < (2bp) eventually, and

sup maxi Γ(q n i(h) - p n i ) 2 d/Xni < (2pc n ) 2 b 2 maxi Γp n i d/ίni = : 771,1-

IIHI<b
Similarly, for a sufficiently large n,

sup maxi Γ(qn(
2(h) - p i ί 2 ) 2 di/ni < 2bpen =: ηn2, say.

WI<b
Because of (2) and because e n 1 0, max{τ7ni, η^} —» 0.

Consequently, for every b > 0 and for n sufficiently large, {Qn(h),
||h|| < b} is a subset of J&(Pn,(b/2),ηn) with the above τ/ni, %2 and an
analogue of (6) with <#n(Pn,c) replaced by ^(Pn,(b/2),7jn) holds. The
rest is the same as in Beran. π

We shall now show that /Γ achieves the lower bound in (3). Fix a

β £ Rp and consider the model (1.1.1). As before, let F ni be the actual d.f.
of eni, 1 < i < n, and suppose we model the errors to be i.i.d F, F symmetric
around zero. The d.f. F need not be known. Then the actual and the
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modeled d.f. of Yni of (1.1.1) is Fni( — xni/7), F( — xni/7)> respectively.

In Theorem 5.6c. 1 take Xni = Yni and {Qni, Pni, JΊii} as follows:

(8) Q?i(Yni < •) = F n l ( . - x ή i # , P?i(Yni <•) = ?{• - xήifl,

μ?i( ) = G( -xήi/3), i/niΞλ, 1 < i < n.

Also, let QjJ = Q?ix ... xQ?n PjJ = P?ix ... xP?n The absence of β from

the sub— or the super— script of a probability measure indicates that the
measure is being evaluated at β = 0. Thus, for example we write Q n for

Q£ (= ft Fni) and P n for P Q, etc. Also for an integrable function g write

Jg for Jg dλ.
Let fni, f denote the respective densities of Fni, F, w.r.t. λ. Then

qni( ) = fni( — Xnϋ#), Pni( ) = f( — Xni/7) and, because of the translation
invariance ot the Lebesgue measure,

(9) <#n(PJ,c) = {Q« GIF Σi /{(q? i ) 1 / 2 - (p?i) 1 / 2 } 2 < c 2}

= {Qn6Πn Σi / ( f i f - f 1 / 2 ) 2 < c2} = ^ n (Pn,c) .

That is the set <#n(P «c) does not depend on β. Similarly,

^ ( P ^ c , ηn) = {QneΠn; Q n e ^ n ( P n , c ) , m a x i / ( f n i - f ) 2 dG < ηΏl,

maxi/(fί{2-f1/2)2< ηΏ2} = ^ ( P V , ^ ) .

Next we need to define the relevant functional. For teRp, yGK, l<i<n,
define

(10) mπi(y, t) = F n i (y + xήi(t -β))- 1 + F n i ( - y + xήi(t - β)),

bn(y, t) := Σi Axni mni(y, t),

Aπ(t, QJ) = pn(t, F) := / | |b n (y, t) | | 2 dG(y),

F' : = ( F n l ) •• ,F n n ) .

Now, recall the definition of φ from (5.6a.2) and let T n ( β QJ) = Tn(/3, F)

be defined by the relation
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(11) Tn(A F) := β + ( x ' x / f ' d G Γ ' / Σ i xn i[Fn i(y) - 1 + Fn i(-y)] d#y).

Note that, with bn(y) Ξ bn(y, β),

(12) A-\Tn(p, F) - β) = (fPdG)'1 /bn(y) d^y).

Some times we shall write Tn(F) for T n (β F).
Observe that if {Fni} are symmetric around 0, then T n (β F) = β

= Tn(/3, PJ). In general, the quantity A ^ T ^ F ) - β) measures the

asymptotic bias in /Γ due to the asymmetry of the errors.

We shall prove the l.a.m. property of /Γ by showing that T n is H-

differentiable and that ff is an estimator of T n that achieves the lower
bound in (3). To that effect we first state a lemma. Its proof follows from
Theorem 5.5.4 in the same fashion as that of Lemma 5.6b.1 and Corollary
5.6b.2 from Theorem 5.5.3. Observe that the conditions (5.5.35) and
(5.5.11+) with D = XA, respectively, become

(13) / | |b n (y) | | 2 dG(y) =

(14) lim infn inf θ Ax' f A+ gdG XA θ > α, for an a > 0,
.1=1

where A+ is defined at (5.5.38) and g is as in (5.6a.3).

Lemma 5.6c.l. Assume that (1-1-1) holds with the actual d.f. 's of {eni,
1 < i < n} equal to {Fni, 1 < i < n) and suppose that we model the errors to
be i.i.d F ; F symmetric around zero. In addition, assume that (5.3.8);
(5.5.1), (5.5.3), (5.5.4), (5.5.6), (5.5.7), (5.5.9) with D = XA, Gn = G;
(5.5.68), (5.6a.l3), (5.6b.6) and (13) hold. Then (5.5.8) and its variant where
the argument y in the integrand is replaced by —y, (5.5.33), (14) and the
following hold.

(15) A" V - Tn(F)) = - {2/f2 dG}"1 Z+ + op(l), under {Qn}.

where

(16) Z+ = Σi Axni {V<-eni) - φm) - fmUj) dG(y)},

with mni(y) = mni(y, β) and ψ as in (5.6a.2). α

Now, define, for an 0 < a < αo,
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ΛTn(Pn, a) = {QneΠn; Qn = .ft F n i , maxi f |fni -f|Γ dG - ι 0, r = 1, 2,

maxi | | F n i - F | | ω - * 0, f[Σ{ ||Axni|| | F n i - F | ] 2 dG < a2}.

Lemma 5.6c.2. Assume that (1.1.1) holds with the actual d.f. 's of {eni,
1 < i < n} equal to {Fni, 1 < i < n} and suppose that we model the errors to
be i.i.d F ; F symmetric around zero. In addition, assume that (5.3.8),
(5.5.1), (5.5.68) and the following hold.

(17) G is a finite measure.

Then, for every 0 < a < αo and sufficiently large n,

^ n ( P n , a) D ^(P n ,b a , i fc) , b a := (4pα)" 1 / 2 a, a := G(R).

Moreover, all assumptions of Lemma 5.6c. 1 are satisfied.

Proof. Fix an 0 < a < α>. It suffices to show that

(19)

and

(20) (a) maxij(fn i - f)2 dG < ηnh n > 1,

(b) m a x i / ί f i ^ - f 1 / 2 ) 2 ^ ^ , n > l ,

imply all the conditions describing JCn(Pn, a).

Claim: (19) implies f [Σi ||Axni|| | F n i - F | ] 2 dG < a2, n > 1.

By the C—S inequality,

(21) | F n i ( x ) - F ( x ) | 2 = | / X ( f n i - f ) | 2

-TD

/ f 1 / 2 ) 2 , l < i < n , xeR.

Hence,

i ||Axni|| | F n i - F | ] 2 dG < Σi ||Axni | |
2 . Σ i / ( F n i - F ) 2 dG
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which proves the Claim.
The finiteness of G together with (21) and (20b) with ηn2 —* 0

imply that maxi ||Fni — F|| —> 0 in a routine fashion. The rest uses
'CD

(5.5.66), (5.5.67) and details are straightforward. α

Now let φCy) = ^ - y ) - ^y), yeK. Note that dψ(-y) = ^y),
Ξ —2 d^, d^ = fdu and because F is symmetric around 0,) φ f = 0. Let

, τ=Jf2dG, p =

£ni = £ni(Yni, β) = Axni p(eni)

Use the above facts to obtain

, 0) (p?i(y))1/2{(q?i(y))1/2 - (p?i(y))1/2}

= -σ" 1 Σ i A x n i { / [ F n i - F ] dφ-fp (fi<2 - f 1 / 2 ) 2 } .

(22) = σ'% Axni {2 / [ F n i - F] fdG - fp (fj{2 - f1 / 2)2}.

The last but one equality follows from integrating the first term by parts.
Now consider the r.h.s. of (12). Note that because F and G are

symmetric around 0,

fdG = /Σi Axni [Fni(y) - 1 + Fni(-y)]

i Axni [Fni(y) - F(y) + Fn i(-y) - F(-y

(23) =2/ΣiAx n i [F n i -F] fdG.

Recall that by definition Ύa{β, P«) = β. Now take An of (ii) of the H-

differentiable requirement to be A'Vσ"1 and conclude from (18), (22),
(23), that
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n i | |* l|Aχ,

uniformly for {Q*} e ^n(Pn,ba,7n).

This proves that the requirement (ii) of the Definition 5.6c. 1 is
satisfied by the functional T n with the {fni} given as above. The fact
that these {£ni} satisfy (i) and (iii) of the Definition 5.6c. 1 follows from
(5.3.8), (5.5.1), (17), (18) and the symmetry of F. This then verifies the
H-diπerentiability of the above m.d. functional Tn .

We shall now derive the asymptotic distribution of β* under any
sequence {Qn} 6 Jffn(Pn, a), under the conditions of Lemma 5.6c.2. For

that reason consider Zn of (16V Note that under Qn, (l/2)Zn is the sum
of independent centered triangular random arrays and the boundedness of ψ

and (5.5.1), imply, via the L-F CLT, that Cn 1 / 2 Zn —ι N(0, I p x p ) , where
d

C n = 4 E Z n Z n = Σi AxniXniA σni, σ n i= Var{V{eni) | F n i } , 1 < i < n.

But the boundedness of ψ implies that maxi | σni — σ \ -» 0, for every

rn(Pn, a),whereσ2 = Var {V(ei)|F}. Therefore σ - 1Zn —» N(0, I p x p ) .

Consequently, from (15),

lim limn sup sup E{ ^ ( | | ^ n ( ^ - T n ( A Qj))|| | Qn} = E

for every bounded nondecreasing function 2£, where Z is a N(0, IpXp) r. v..
This and Lemma 5.6c.2 shows that the sequence of tne m.d.

estimators {ff} achieves the lower bound of (3) and hence is l.a.m. α

Remark 5.6c. 1. It is an interesting problem to see if one can remove
the requirement of the finiteness of the integrating measure G in the above

l.a.m. result. The l.a.m. property of {β} can be obtained in a similar fashion.
For an alternative definition of l.a.m. see Millar (1984) where, among other

things, he proves the l.a.m. property, in his sense, of {0} for p = 1.

A problem: To this date an appropriate extension of Beran (1978) to
the model (1.1.1) does not seem to be available. Such an extension would
provide asymptotically fully efficient estimators at every symmetric density
with finite Fisher information and would also be l.a.m. o

Note: The contents of this chapter are based on the works of Williamson (1979,
1982), Koul (1979, 1980, 1984, 1985a,b), Koul and DeWet (1983), Basaw and Koul
(1988) and Dhar (1991a, b). DD




