
CHAPTER 3

LINEAR RANK AND SIGNED RANK
STATISTICS

3.1. INTRODUCTION

Let {Xni, Fni} be as in (2.2.33) and {cni} be pχl real vectors. The rank
and the absolute rank of the ith residual are defined, respectively, as

n / /
(1) R i u =mΣ^ I (X n j - U Cnj < Xni - U Cni),

R t u = | i I ( | X n j - n / c n j | < iXni-Vcnil), 1 < i < n, πeRp.

Let ψ be a nondecreasing real valued function on [0, 1] and define

(2) Tά(φ, u) = J i dni

t , u) = £ dni /(Rtu/(n+l)) s(Xni - u'cni), π

where /( s ) = p((s+l)/2), 0 < s < 1, and s(x) = I(x > 0) - I(x < 0).

The processes {Td(<ρ, u), u e Kp} and {Ί\{φ, u), u 6 Rp} are used to
define rank (R) estimators of β in the linear regression model (1.1.1). See,

e.g., Adichie (1967), Koul (1971), Jureckova (1971) and Jaeckel (1972). One
key property used in studying tnese R-estimators is the asymptotic uniform

linearity (a.u.l.) of Td(<p, u) and Td(<p, u) in uei(B). Such results have

been proved by Jureckova (1969) for Td(^, π) for general but fixed

functions φ, by Koul (1969) for Td(/, u) (where / is the identity function)

and by Van Eeden (1971) for Td(y>, u) for general but fixed φ functions.
In all of these papers {Xni} are assumed to be i.i.d..

In Sections 3.2 and 3.3 below we prove the a.u.l. of Td(^, .)> Td(y>, .)>
uniformly in those φ which have | |Λv < α°> and under fairly general
independent setting. These proofs reveal that this a.u.l. property is also a
consequence of the asymptotic continuity of certain w.e.p.'s and the
smoothness of {Fni}.

Besides being useful in studying the asymptotic distributions of
R-estimators of β these results are also useful in studying some rank based
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3.2 A.U.L OF LINEAR RANK STATISTICS 45

minimum distance estimators, some goodness-of-fit tests for the error
distributions of (1.1.1) and the robustness of R-estimators against certain
heteroscedastic errors.

3.2. ASYMPTOTIC UNIFORM LINEARITY OF LINEAR RANK
STATISTICS

At the outset we shall assume

(1) φ € «f := {φ: [0,1] — R, ψ e DJ[0, 1], with | |p| | t τ := φ(l) - φ(0) = 1}.

Define the w.e.p. based on ranks, with weights {dni},

(2) Zd(t, u) := Σt d n i I(R i u < nt), 0 < t < 1, u € Rp.

Note that

(3) Ύd{φ, u) = / v(nt/(n+l)) Zd(dt,u)

= -f Zd((n+l)t/n, u) άφ(t) + n3n φ(l), n3n = | dni

The representation (3) shows that in order to prove the a.u.l. of Ta(φ, . ) , it
suffices to prove it for Zd(t, .), uniformly in 0 < t < 1. Thus, we shall first

prove the a.u.l. property for the Zd-process. Define, for xeR, 0<t<l, ueRp,

(4) Hnu(x) = n"1 Σi I(X n i - cήi u < x), Hu(x) := n ' ^ i F n i (x + cήi u),

H~i(t) = inf{x; H n u(x) > t}, Hΰ^t) = inf{x; Hu(x) > t}.

Note that Ho is the H of (2.2a.33). We shall write H n for Hn 0.
Recall that for any d.f. G,

> t, 0 < t < 1 and G'^Gίx)) < x, x 6 R .

This fact and the relation nHn u(Xi — Ci u) = Ri u yield that V 0 < t < 1,

(5) [Xi - c'i u > Hήi(t)] 4 [R i u > nt] ̂  [Xi - cί u > Hήί(t)], 1 < i < n.

For technical convenience, it is desirable to center the weights of linear
rank statistics appropriately. Accordingly, let

(6)



46 LINEAR RANK AND SIGNED RANK STATISTICS 3.2

Then, with Zw denoting the Zd when weights are {wni},

Zd(t, u) = Zw(t, u) + 3 n [nt], 0 < t < 1, u e Rp.

Hence

(7) Zd(t, u) - Zd(t, 0) = Zw(t, u) - Zw(t, 0), 0 < t < 1, u € Rp.

Next define, for arbitrary real weights {dni},

(8) %(t, u) := Σ d n i I ( X n i - c a i u < H^i(t)), 0 < t < 1, u e Rp.

By (5) and direct algebra, for any weights {dni},

(9) sup I Zd(t, u) - %(t, u) I < 2 maxi | di|.
t 9 U

Consider the condition

(N3) τl = 1, maxi wl\ —»0.

In view of (7) and (9), (N3) implies that the problem of proving the a.u.l. for
the Zd-process is reduced to proving it for the ^-process.

Recall the definitions in (2.3.1) and define

(10) Td(t, u) := ^(t , u) - μd(t, u), 0 < t < 1, u e Rp.

Note the basic decomposition: for any real numbers {dni} and for all

0 < t < 1, u e Rp,

(11) Td(t, π) = rd(HHήi(t), π) + M(HHni(t), u) - μd(t, π),

provided H is strictly increasing for all n > 1. Decomposition (11) is basic
to the following proof of the a.u.l. property of Zd.

Theorem 3.2.1. Suppose that ίXni, F n i } satisfy (2.2a.34), (N3) holds,
and ίc n i } satisfy (2.3.4) and (2.3.5) with dni ='wni. In addition, assume
that (C*) holds with dni Ξ wni, H is strictly increasing, the densities {fni}
of {F n i} satisfy (2.3.3b), and that

(12) ϋm - lim supn maxi sup | fni(x) - fni(y) | = 0.
^° |H(χ)-H(y)|<ί

Then, for every 0 < B < ω,

(13) sup I Tw(t, u) - Yw(t, 0) - /^(HHπi(t), 0) + /^(t, 0) | = o p ( l )



3.2 A.U.L OF LINEAR RANK STATISTICS 47

where the supremum is being taken over 0 < t < 1, u e Rp.

Before proceeding to prove the theorem, we prove the following lemma
which is of independent interest. In this result, no assumptions other than
independence of {Xni} are being used.

Lemma 3.2.1. Let H, Hn, H u and H n u be as in (4) above. Assuming
only (2.2a.34), we have

(14) ||Hn — H|l —* 0 a.s..
00

//, in addition, (2.3.4) holds and if, for any 0 < B < α>,

(15) sup I H(x) - H(y)| —10, (mn = maxi ||ci||),
| x - y | <2mnB

then,

(16) sup | H n u ( x ) - H u ( x ) | —»0 a.s..
| | H

Proof. Note that Hn(x) — H(x) is a sum of centered independent

Bernoulli r.v.'s. Thus E[Hn(x) - H(x)]4 = O(n"2). Apply the Markov
inequality with the 4th moment and the Borel-Cantelli lemma to obtain

I Hn(x) - H(x) I —»0, a.s., for every x € R.

Now proceed as in the proof of the Glivenko-Cantelli Lemma (Loeve (1963),
p.21) to conclude (14).

To prove (16), note that ue^B) implies that -mnB < cί u < mnB, 1
< i < n. The monotonicity of H n u and Hu yields that for u€i(B), xeK,

Hn(x-Bmn) - H(x-Bmn) + H(x-Bmn) - H(x+Bmn)

< Hnu(x) - Hu(x)

< Hn(x + Bmn) - H(x + Bmn) + H(x + Bmn) - H(x - Bmn).

Hence (16) follows from (15) and the following inequality:

l.h.s. (16) < 2 sup I Hn(x) - H(x) | + sup | H(x) - H(y) |. D
| x | <oo | x - y | <2mnB

Proof of Theorem 3.2.1. From (11), for all 0 < t < 1, u 6 Rp,
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~i(Tw(t,u) = [rw(HH^i(t), 11) - Fw(HH~i(t), 0]

+ [Yw(HH~i(t),0)-rw(t,0)]

+ rw(t, o) - [/^(t, u) - /^(t, o) - u'i/w(t)]

i(t), u) -/^(HHήίίt), 0) -u'i/w(HHήi(t))]

(t), 0) - / ^ ( t , 0) + u> w (HH~ί(t)) - i/w(t)].

Therefore,

l.h.s. (13) < sup I Vw(t, u) - y w (t, 0)| + sup I Yw(HHήί(t), 0) - Y(t,0)|

+ 2 sup I /ίw(t, u) - μw(t, 0) - u' i/w(t) |

+ sup | u [ i

(17) = A t + A2 + A3 + A4, say,

where, as usual, the supremum is being taken over 0 < t < 1, ue^B). In
what follows, the range of x and y over which the supremum is being taken is
K, unless specified otherwise.

Now, (2.3.3b) implies that |H(x) - H ( y ) | < |x-y | k. This and (2.3.4)
together imply (15). It also implies that

^ P | x _ y I < ί μ n i ( y ; - ί n i ( χ ; i < s u P | H ( χ ) _ H ( y ) |

for all 1 < i < n and all 8 > 0. Hence, by (12), it follows that {fni} satisfy
(2.3.3a). Now apply Lemma 2.3.1 and (2.3.25), with dni = wni, 1 < i < n, to
conclude that

(18) Aj = o p (l), j = 1, 3.

Next, observe that

(19) sup |HHήi(t )-t | <sup |H n u (x) - H u ( x ) | + sup |H u(x)-H(x)| + n"1,
x > u x > u

sup I Hu(x) - H(x) I < sup I H(x + m n B) - H(x - m n B) |.
X) U X
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Hence, in view of (19) and Lemma 3.2.1, we obtain

(20) sup I HHήi(t) -11 —» 0, a.s..
t 9 U

(We need to use the convergence in probability only).

Now, fix a ί > 0 and let β ί = [ s u p | HHήi(t) — 1 | < 8\. By (20),
t » u

(21) lim supn P((Bί)c) = 0.

Now observe that Y&(., 0) = Wd(.) of (2.2a.33). Hence, with A2 as
in (17), for every η > 0,

(22) lim supn P( | A21 > η) < limsupn P( sup | Ww(t)-Ww(s) | > η, B £ ) .

|t-s|<ί

Upon letting 6—»0 in (22), (2.2a.35) implies

(23) A2 = o p(l).

Next, we have
(24) lim limsupn sup ||i/w(t) -vv(

s)\\
*° | t-s |<ί

< lim lim supn maxi sup |fn i(y) - f n i(x
° |H(x)-H(y)|<ί

= 0, by (12) and (2.3.5).

From (24) and (21) one obtains, in a fashion similar to (23), that

(25) A4 = o p(l).

This completes the proof of the theorem. D

From a practical point of view, it is worthwhile to state the a.u.l. result
in the i.i.d. case separately. Accordingly, we have

Theorem 3.2.2. Suppose that Xni, ... , Xnn are i.i.d. F. In addition,
assume that (Fl), (F2), (N3), (2.3.4) and (2.3.5) with dni = wni hold. Then,
V 0 < B < a),

(26) sup |Zd(t, u ) - Z d ( t , 0)-u'Σiw n iCniq(t) | = o p ( l ) ,
< < | | | | <
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(27) sup ITd(φ, u) - Ίd(φ, 0) + U'ΣJ w n i c n i / q dφ\ = o p (l).
^ t f H < B J

where q = i(F~1).

Proof. Let p = Σ wni cni From (7),

(28) l.h.s. (26) = sup I Zw(t, π) - Zw(t, 0) - up q(t) |.
t > u

Take Fni = F in Theorem 3.2.1. Then (Fl) and (F2) imply that q is
uniformly continuous on [0, 1] and ensure the satisfaction of all assumptions
pertaining to F in Theorem 3.2.1. In addition, /^(t, 0) = 0, 0 < t < 1.
Thus, Theorem 3.2.1 is applicable and one obtains

fc |T w (t,u)-Yw(t,0) | = o p ( l )

which in turn yields

(29) sup I Tw(t, u) - Tw(t, 0) I = o p (l).

From (10) and (28),

l.h.s. (26) < sup{|Zw(t, u) - %{i, u)| + |Zw(t, 0) - ^( t , 0)| +
t 9 U

+ I Tw(t, π) - Tw(t, 0) I + I /^(t, n) - up q(t) | }

by (9), (10), (N3), (29) and Lemma 2.3.1 applied to Fni = F, dni = wni.

To conclude (27), observe that

l.h.s.(27) < sup {I Zd(t, u) - Zd(t, 0) - up q(t) |
t 9 11

+ \up\

by (26), the uniform continuity of q and (2.3.5) with dni Ξ wni •

Remark 3.2.1. Theorem 3.2.2 continues to hold if F depends on n,
provided now that the {q} are uniformly equicontinuous on [0, 1]. α



3.2 A.U.L OF LINEAR RANK STATISTICS 51

Remark 3.2.2. An analogue of Theorem 3.2.2 was first proved in Koul
(1970) under somewhat stronger conditions on various underlying entities.

In Jureckova (1969) one finds yet another variant of (27) for a fixed but a
fairly general Junction φ and with p in cni equal to 1. Because of the
importance of the a.u.l. property of Td(^, .)> it is worthwhile to compare

Theorem 3.2.2 above with that of Jureckova's Theorem 3.1 (1969). For the
sake of completeness we state it as

Theorem 3.2.3. (Theorem 3.1, Jureckova (1969)). Let Xnh ..., Xn n be
i.i.d. F. In addition, assume the following:

(a) F has an absolutely continuous density f whose a.e. derivative ί
satisfies

0 < J(f)<cD, J(f):= J(f/f) 2dF.

(b) {wni} satisfy (N3).

(c) 1. Σ(cni —cn) < M < OD (recall here cni is lχl)
_ 2 -1 n

2. max(cni - cn) = o(l), cn = n Σ cn i .

(d) φ is a nondecreasing function on (0, 1) with

φΫ dt>0, φ

(e) Either (d n i - dnj)(cni - cnj) > 0, V 1 < i, j < n,

or (dni - dnj)(cni - cnj) < 0, V 1 < i, j < n.

Then, V 0 < B < OD,

(f) sup I Ύd(φ, u) - Ύd{φ, 0) + u Σi wn i c n i b{φ,{) | = op(l)
11-11 <B

GD

where b(φ, f) := -J φ{F(x)) f(x) dx. D
" O D

The strongest point of Theorem 3.2.3 is that it allows for unbounded

score functions, such as the "Normal scores" that corresponds to φ = Φ , Φ
being the d.f. of N(0. 1) r.v.. However, this is balanced by requiring (a), (cl)
and (e). Note that (b) and (cl) together imply (2.3.5) with dni = wni, 1 < i
< n. Moreover, Theorem 3.2.2 does not require anything like (e).
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Claim 3.2.1. (a) implies that ί is Lip(l/2).

First, from Hajek - Sϊdak (1967), pp 19-20, we recall that (a) implies
that f(x) —»0 as x —ι ± α>. Now, absolute continuity and nonnegativity of
f implies that

| f(x)-f(y) |</ χ

y | ( f/f ) |dF, x < y .

Therefore, by the Cauchy—Schwarz inequality, for x < y,

(i) If(x) - f(y) I < {//(f/f)2dF [F(y) - F(x)]}1/2

(ϋ) < /1/2(f)

Letting y —» <D in (ii) yields

(iii) ||f||β < Ill\ΐ).

Now (i) and (iii) together imply

|f(x) -f(y)| < Il'\ί) {fj f(t) dt}1'2 < /3/4(f) (y-x)1'2.

A similar inequality holds for x > y, thereby giving

| f (x)- f(y ) |</ 3 / 4 ( f ) | y-x | 1 / 2 , V x , y e R ,

and proving the claim. Consequently, (a) implies (Fl).
Note that f can be uniformly continuous, bounded, positive a.e., yet

need not satisfy /(f) < OD. For example, consider

f(x) := (l-x)/2, 0 < x < 1

:= (x-2j+l)/2J+2, 2j—1 < x < 2j

:= (2j+l-x)/2J+2, 2j < x < 2j+l, j > 1;

f(x) := f(-x), x < 0.

The above discussion shows that both Theorems 3.2.2 and 3.2.3 are
needed. Neither displaces the other. If one is interested in the a.u.l.
property of, say, Normal scores type rank statistics, then Theorem 3.2.3 gives
an answer. On the other hand if one is interested in the a.u.l. property of,
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say, the Wilcoxon type rank statistics, then Theorem 3.2.2 provides a better
result.

The proof of Theorem 3.2.3 uses contiguity and projection technique a
la Hajek (1962) to approximate Td(y>, u} for each fixed u. Then condition
(e) implies the monotonicity of Td(y>, .) which yields the uniformity with
respect to u. Such a proof is harder to extend to the case where u and cni

are p*l vectors; this has been done by Jureckova (1971).
The proof of Theorem 3.2.2 exploits the monotonicity inherent in the

w.e.p.'s Yd and certain smoothness properties of F. It would be desirable
to extend this proof to include unbounded φ. π

We now return to Theorem 3.2.1 with general {Fni}. We wish to state
an a.u.l. theorem for {Zd} and {Td(^, .)} u n der general {Fni}. Theorem
3.2.1 still does not quite do it because there is u in /^-expressions. We
need to carry out an expansion of these terms in order to recover a term that
is linear in u. To that effect we have

Lemma 3.2.2. In addition to the assumptions of Theorem 3.2.1, suppose
that

(30) n ^ 2 Σi Πcoill = 0(1).

Then, V 0 < B < o ,

(31) sup I n1 / 2(HHni(t) -1) + Yi(t, 0) + u vx{i) | = op(l)
0 < < | | | | < B

where Yh vx etc. are Yd, I'd of (2.3.1), (2.3.8) with dni
Consequently,

(32) sup ^ l

Proof. Write Yι{ ) , μi( ) for Yι(-, 0), μι( , 0), respectively. Let /

denote the identity function and set Δ n u := n ' ( H n u H n u — I) Then,

(33) n ' (HHnu -/) = n (HHn u - H u H n u + H u H n u - H n u H n u ) + Δ n u

u) - μi(HH~l) - u'i/i(HH^l)] + Δ n u

n ί ) - I ' d - u ' i / i - Yx

i, u) - yι(HHni)] - [ri(HH'i) - rj.



54 LINEAR RANK AND SIGNED RANK STATISTICS 3.2

Now, note that sup | Δ n u ( t ) | < n l'2. Hence
t 9 U

(34) sup I n1/2(HH^i(t) -1) + Yi(t) + u'
t 5 11

t, π) -/ϋ(t) - U ' I ^ O I + B sπp||vi(HH;i(t)) -

+ sup I Γ,(t, n) - yj(t)| + sup|W*(HHnl(t)) - W*(t)|,
t 9 11 t > 11

p I
t 5 11

where we have used the fact that Yi(t) = Wj(t) of (2.2a.33). The first
term on the r.h.s. of (34) tends to zero by Lemma 2.3.1 when applied with

dni = n ' . The third term tends to zero in probability by (2.3.25) applied

with dni = n To show that the other two terms go to zero in
probability, use Lemma 3.2.1, (2.2a.35) and an analogue of (24) for v\ and
an argument similar to the one that yielded (23) and (26) above. Thus we
have (31). Since sup t,u | 7i(t, 0) + u'i/i(t)| = Op(l), (32) follows. α

Lemma 3.2.3. In addition to the assumptions of Theorem 3.2.1 and
(30), suppose that for every 0 < k < m,

(35) maxi sup , n 1 / 21 Ln i(t) - Lni(s) - (t-s)4i(s) | = op(l)

where L n i := Fni H"1, 4 i := fniίH'^/hίH"1), 1 < i < n withh:= n"1 Σ fni.
i l

— 1

Moreover, suppose that, with w(t) := n Σ wni 4i(t), 0 < t < 1,

(36)

Then, V 0 < B < 00,

(37) sup I MHHήJ(t)) - μw(t) + { F,(t) + u »/i(t)}n1/2 w(t) | = op(l)

where /iw(t), Fi(t) stand for /^(t, 0), Yi(t, 0), respectively, and where the
swpremum is being taken over 0 < t < 1, n ei(B).

Proof. Let Mu := μw(HHnl) - fa. From (32) it follows that V e > 0
3 Ke and Niβ such that

(38) P(A£) > 1 - e, n > N i e,
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where

An = [supt.u |HH'ί(t) - 1 | < Ken" 1 / 2].

By assumption (35), there exists N2e such that n > N2e implies

(39) maxi sup . n 1 / 21 Li(t) - Li(s) - (t-s)A(s) | < e.
|t-s|<Ken / 2

Define

Z*i := {Li(HH^i) - Li - [HH~i - /] 4} I(An), 1 < i < n.

In view of (39) and (38),

(40) P(maxi sup t,u n
1/21 Zui(t) | > e) < e, n > NiίVN2€ =: Ne.

Moreover,

(41) Mu = Mu I(A^) + Mu I((An)
c)

i i ^i ô [ ^ i - / ] n1 / 2 w,

where

Z£o := { M u - n ^ p H i i - / ] n1 / 2 w } I((A*)C).

Note that

(42) P(supt,» I Z£o| # 0) < P((A^)C) < e, n > Ne.

By the C-S inequality, (N3) and (40),

(43) P(supt,u |Σi wi Z£i(t)| > e) < e, n > Ne.

Hence, (37) follows from (43), (42), (41), Lemma 3.2.2 and (36). π

We combine Theorem 3.2.1, Lemmas 3.2.2 and 3.2.3 to obtain the
following

Theorem 3.2.4. Under the notation and assumptions of Theorem 3.2.1,
Lemmas 3.2.2 and 3.2.3, V 0 < B < OD,

(44) sup I Zd(t, u) - Zd(t, 0) - u'Σi (d n i - dn(t)) c n i qn i(t) | = op(l),
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(45) sup I Td{φ, u)-Ίd{φ, 0) + u '/Σi (d n i - d n(t))c n i qn i(t) d^t) | = o p (l),

where the supremum in (44) is over 0<t<l, ||n||<B, in (45) over φe % ||u||<B,

and where dn(t) := n"1 Σi d n i 4i(t), qni := M H ' V ) ) . 0 < t < 1, 1 < i < n.

Proof. Let p(t) := Σi (di - d(t))ciqi(t). Note that the fact that

n~ Σj ^i(t) = 1 implies that p(t) = Σi (wi - w(t))ciqi(t), where {wi}
in (6). From (7), (8) and (9),

(46) l.h.s.(44)= sup _ | Z w ( t , u ) - Z w ( t , O ) - u ' p ( t ) |

<4maxi|wi|+ sup | %{i, u) - ^(t, 0) -u'p(t)|.
0<t<l,||u||<B

Now, from Theorem 3.2.1 and Lemma 3.2.3, uniformly in 0<t<l, ||u||<B,

(47) sup I T.;(t, u) - yw(t) + { Yiϊ) + i/!(t) u} n1'2 w(t) | = o p (l),

where Y&{\) stands for Fd(t, 0) for arbitrary weights {d ni} Therefore,

sup I %{%,u)- ^( t , 0 ) - u ' p ( t ) |

= sup I Tw(t, u) - Tw(t, 0) + M t , u) - /Xw(t, 0) - u p{ϊ) \

< sup I Tw(t, u) - Tw(t, 0) + u i/t(t) n 1 / 2 w(t) |

+ sup |/xw(t, u) -μw(t, 0) - u'z/w(t)| = o p (l),

by (47) and Lemma 2.3.1 and the fact that ρ(t) = ι/w(t)-iΊ(t) n1/2 w(t).
This completes the proof (44). The proof of (45) follows from (44) in the
same fashion as does that of (27) from (26). o

Remark 3.2.3. As in Remark 2.2a.3, suppose we strengthen (N3) to
require

(Bl) nmaxiwSi = 0 ( 1 ) , τl = 1.

Then (C*) and (36) are a pήoή satisfied by Lw. D
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Remark 3.2.4. If one is interested in the i.i.d. case only, then Theorem
3.2.2 gives a better result than Theorem 3.2.4. D

3.3. A.U.L. OF LINEAR SIGNED RANK STATISTICS

In this section our aim is to prove analogs of Theorems 3.2.2 and 3.2.4 for the

signed rank processes {Td(φ, u), ueRp}, using as many results from the
previous sections as possible. Many details are quite similar. Define, for

ueRp, 0 < t < 1, x > 0,

(1) Z3(t, u) := Σi d n i I(Ri u < nt) s(Xni - cήiu),

Jnu(x) := n^Σi I( |X n i - cήiu| < x) = Hnu(x) - Hnu(-x),

Ju(x) := n" 1 Σi [Fni(x+cήiu) - Fni(-x+cήiu)] = Hu(x) - Hu(-x),

, u) := Σi dniI(|Xni - cήiu| < Jni(t)) s(Xni - cήiu),

Sd(t, ϋ) := Σ d n i I ( |X n i - cήiU| < Γ\t)) s(Xni -

μd(t, u) := Σi dni /^i(t, u) = E Sd(t, u),

μ£i(t, u) := FniίJ'^tJ+cήiu) + Fniί-J'^tJ+cήiu) - 2Fni(cήiu), l<i<n.

In the above and sequel, J and J n stand fcjr Jo and Jno, respectively. We also
need,

(2)

and

(3) Td(t, u) := ^ ( t , u) - μd(t, u), 0 < t < 1, u e Kp.

Analogous to (3.2.11), we have the basic decomposition: For 0<t<l, ueKp,

(4) TdXt, u) = l1(JJnί,(t), u) + Pd(JJnl(t), π) - μd(t, u),

Now, note that, w.p. 1, for all 0 < t < 1, u 6 Rp,

(5) 4(1, u) = Yd(RΓ\t), u) + Yd(E(-Γ\t)), u) - 2 rd(H(0), u),

where Yd is as in (2.3.1). Therefore, by Theorem 2.3.1 (see (2.3.25)), under
the assumptions of that theorem and strictly increasing nature of J and H,
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(6) SUpt.u I Yd(t, u) - Yd(t, 0) I = Op(l).

One also has, in view of the continuity of {F n i}, a relation like (5) between

μd and μa Thus by Lemma 2.3.1, under the assumptions there,

(7) supt,u |μd(t, u) — μd(t, 0) — u P<i(t)| = °(1)

where

(8) i/d(t) := Σ d n i c n i [fniίJ"1^)) + fni(~J V ) ) ~ 2fni(0)], 0 < t < 1.

We also have an anlogue of Lemma 3.2.1:

Lemma 3.3.1. Without any assumption except (2.2a.34),

(9) sup o < χ <JJ n (x)-J(x) |-+O a.s.

//, in addition, (2.3.4) and (3.2.15) hold, then

(10) sup I Jnu(x) - Ju(x) I —» 0 a.s..
0<x<QD,||n||<B

Using this lemma, arguments like those in Theorem 3.2.1 and the above
discussion, one obtains

Theorem 3.3.1. Suppose that {Xni, F n i} satisfy (2.2a.34), (2.3.3b) and
that {dni, c n i} satisfy (Nl), (N2), (2.3.4) and (2.3.5). In addition, assume
that

(11) lim - lim supn maxi sup | fni(x) - fni(y) I = 0
|J(x)-J(y)|<ί

and that H is strictly increasing for every n. Then, for every 0 < B < α>,

(12) sup I % u)- y3(t, o)-^(JJni(t), o) + /4(t, o) | = op(i). •
< < | | | | <

We remark here that (11) implies (3.2.12).
Next, note that if {Fi} are symmetric about 0, then

(13) μd(t, 0) = 0, 0 < t < 1, n > 1.

Upon combining (13), (12) with (7) one obtains
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Theorem 3.3.2. In addition to the assumptions of Theorem 3.2.1,
suppose that {Fni, 1 < i < n} are symmetric about 0.

Then, for every 0 < B < α>,

(14) SUP I ZS(t, U) - Zj(t, 0) - u 'Σi dniCni I/£i(t) | = O p ( l ) ,
0<t<l,||u||<B

(15) sup I Ίt(φ, n)-Td(y, 0) + U'ΣI dnicni / Vίi(t) d/(t) | = op(l),

where
" 1^ni(t) := 2[fni(J"1(t) - fni(0)], 1 < i < n, 0 < t < 1.

Proof. Using a relation like (3.2.5) between Rt u and Jnu, one
obtains, as in (3.2.9),

(16) sup I Z3(t, u) - %+(t, u) I < 2 maxi |di | = o(l), by (N2).
t ) U

p
t ) U

Thus (13) follows from (16), (12), (11) and (7). Conclusion (15) follows from
(13) in the same way as (3.2.27) follows from (3.2.26). o

Because of the importance of the i.i.d. symmetric case, we specialize
the above theorem to yield

Corollory 3.3.1. Let F be a d.f, symmetric around zero, satisfying
(Fl), (F2) and let Xni, ..., Xnn be iid. F. In addition, assume ihat {dni,

} satisfy (Nl), (N2), (2.3.4) and (2.3.5). Then, for every 0 < B < O |

(17) sup I Zj(t, u) - Z5(t, 0) - u'Σi d n l c n i q+(t) | = op(l),

(18) sup I TS(wθ - Td(^0) + Σi dnicήi u / V ( t ) d / ( t ) | = op(l),
φe ^U6^(B) ^o

where q+(t) := 2[f(F"1((t+l)/2)) - f(0)], 0 < t < 1. D

Remark 3.3.1. Van Eeden (1972) proved an analogue of (181 without
the supremum over φ, but for square integrable ^'s. She also needs
conditions like those in Theorem 3.2.3 above. Thus Remark 3.2.1 is equally
applicable here when comparing Corollory 3.2.1 with Van Eeden's results, D

Now, we return to Theorem 3.3.1 and expand the μd-terms further so

as to recover an extra linearity term. Define, for 0 < t < 1, u e Rp,
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(19) l{(t, n) := Σi dn i[I(|Xn i - cn i n| < J~\t)) - F

= Σi dni C n i [fni

where

Ftu(x) := Fni(x + cU) - Fni(-x + cm), x > 0.

Note the relation: For arbitrary {dni},

(20) l5(t, u) = Yd(m~\t), n) - rdίHC-J"1^)), u).

From (20) and (2.3.25) applied with dni = n"1/2, we obtain

(21) rop|ϊi(t,u)-I'i(t>0)| =o p ( l) .

Note that in the case dni = n"1/2, (2.3.5) reduces to (3.2.30).
Next, under (11) and (2.3.5), just as (3.2.24),

(22) lim limsupn sup ||i/d(t) -vd(s)\\ = 0,
^° | t-s |<ί

for the given {dni) and for dni = n ' .
Using (21), (22) and calculations similar to those done in the proof of

Lemma 3.2.2, we obtain

Lemma 3.3.2. Under the conditions of Theorem 3.2.1 and (3.2.30)

(23) supt,u In1/2(JJ~i(t) -1) + r*(t, 0) + u'iί(t) | = op(l).

Consequently,

(24) supt>11 I n^JJnίίt ) -1) I = Op(l). D

Similarly arguing as in Lemma 3.2.3, we obtain the following Lemma

3.3.3. In it μd(t), μΐ(t) etc. stand for (ύ(t, 0), μΐ(t, 0) etc. of (1).

Lemma 3.3.3. In addition to the assumptions of Theorem 3.2.1, (3.2.30)
assume that for every 0 < k < α>,

(25) maxi sup , n 1 / 2 | ̂ ( t ) - ^i(s) - (t-β)^i(s) | = o(l)
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where {μ£i} are as in (1),

(26) £i(β) := [fni(J~^s)) - fniί-r^s))] / ^(J-^s)), 0 < s < 1,

h+(x) := n"1 Σi [fni(x) - fni(-x)], x > 0.

Moreover, with dn(t) := n Σi dni^i(t), 0 < t < 1, assume that

(27) s u p ^ 1 ^ ^ ( 0 1 = 0(1).

Then,

(28) sup|^(JJ^i(t)) - /4(t) + {Y*(t)+uu*{t)}n^2 d£(t)| = op(l),

where the supremum is taken over the set 0<t<l, ||u||<B. D

Finally, an analogue of Theorem 3.2.3 is

Theorem 3.3.3. Under the assumptions of Theorem 3.3.1, (3.2.30), (25)
and (27), for every 0 < B < α>,

(29) sup I Z3(t, n) - Z^(t, 0) - u [u+

d(t) - ^(t)n 1 / 2 d^t)] | = o p (l),
0 < t < l | | | | < B

(30) sup

where the supremumin (30) is over φe % ||n||<B. D

Remark 3.3.2. Unlike the case in Theorem 3.2.3, there does not appear

to be a nice simplification of the term i/J — v\ n ' dn However, it can be
rewritten as follows:

= Σi d i C i [f i(ΓV)) + fiC-J-^t)) - 2fi(0)]

+ Σi (di - dί(t)) Ci [ f i ^ 1

This representation is somewhat revealing in the following sense. The first
term is due to the shift u'Ci in the r.v. Xi and the second term is due to the
nonidentical and asymmetric nature of the distribution of Xi, 1 < i < n. α

Remark 3.3.3. If one is interested in the symmetric case or in the i.i.d.
symmetric case then Theorem 3.3.2 and Corollary 3.3.1, respectively, give
better results than Theorem 3.3.3. α
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3.4. WEAK CONVERGENCE OF RANK AND SIGNED RANK W.E.P.'S.

Throughout this section we shall use the notation of Sections 3.2 — 3.3 with

u = 0. Thus, e.g., Zd(t), Zd(t), etc. will represent Zd(t, 0), Zd(t, 0), etc. of
(3.2.2) and (3.3.1), i.e., for 0 < t < 1,

(1) Zd(t) = Σi dni I(Rni < nt), Z3(t) = Σi d n i I(Rni < nt)s(Xni),

= Σi d n i I(Xni < HήX(t)), jid(t) = Σi d n i Ln i(t),

where Rni (Rni) is the rank of X n i ( |Xn i | ) among Xni, ..., X n n ( |Xm|,
•••, |Xnn|)

We shall first prove the asymptotic normality of Zd and Zj for a
fixed t, say t = v, 0<v<l. To begin with consider Zd(v). In the following
theorem v is a fixed number in (0, 1).

Theorem 3.4.1. Suppose that {Xni}, {F n i}, {Lni}, I'd are as in
(2.2a.33) and (2.2a.34). Assume that {dni} satisfy (Nl), (N2) and that H
is strictly increasing for each n. Abo assume that

(2) liin^Q lim supn [Ld(v + S) - Ld(v - S)] = 0,

and that there are nonnegative numbers 4i(v), 1 < i < n, such that for every
0 < k < 0D,

(3) rnaxi sup - i / 2n1 / 2 |Ln i(t)-Lni(v)-(t-^)4i(v)| = o(l).

Denoting

(4) dn(v) := n"1 Σi dni4i(v), αj(v) := Σi (d n i - dn(v))2Ln i(v)(l-Ln i(v)),

assume that

(5)

(6) lim infn oi(v) > 0.

Then,

)} - ? N(0,1).

The proof of Theorem 3.4.1 is a consequence of the following three
lemmas. In these lemmas the setup is the same as in Theorem 3.4.1.
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Lemma 3.4.1. Under the sole assumption o/(2.2a.34),

s u p ^ ^ j H H π V ί - t l =θp(l).

Proof. Upon taking u = 0 in (3.2.19), one obtains

sup I HHπV) -11 < sup I Hn(x) - H(x) | + n" 1 = op(l),
0<t<l -OD<X<+CD

by (3.2.14) of Lemma 3.2.1. α

Lemma 3.4.2. Let Yd(t) denote the Yd(t, 0) of (2.3.1). Then, under
(3), for every e > 0,

Urn Urn supn P( sup | Yd(t) - Yd(v) | > e) = 0
^° |t-v|<ί

Proof. Apply Lemma 2.2a.2 to ηn{ = H(Xni), Gni = Lni, to obtain
that Yd = Wd of that lemma and that

P( sup |Y d(t)-Yd(v)| >e)
|t-v|<ί

< /*f 2[Ld(v + δ) - Ld(v - δ)]2 + P( I Yd(v - δ) - Yd(v) | > e/2)

- ί ) | >e/4)

< (/c + 20)e"2 [Ld(v + δ) - Ld(v - S)], (by Chebyshev).

The Lemma now follows from the assumption (3). D

Lemma 3.4.3. Under (3), for every e> 0,

lim supn P( | YdtHHπ^v)) - 7d(v)| > e) = 0.

Proof. Follows from Lemmas 3.4.1 and 3.4.2 . α

Remark 3.4.1. Lemmas 3.4.2 could be deduced from Corollary 3.3.1
which gives the tightness of the process Yd under stronger condition (C*).
But here we are interested in the behavior of Yd only in the neighborhood of
one point v and the above lemma proves the contnuity of Yd at the point
v at which (3) holds. Similarly, many of the approximations that follow
could of course be deduced from proofs of Theorems 3.2.1 and 3.2.2. But
these theorems obtain results uniformly in 0<t<l under rather stronger
conditions than would be needed in the present case. Of course various
decompositions used in their proofs will be useful here also. α
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Proof of Theorem 3.4.1. In view of (3.2.9) and (N2), it suffices to prove

that {σd(v)}"1 Td(v) —» N(0, 1), where
d

(7)

But, from (3.2.11) applied with u = 0,

Td(v) = yd(HHnV)) + MHH~V)) - μά(y), w.p. 1.

(8) = rd(v) + op(l) + ^(HH^ίv)) - W (v) , by (6).

Apply the identity (3.2.33) with u = 0 and Lemma 3.4.3 with di = n ' 1 / 2 to
obtain,

(9) n1/2[Ίm-Ώ\v) - v] = -^(HH V)) + op(l) = -Yt(γ) + op(l).

Since Yλ(v) - * N(0, v(l - v)), |YΊ(v)| = Op(l). Again, argue as for

(3.2.37) with u = 0, t = v (i.e., without the supremum on the l.h.s. and with
u = 0, t = v), to conclude that

(10) /Zd(HH^(v)) - W (v) = -Yi(v) n 1 / 2 d(v) + op(l).

Combine (9), (10) to obtain

(11) Td(v) = rd(v) - n 1 / 2 d(v) Yfr) + op(l)

= J i ( d n i - d(v)) {I(Xni < H"J(v)) - Lni(v)} + op(l).

The theorem now follows from (6) and the fact that {σd(v)} -{leading term
in the r.h.s. of (11)} —» N(0,l) by the L-F CLT, in view of (Nl) and (N2).D

d

Remark 3.4.2. If {Fni} have densities {fni} then 4i(v) can be

taken to be ^^^(v^/hiE^y)), just as in (3.2.34). However, if one is
interested in the asymptotic normality of linear rank statistic corresponding
to the jump score function, with jump at v, then we need {Lni} to be
smooth only at that jump point.

The above Theorem 3.4.1 bears strong resemblance to Theorem 1 of

Dupac—Hajek (1969). The assumptions (Nl), (N2) and (4) correspond to

(2.2a), (2.13) and (2.2a2) of Dupac-Hajek. Condition (3) above is not quite

comparable to condition (2.12) Dupac-Hajek but it appears to be less
restrictive. In any case, (2.12) and (2.13) together imply the boundedness of
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{ ( ) } and hence the condition (5) above. Taken together, then, the
assumptions of the above theorem are somewhat weaker than those of

Dupac-Hajek. On the other hand, the conclusions of the Dupac-Hajek
Theorem 1 are stronger than those of the above theorem in that it asserts not

only {Zd(v)-μd(v)}σd1(v) => N(0,l) but also that Έ[σA\γ)(Zd(v) -

Md(v))]Γ —> 0, for r = 1, 2, as n —»αo. However, if one is only interested in
the asymptotic normality of {Zd(v)} then the above theorem appears to be
more desirable. Moreover, in view of the decomposition (3.2.11), the proof
presented below makes the role played by conditions (3) and (4) clearer.

The assumption about H being strictly increasing is not really an
assumption because, without loss of generality, one may assume that {Fi}
are not flat on a common interval. For, if all {Fi} were flat on a common
interval, then deletion of this interval would not change the distribution of
Ri, ..., Rn and hence of {Zd}. D

Next, we turn to the asymptotic normality of Zd(v). Again, put u = 0
in the definition (3.3.1) to obtain,

(12) %+(t) = Σi d n i I ( | X n i | < J ^ t M X m ) ,

/£i(t) = Fn i(jΓ^t)) + Fn i(-J~ *(t)) - 2Fni(0), 1 < i < n

Sd(t) = Σi dniI(|Xni| < J^WMXni), 0 < t < 1,

Md(t) = Σi dni μίi(t), 0 < t < 1. Yd = Sd - Md

Like (3.2.9), we have

(13) s uPo<t<i I Z ^ ) " % +(*)I * 2 m a x i I d i ' •

Because of (N2), it suffices to consider T£ only. Observe that

Y$(t)= γ d ( H Γ 1 ( t ) ) + Y d (H(-r 1 (t)))-2Y d(H(0)),

where Yd is as in (2.3.1). Rewrite

(14) YS(t) = { YdίHJ-^t)) - Yd(H(0))} - { Yd(H(0)) - Ydί-J"1

- ( ) Y C t ) say.

This representation motivates the following notation as it is required in the
subsequent lemma. Let pi := Fi(0), qi := 1 — pi and define for 0 < t < 1,
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(15) Lti(t) := {Fi(ΓX(t)) - P i } / q i , Q i > 0,

= 0, qi = 0;

Li2(t) := {P i - Fiί-J'^t))}/?^ Pi > 0,

= 0, Pi = 0; 1 < i < n.

Observe that μt(v) = qiLti(v) — piLl2(v), 1 < i < n. Also define

(16) Lt(t) := qiLti(t) + P iLΪ 2(t) = P( |Xi | < J"1^)), 1 < i < n,

Ldi(t):= Σi di qi Lti(t), l+φ) := Σt d? P i L|2(t), 0 < t < 1.

Argue as for the proof of Lemma 2.2a.2 and use the triangle and the
Chebychev inequalities to conclude

Lemma 3.4.4. For every e> 0 and 0 < v < 1 fixed,

P( sup \Yl>(t)-Y*φ)\>e)
|t-v|<*

(17) < (K * 20)c"2 [Ljj(v + S) - L+φ -6)], j = 1, 2

where K does not depend on e, δ or any other underlying quantities. D

Theorem 3.4.2. Let Xni, ..., Xnn be independent r.v.'s with respective
continuous d.f.'s Fni, ..., F n n and dni, ..., dnn be real numbers. Assume
that {d ni} satisfy (Nl), (N2). In addition, assume the following.

With {Ldj} 05 in (16), for v fixed in (0,1),

(18) lim^0 Urn supn | Ldj(v + δ) - Ldj(v - S) | = 0, j = 1, 2.

(19) There exist numbers {4j(v), 1 < i < n; j = 1, 2} such that for all
0 < k < α>, j = 1, 2,

sup n1/21 l+φ) - L+φ) - (t - v)4j

With

(20) d+(v) := n ^
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r2(v) := Σi {ώtL+iCvHώiCv)}2] + (d+(v))2 L*i(v) ( l -L^

- 2d n i d*(v) ^ i(v) (

(21a) Urn infn r2(v) > 0.

(21b) Urn supn n1/21 dn(v) | < OD.

Then,

(22) Wv)}-1^)-/^)] - N(0,l)

where /4 is as in (12).

Proof. The proof of this theorem is similar to that of Theorem 3.4.1 so
we shall be brief. To begin with, by (13) and (N2) it suffices to prove that

Mv)}""1 Tj(v) - j N(0,l), where Tftv) := %+(v)-/4(v).
α

Apply Lemma 3.4.1 above to the r.v.'s |X n i |, ••-, |Xnn|, to conclude
that

sup | J ( J ^ ( t ) ) - t | = o p ( l ) .
0<t<l

From this, (14), (17) and (18),

Again, apply arguments like those that yielded (9) to { |X n i | } to obtain

where Yi{v) is as in (3.3.19) with t = v and π = 0. Consequently,

Ή(v) = Yd(v) -n^ΨΏ(y)γ\{v) + o p (l) = K^(v) + o p (l)

where

= Σi {dni[I(J( I Xπi|) < v) s(Xn i) - /^i(



68 LINEAR RANK AND SIGNED RANK STATISTICS 3.4

9
Note that Var(Kd(v)) = τ (v). The proof of the theorem is now completed
by using the L-F CLT which is justified, in view of (Nl), (N2), and (21a). α

Remark 3.4.3. Observe that if {Ft} are symmetric about 0 then

μ\ = 0 = dn and r2(v) = Σi άli Lίi(v). D

Remark 3.4.4. An alternative proof of (22), using the techniques of

Dupac and Hajek (op. tit.), appears in Koul and Staudte, Jr. (1972a). Thus
comments like those in Remark 3.4.1 are appropriate here also. D

Next, we turn to the weak convergence of {Zd} and {Zj}. These
results will be stated without proofs as their proofs are consequences of the
results of the previous sections in this chapter.

Therorem 3.4.3. {Weak convergence of Zd). Let Xni, ..., Xnn be
independent r.v.'s with respective continuous d.f.'s Fni, ..., F n n . With
notation as in (2.2a.33), assume that (Nl), (N2), (C*) hold. In addition
assume the following:

(23) There are measurable functions {4i> 1 i i < n} on [0, 1], such
that for all 0 <k < α>,

sup . n1/21 Lni(t) - Lni(s) - (t-s)4i(s) I = 0

Moreover, assume that

(24) lim supn s u p Q ^ ί n1 / 21 dn(t) | < «,

(25) ^mΛ-,o ^ m s u P n S UP n I ^ n ^ ^ ~ ^n^s^ I = ^'

(26) lim infn σ2(t) > 0, 0 < t < 1.

Finally, with Kd(t) := Σi (dni - dn(t)){I(Xni < H'^t)) - Lni(t)}, assume
that

(27) C(t, s) = limn Cov(Kd(t), Kd(s))

= limn Σi (dni - d n(t))(d n i- dn(s))Ln i(s)(l - Ln i(t)),

exists for all 0 < s < t < 1.
Then, Zd — ̂ d ^ to a mean zero, covariance C continuous Gaussian

process on [0, 1], tied down at 0 and 1. D
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Remark 3.4.5. In (23), without loss of generality it may be assumed

that n^Σi 4i(s) = 1, 0 < s < 1. For, if (23) holds for some {4i, 1 < i < n},

then it also holds for {4i, 1 < i < n}, 4i(s) := n 1 / 2[L n i(s+n" 1 / 2) - Ln i(s)],

1 < i < n, 0 < s < 1. Because n~ Σi Lni(s) = s, n ' ^ i 4i(s) = 1. π

Remark 3.4.6. Conditions (C*), (Nl) and (24) may be replaced by the
condition (B), because, in view of the previous remark,

* 1 / 2 1 dn(t) I = I n" 1 / 2 Σi d n Ai(t) | < n 1 ' 2 maxi | d n l | , 0 < t < 1. D

Remark 3.4.7. In the case Fni have density fni, one can choose

4 i = fnitlΓ1)/*"1^ fnjίH"1), 1 < i < n. D

Remark 3.4.8. In the case Fni = F, F a continuous and strictly
increasing d.f., Lni(t) = t, 4i(t) = 1, so that (C*) and (23) - (26) are trivially
satisfied. Moreover, C(s,t), = s(l-t), 0 < s < t < 1, so that (27) is satisfied.

Thus Theorem 3.4.3 includes Theorem V.3.5.1 of Hajek and Sϊdak (1967). α

Theorem 3.4.4. (Weak convergence of Zd). Let Xni, .., Xnn be
independent r.v.'s with respective d.f.'s Fni, ..., F n n and let dni, ..., d n n be
real numbers. Assume that (Nl) and (N2) hold and that the following hold.

(28) With Ldj as in (16),

x lim supn sup [Ldj(t + S) - Ldj(t)] = 0, j = 1, 2.

(29) There are measurable functions t\-}, 1 < i < n, j = 1, 2 on [0, 1]
such that for any 0 < k < CD,

maxi sup n1/21 LΪj(t) - Ltj(s) - (t - s)tφ) \ = o(l).
|t-s|<kn-l/2

(30) With an as in (20),

lim supn sup n ' \ dn(t) | < QD,
0<t<l

(31) lim. π lim supn sup n1 / 21dί(t) - dn(s)| = 0.
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(32) With T as in (20),

lim infn r2(t) > 0, 0 < t < 1.

(33) With Kd(t) as in the proof of Theorem 3.4.2,

limn Cov(Kd(s), Kd(t)) = C*(s,t) exists, 0 < s < t < 1.

Then, Zj — /4 =* to a continuous mean zero coυariance C* Gaussian
process, tied down at 0. •

Remark 3.4.9. Remarks 3.4.5 through 3.4.7 are applicable here also,
with appropriate modifications. D

Remark 3.4.10. Suppose that F n i Ξ F , F continuous, and dni = n 1 ' 2 .
Then

sup |Z3(t)-/4(t) | = sup n 1 / 2 | {H n (x)-H n (0)}-{H n (0)-H n (-x)}
0<t<l 0<X<0D

which is precisely the statistic r n proposed by Smirnov (1947) to test the
hypothesis of symmetry about F. Smirnov considered only the null
distribution. Theorem 3.4.4 allows one to study its asymptotic distribution
under fairly general independent alternatives.

If {dni} are arbitrary, subject to (Nl) and (N2), then

sup{|Zd(t) — μd(t)|; 0 < t < 1} may be considered a generalized Smirnov
statistic for testing the hypothesis of symmetry. DD




