CHAPTER 3

LINEAR RANK AND SIGNED RANK
STATISTICS

3.1. INTRODUCTION

Let {Xni, Fni} be asin (2.2.33) and {cn;} be px1 real vectors. The rank
and the absolute rank of the ith residual are defined, respectively, as

n ’ ’
(1) Riu =j§1 I(an — U Cpj <Xpi—u Cni);

n ’ ’

Let ¢ be a nondecreasing real valued function on [0, 1] and define
n
(2) Ta(p,w) =2 dai ¢(Riu/(n+1)),

T+ o 4o+ ’ p
dlp, u) = i§1 dni ¢ (Riu/(n+1)) s(Xni - u Cni), uw€R",

where ¢'(s) = ¢((s+1)/2), 0<s< 1, and s(x) = I(x > 0) - I(x < 0).

The processes {Ta(p, u), u € R’} and {T§(y, u), ue RP} are used to
define rank (R) estimators of A in the linear regression model (1.1.1). See,

e.g., Adichie (1967), Koul (1971), Jureckova (1971) and Jaeckel (1972). One
key property used in studying these R-estimators is the asymptotic uniform

linearity (a.u.l.) of Ta(yp, u) and T4(p, u) in uek(B). Such results have
been proved by Jureckova (1969) for Tq(p, u) for general but fixed
functions ¢, by Koul (1969) for TJ(Z, u) (where I is the identity function)

and by Van Eeden (1971) for T4(y, u) for general but fixed ¢ functions.
In all of these papers {Xpi} are assumed to bei.i.d..

In Sections 3.2 and 3.3 below we prove the a.u.l. of Tq4(yp, .), Td(e, .),
uniformly in those ¢ which have |¢|ltv < », and under fairly general
independent setting. These proofs reveal that this a.u.l. property is also a
consequence of the asymptotic continuity of certain w.e.p.’s and the
smoothness of {Fyi}.

Besides being useful in studying the asymptotic distributions of
R-estimators of f these results are also useful in studying some rank based

44
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minimum distance estimators, some goodness-of-fit tests for the error
distributions of (1.1.1) and the robustness of R-estimators against certain
heteroscedastic errors.

3.2. ASYMPTOTIC UNIFORM LINEARITY OF LINEAR RANK
STATISTICS

At the outset we shall assume

(1) pe®:={p[0,1] =R, p eI, 1], with [[gllev := (1) — ¥(0) = 1}.

Define the w.e.p. based on ranks, with weights {dni},

(2)  Z4(t, u) := 2i dni I(Riu < nt), 0<t<1, uekP
Note that

(3) Talpw) = [ plnt/(+1)) Za(dt,u)
= —[ Za((n+1)t/n, u) dp(t) + nda ¢(1), 0d, =i§=5 dni.

1

The representation (3) shows that in order to prove the a.u.l. of Tq4(y, .), it
suffices to prove it for Zg4(t, .), uniformly in 0 < t < 1. Thus, we shall first

prove the a.u.l. property for the Zq-process. Define, for x€R, 0<t<1, ueRP,
(4) Hpu(x) =10 1% I(Xpi—caju<x), Hy(x):=n"'% Foi(x + cnjn),

Hoo(t) = inf{x; Hnu(x) > t}, Hol(t) = inf{x; Hy(x) > t}.

Note that Hy is the H of (2.2a.33). We shall write H for Hp,.
Recall that for any d.f. G,

GG Y t)2t, 0<t<1 and G YG(x)<x, x€R.
This fact and the relation nHpy(X; — c'i u) = Rj, yield that V 0<t< 1,

(5) [Xi—ciu Hoo(t)]* [Rin2 nt] s [Xi—ciud Han(t)], 1<i<n

For technical convenience, it is desirable to center the weights of linear
rank statistics appropriately. Accordingly, let

(6) Wni = (dni — dn), 1<i<n.
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Then, with Zy denoting the Zg when weights are {wni},

Za(t, u) = Zy(t, u) + dp - [nt], 0<t<1l,uelkPl
Hence
(N Za(t, u) — Zq(t, 0) = Zyu(t, u) — Zy(t, 0), 0<t<1,ueRPl
Next define, for arbitrary real weights {dni},
(8) %(t, ) = % dnj [(Xnj — caj u < Hps(t)), 0<t<1,ueRP

By (5) and direct algebra, for any weights {dn;},
(9) sup |Zq(t, u) — %(t, u)| < 2 max; |di].
Consider the condition
(N3) =1, max; waj — 0.
In view of (7) and (9), (N3) implies that the problem of proving the a.u.l. for
the Zq-process is reduced to proving it for the ¥;-process.
Recall the definitions in (2.3.1) and define
(10) Ta(t, w) := J(t, ) — pat, w), 0<t<L,uek’

Note the basic decomposition: for any real numbers {dnj} and for all
0<t<1, uelp,

(11) Ta(t, u) = Ya(HHzy(t), u) + pa(HHzu(t), v) — palt, w),

provided H is strictly increasing for all n > 1. Decomposition (11) is basic
to the following proof of the a.u.l. property of Zg.

Theorem 3.2.1. Suppose that {Xni, Fni} satisfy (2.2a.34), (N3) holds,
and {cni} satisfy (2.3.4) and (2.3.5) with dai = wni. In addition, assume
that (C*) holds with dni = wni, H 148 strictly increasing, the densities {fn;}
of {Fni} satisfy (2.3.3b), and that

(12) lim lim supy max; sup  |fai(x) —fai(y)| = 0.
[H(x)-H(y)|<é
Then, for every 0 < B < o,

(13)  sup |Tult, W) - Yult, 0) — um(HEZL(t), 0) + m(t, 0)] = 0p(1)
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where the supremum is being taken over 0 <t <1, u € RP.

Before proceeding to prove the theorem, we prove the following lemma
which is of independent interest. In this result, no assumptions other than
independence of {Xpi} are being used.

Lemma 3.2.1. Let H, Hy, H, and Hyy, be as in (4) above. Assuming
only (2.2a.34), we have

(14) |Hn — Hllm —0 as.

If, in addition, (2.3.4) holds and if, for any 0 < B < w,

(15) sup  |H(x) - H(y)| —0, (mn = max; ||ci]),
|x—y| {2mpB
then,
(16) su |Hnu(x) - Hu(x)l — 0 a.S..
x| <o ,ﬁu"SB

Proof. Note that Hp(x) — H(x) is a sum of centered independent

Bernoulli r.v.’s. Thus E[Hy(x) — H(x)]4 = O(n_2 . Apply the Markov
inequality with the 4th moment and the Borel-Cantelli lemma to obtain

|Ho(x) — H(x)| — 0, a.s., forevery x€R.

Now proceed as in the proof of the Glivenko-Cantelli Lemma (Loéve (1963),
p-21) to conclude (14).

To prove (16), note that ue#(B) implies that -mp,B < c’i u<{myB, 1
<i<n. The monotonicity of Hyy and H, yields that for uei{B), xeR,

Hy(x-Bmy) - H(x-Bmy) + H(x-Bmy) - H(x+Bmy)
< Hau(x) - Hu(x)
< Hp(x + Bmy) - H(x + Bmy) + H(x + Bmy) - H(x - Bmy).
Hence (16) follows from (15) and the following inequality:
Lhs. (16) <2 sup |Ha(x)—H(x)| + sup |H(x)—H(y)|. o

Ix] <o |x—y| £{2mpB

Proof of Theorem 3.2.1. From (11),forall 0<t <1, ueRP,
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To(t,u) = [Ye(HH7L(t), u) — Yy(HHZL(t), 0]
+ [ Yy(HHpa(t), 0) — Yy(t,0)]
+ Ya(t, 0) = [uw(t, w) = pu(t, 0) - vy(t)]
+ [pw(HHau(t), 0) — pr( HE(t), 0) — u” w(HHzy(t))]
+ to(HHpu(t), 0) — pu(t, 0) + u [(HHga(t)) — ww(t)]-
Therefore,
Lh.s. (13) < sup| Yu(t, u) — Yu(t, 0)| + sup| Yu(HHpa(t), 0) — Y{t,0)]
+25up | w(t, @) — pn(t, 0) — u wy(t)|

+ sup |u [ve(HHpa(t)) — va(t)]|
(17) = A1+ A2+ A3+ Ay, say,
where, as usual, the supremum is being taken over 0 <t < 1, uel(B). In
what follows, the range of x and y over which the supremum is being taken is
R, unless specified otherwise.

Now, (2.3.3b) implies that |H(x) — H(y)| < |x—y| k. This and (2.3.4)
together imply (15). It also implies that

Sup |x—y| <) Ifni()’) - fni(x) I < sup IH(X) "H(y) l <ké lfni(Y) - fni(x) I .

forall 1<i<n and all § > 0. Hence, by (12), it follows that {fp;} satisfy
(2.3.32). Now apply Lemma 2.3.1 and (2.3.25), with dpi = wni, 1 <1< 1, t0
conclude that

(18) Aj=oy(1), j=1,3.

Next, observe that
(19) sup| HHzy(t) — t] < sup |Hnu(x) — Hu(x)| + sup |Hu(x)-H(x)| + n,

JS:I,IEIH“(X) —H(x)| € sgp|H(x + m, B) — H(x —m, B)|.
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Hence, in view of (19) and Lemma 3.2.1, we obtain
(20) sup |HHqa(t) —t| — 0, a.s..
»u

(We need to use the convergence in probability only).
Now, fixa 6> 0 andlet BS = [sup| HH,L(t) —t| < 8. By (20),
'u

(21) lim supy P((BS)<) = .

Now observe that Yjy(., 0) = WZ(.) of (2.2a.33). Hence, with A, as
in (17), for every 7> 0,

(22) lim supy P(|A2| 2 7) < limsupy P( sup |W;(t)—W;(s)| >, Bﬁ).
|t-s] <6

Upon letting § — 0 in (22), (2.2a.35) implies
(23) A2 = Op(l).
Next, we have

(24) lim,  limsupn sup |lww(t) — vw(s)]|
|t-s| <6

¢lim,  lim supy max; sup | fni(y) — fni(x) | (Bi ||wicil)
JH(x)-H(y)]<s

=0, by (12) and (2.3.5).

From (24) and (21) one obtains, in a fashion similar to (23), that

(25) Aq = o0p(1).

This completes the proof of the theorem. o

From a practical point of view, it is worthwhile to state the a.u.l. result
in the i.i.d. case separately. Accordingly, we have

Theorem 3.2.2. Suppose that Xjy, ... , Xun are i.i.d. F. In addition,
assume that (F1), (F2), (N3), (2.3.4) and (2.3.5) with dni = Wni hold. Then,
VO0<B<uo,

(26) sup |Za(t, u) — Za(t, 0) — v 5 Waicas q(t)] = op(1),
0<t<1, ||u||<B
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(27) sup | Ta(p, u) — Ta(®, 0) + u i Wni cai [ g dp| = op(1).
ve % |ull<B

where q = f(F ).
Proof. Let p =X wpi Cni- From (7),
(28) Lhs. (26) = sup | Zu(t, v) - Zu(t, 0) - u pa(t)].
*u
Take Fpi = F in Theorem 3.2.1. Then (F1) and (F2) imply that q is
uniformly continuous on [0, 1] and ensure the satisfaction of all assumptions

pertaining to F in Theorem 3.2.1. In addition, pg(t, 0) =0, 0<t < 1.
Thus, Theorem 3.2.1 is applicable and one obtains

sup | Tu(t, 1) — Ya(t, 0)] = op(1)

which in turn yields
(29) sup | Tw(t, w) — Tw(t, 0)| = op(1).
From (10) and (28),

Lh.s. (26) < gl’lg{lzw(t, u) — %(t, u)| + |Zg(t, 0) — %(t, 0)] +

+ | Tult, 0) = Tult, 0)] + | pm(t, W)~ pa(¥)]}
= op(1),

by (9), (10), (N3), (29) and Lemma 2.3.1 applied to Fpi = F, dnj = Wni.

To conclude (27), observe that

Lh.s.(27) € sup {|Za(t, w) — Za(t, 0) - u pa(t)]
+ 100l [a((as1)t/n) —a(t)]}
= op(1),
by (26), the uniform continuity of q and (2.3.5) with dn; = Wni. o

Remark 3.2.1. Theorem 3.2.2 continues to hold if F depends on n,
provided now that the {q} are uniformly equicontinuous on [0, 1]. O
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Remark 3.2.2. An analogue of Theorem 3.2.2 was first proved in Koul
(1970) under somewhat stronger conditions on various underlying entities.

In Jureckova §1969) one finds yet another variant of (27) for a fixed but a
fairly general function ¢ and with p in cn; equal to 1. Because of the
importance of the a.u.l. property of Tq(y, .), it is worthwhile to compare

Theorem 3.2.2 above with that of Jureckova’s Theorem 3.1 (1969). For the
sake of completeness we state it as

Theorem 3.2.3. (Theorem 3.1, Jureckova (1969)). Let Xpj, ..., Xnn be
i.i.d. F. In addition, assume the following:

(a) F has an absolutely continuous density f whose a.e. derivative f
satisfies
0<If)<w,  Kf):= f(I/f)%F.
(b) {wni} satisfy (N3).
() 1 ¥(Cni — <‘:n)2 {M<o (recall here cni s 1x1)
n
2. max(caj—Ca)>=0(1), Cu= n‘l,zl Cai-
i=
(d) ¢ is a nondecreasing function on (0, 1) with

j;l(go(t)-—?))z dt > 0, g?::j;lgo(u)du.

or  (dni—dnj)(cni—cnj) €0, V 1<§,j<n.
Then,V 0 < B < m,

() "SﬁgBITd(% u) — Ta(¢p, 0) + u ;s Wai cai b(,f)| = 0p(1)
where b(p, 1) :=—f p(F(x)) {(x) dx. o

The strongest point of Theorem 3.2.3 is that it allows for unbounded

score functions, such as the "Normal scores" that corresponds to p = & 1, ®
being the d.f. of N(0, 1) r.v.. However, this is balanced by requiring (a), (c1)
and (e). Note that (b) and (c1) together imply (2.3.5) with dnj = wai, 1<1
< n. Moreover, Theorem 3.2.2 does not require anything like (e).
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Claim 3.2.1. (a) implies that f is Lip(1/2).

First, from Hajek — Sidak (1967), pp 1920, we recall that (a) implies
that f(x) — 0 as x — + o. Now, absolute continuity and nonnegativity of
f implies that

|ix) —1(y)| < [ 1(E/D)|dF, x<y.
Therefore, by the Cauchy—Schwarz inequality, for x < y,
(i) |x) = £3)1 < {7 (1/9°AF - [F(y) - FEx)}2
() < 1M2(9).

Letting y — o in (ii) yields

(iif) Il < %),

Now (i) and (iii) together imply
|1x) — £3)] < 27%0) {7 1(¢) at}2 < 13%(0) (52,
A similar inequality holds for x > y, thereby giving
1) — )| < I¥%0) |y=|'2, ¥V xyeR,

and proving the claim. Consequently, (a) implies &Fl).
Note that f can be uniformly continuous, bounded, positive a.e., yet
need not satisfy I(f) < w. For example, consider
f(x) .= (1=x)/2,0<x <1
= (x—2j+1)/2i*2, 2j-1<x<2j
= (2j+1—=x)/2i*2, 2j<x<2j+1, j2 1;
f(x) := f(—x), x<0.

The above discussion shows that both Theorems 3.2.2 and 3.2.3 are
needed. Neither displaces the other. If one is interested in the a.u.l
property of, say, Normal scores type rank statistics, then Theorem 3.2.3 gives
an answer. On the other hand if one is interested in the a.u.l. property of,
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say, the Wilcoxon type rank statistics, then Theorem 3.2.2 provides a better
result.

The proof of Theorem 3.2.3 uses contiguity and projection technique a
la Hajek (1962) to approximate Tg(¢p, u) for each fixed u. Then condition
(e) implies the monotonicity of Tq(¢p, .) which yields the uniformity with
respect to u. Such a proof is harder to extend to the case where u and cpj

are pxl vectors; this has been done by Jureckova (1971).

The proof of Theorem 3.2.2 exploits the monotonicity inherent in the
w.e.p.’s Yy and certain smoothness properties of F. It would be desirable
to extend this proof to include unbounded . o

We now return to Theorem 3.2.1 with general {Fn;}. We wish to state
an a.u.l. theorem for {Z4q} and {Ta(yp, .)} under general {Fji}. Theorem
3.2.1 still does not quite do it because there is u in pyz-expressions. We
need to carry out an expansion of these terms in order to recover a term that
is linear in u. To that effect we have

Lemma 3.2.2. In addition to the assumptions of Theorem 3.2.1, suppose
that

(30) 2 2 3 |leai]| = 0(1).
Then,V 0 < B < o,

(31) sup  [nY/2(HHZL(t) —t) + Yi(t, 0) + u w(t)]| = op(1)
0<t<1, [|ull<B

where Yy, vy etc. are Yy, vg of (2.3.1), (2.3.8) with dp; = n 12,
Consequently,

(32) sup  |nl/2(HE;L(t) —t)] = O,(1).
0<t<1, |u”$B

Proof. Write Yy(-), pi(-) for Yi(-, 0), uy(-, 0), respectively. Let I
denote the identity function and set Apy:= nt/ 2(Hm,H,—ull —1I). Then,

(33) n1/2(HH;11, -I)= n1/2(HHx_ul; - HuH;}n + HuHr_nll - HIHIH;I%I) +Anu

= - [py(HHps, ) - po(HHzL) - 0 »y(HHpS)] + Ang
- lll [Vl(HH;},) - l/1] - lll vy - Y1

- [Y{(HHzL, u) - Y(HH)] - [Yy(HHRL) - Yi.
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-1/2

Now, note that sup | Anu(t)| <n /“. Hence
u

(34) sup |nY2(HHZA(t) — t) + Yi(t) + u wy(t)]
< supl(t, W) — t) — ' wi(t)] + B suplls(HEL4(1)) - wi(t)]
+ sup| Yi(t, w) — Yi(t)| + sup| Wi(HHza(t)) — Wi(t)],

where we have used the fact that Yi(t) = W’:(t) of (2.2a.33). The first
term on the r.h.s. of (34) tends to zero by Lemma 2.3.1 when applied with

dnj = n Y2, The third term tends to zero in probability by (2.3.25) applied

with dp; = n Y2 To show that the other two terms go to zero in
probability, use Lemma 3.2.1, (2.2a.35) and an analogue of (24) for v; and
an argument similar to the one that yielded (23) and (26) above. Thus we
have (31). Since supy,u | Yi(t, 0) + u’wy(t)| = Op(1), (32) follows. O

Lemma 3.2.3. In addition to the assumptions of Theorem 3.2.1 and
(30), suppose that for every 0 <k < w,

(35) max;  sup 02| Los(t) — Lni(s) — (t=8)ai(s) | = o0p(1)
[t—s] <kn~ V2

- — - -4
where Lpj = Fni H Y, by := fs(H1)/R(E "), 1<i<n withh:=n 131 fui.
Moreover, suppose that, with Ww(t) := n_li)l_ilwni Li(t), 0<t <,

/2| %(t)| = O(1).

(36) SUPy¢4cs
Then,V 0 < B < w,
(37) sup | pw(HHnu(t)) — w(t) + { Yi(t) + u my(t) 0"/ §()| = 0p(1)

where pg(t), Yi(t) stand for py(t, 0), Yi(t, 0), respectively, and where the
supremum 13 being taken over 0 <t < 1, u €/(B).

Proof. Let M, := uw(HH,-nl,) — k. From (32) it follows that V ¢ > 0
3 Ke and Nye such that

(38) P(Ag) > 1—p¢, n > Ny,
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where
A§ = [supe,u |HH7o(t) — t| < Ken 2.

By assumption (35), there exists Nze such that n > Nje implies
(39) maxi  sup /2| Li(t) — Li(s) — (t-8)44(s)| < e.

Define
Zgi := {Li(HHpu) — L — [HHnu — I] 4} I(AS), 1<i<n.
In view of (39) and (38),

(40) P(max; sups,u n1/2| Zai(t)] > €) < ¢ n > N;eVNze =: Ne.
Moreover,
(41) M, = My I(Af) + My I((A£)©)

=% Wi Zui + Zuo + n1/2[HH;‘1. —1I] nl/2 W,

where
28 := {My — 0 [HHL — 1]-0Y/2 & } 1((AS)°).
Note that
(42) P(supt,u | Zuo| #0) < P((AR)%) < ¢, n > Ne.
By the C-S inequality, (N3) and (40),
(43) P(sups,u |2i wi Zui(t)] > €) <¢, n> Ne
Hence, (37) follows from (43), (42), (41), Lemma 3.2.2 and (36). o

We combine Theorem 3.2.1, Lemmas 3.2.2 and 3.2.3 to obtain the
following

Theorem 3.2.4. Under the notation and assumptions of Theorem 3.2.1,
Lemmas 3.2.2 and 3.2.3,Y 0 < B < o,

(44)  sup|Za(t, u) - Za(t, 0) - u % (dni - du(t)) cai ani(t)| = op(1),
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(45) sup|Ta(p, u)-Ta(p, 0) + u [ Zi (dni- dn(t))cni ani(t) deft)| = 0p(1),

where the supremum in (44) is over 0<t<1, |[ul|[<B, in (45) over y€ &, ||u||<B,
and where dn(t) := 01 %5 dni fi(t), Qoii=fas(E (1), 0¢t <1, 1¢i<n

Proof. Let p(t) := 2 (d; - d(t))ciqi(t). Note that the fact that

n 1% 4(t) = 1 impli =% (w;- W iqi(t), wher i
n (%.ll%‘tr)om 1(7), (IS)I)IZSn :cih(a,g)’p(t) 3 ( (t))ciqi(t), where {w;} are as

(46) Lhs. (44) =  sup  |Zu(t, u) — Zu(t, 0) —u p(t)]
0<t<1, [|ul|<B
<4max;|wi| + sup | %t u)— %(t, 0) —u p(t)].
0<t<1, ||ul|<B

Now, from Theorem 3.2.1 and Lemma 3.2.3, uniformly in 0<t<1, ||ul|<B,
(47)  sup|Tu(t, w) — Ya(t) + {¥i(t) + »i(t) u} 22 w(8)| = op(1),
where Yg(t) stands for Yy(t, 0) for arbitrary weights {dni}. Therefore,
sup | %(t, w) — %(t, 0) —w p(t)]|
= sup | Tu(t, u) — Tu(t, 0) + ult, w) — (1, 0) — 0 At}
< sup | Tw(t, u) — Tw(t, 0) + u w(t) n/2 w(t)|
+ 5up | pw(t, W) — prult, 0) — W we(t)| = 0p(1),

by (47) and Lemma 2.3.1 and the fact that p(t) = wu(t)—wi(t) n'/? w(t).
This completes the proof (44). The proof of (45) follows from (44) in the
same fashion as does that of (27) from (26). o

Remark 3.2.3. As in Remark 2.2a.3, suppose we strengthen (N3) to
require

(B1) n max; wa; = O(1), Tvzv = 1.
Then (C*) and (36) are a priori satisfied by Ly. 0
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Remark 3.2.4. If one is interested in the i.i.d. case only, then Theorem
3.2.2 gives a better result than Theorem 3.2.4. a]
3.3. A.U.L. OF LINEAR SIGNED RANK STATISTICS

In this section our aim is to prove analogs of Theorems 3.2.2 and 3.2.4 for the

signed rank processes {T5(¢, u), ucRP}, using as many results from the
previous sections as possible. Many details are quite similar. Define, for

ueRP, 0<t <1,x20,
(1) Z&(t, ) = B; da; I(RYa < nt) 8(Xai - cain),
Jnu(x) := 0255 I(| Xani - cast| < x) = Hou(x) - Hau(-x),
Ju(x) := 0~ 5; [Fi(x+caiu) - Fi(-x+cpain)] = Hy(x) - Hy(-x),
% (%, u) := Zi dnil(| Xai - caiu| < Jau(t)) s(Xai - casu),
S&(t, w) == dni I(| Xani - casu| < I71(t)) s(Xni - cagu),
pa(t, u) := 3i dni pni(t, u) = E S3(t, u),
pmi(t, 0) 1= Fai(3 (t)+cnin) + Foi(-J (t)+cnsu) - 2Fni(caiu), 1<in.

In téle above and sequel, J and J,, stand for Jo and Jye, respectively. We also
need,

(2) Yi(t, ) = SY(t, u) — it w),
and
(3) Ti(t, w) := %'(t, w) — pd(t, w), 0<t<1, uekP

Analogous to (3.2.11), we have the basic decomposition: For 0<t<1, ueRP,
(4) Ti(t, w) = Yi(ITaa(t), w) + wi(I5a(t), w) — pd(t, w),
Now, note that, w.p. 1,forall 0<t<1, u€RP,

(5) Yi(t, u) = Yg(HI™'(t), u) + Ya(H(-J"'(t)), u) — 2 Ya(H(0), u),

where Yj is as in (2.3.1). Therefore, by Theorem 2.3.1 (see (2.3.25)), under
the assumptions of that theorem and strictly increasing nature of J and H,
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(6) SUDPtsu | Y('i(t, ‘Il) - Y('i.(tx O)l = OP(1)°

One also has, in view of the continuity of {Fni}, a relation like (5) between

pa and pg. Thus by Lemma 2.3.1, under the assumptions there,

(7) sups,u | pd(t, w) — pd(t, 0) —u wi(t)| = o(1)
where
(8)  Wi(t) := Z dni cni [fai(3 (1)) + fas(-I(t)) — 26a3(0)], O <t < 1.
We also have an anlogue of Lemma 3.2.1:
Lemma 3.3.1. Without any assumption ezcept (2.2a.34),
(9) SUP) ¢ <o [Ja(x) —J(x)] — 0 as.
If, in addition, (2.3.4) and (3.2.15) hold, then

(10) sup |Jnu(x) = Ju(x)| — 0 as..
0<{x€w, ﬁn"

Using this lemma, arguments like those in Theorem 3.2.1 and the above
discussion, one obtains

Theorem 3.3.1. Suppose that {Xni, Fni} satisfy (2.2a.34), (2.3.3b) and

that {dni, cni} satisfy (N (p , (N2), (2.3. 4) and (2.3.5). In addition, assume

that

(11) lim  lim sup, max; sup |fai(x) — fni(y)| = 0
[3(x)-3(y)]<s

and that H 1is strictly increasing for every n. Then, for every 0 < B < w,

(12) sup | Th(t, u)-Ya(t, 0)-43(3Tna(t), 0) + (%, 0)] = 0p(1). ©
0<t<1, [[uf|<B

We remark here that (11 1mphes (3.2.12).
Next, note that if {Fi} are symmetric about 0, then

(13) pi(t,0) =0, 0<t<1, n2l
Upon combining (13), (12) with (7) one obtains
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Theorem 3.3.2. In addition to the assumptions of Theorem 3.2.1,
suppose that {Fyni, 1 <i< n} are symmetric about 0.
Then, for every 0 < B < o,

(14) sup | Z(t, u) - Zd(t, 0) — u Bi dnicni vas(t)| = op(1),
0<t<1, ||u||<B
’ 1
(15) sup | Td(p, u)-Td(p, 0) + u Z; dnicni f vai(t) de'(t)| = op(1),
e %’,IluﬁsB 0
where

vhi(t) := 2ffns(3 () = £a3(0)], 1<i<m, 0<t¢l.

Proof. Using a relation like (3.2.5) between R3i, and Jny, one
obtains, as in (3.2.9g),

(16) sup | Z4(t, w) — % (t, )| < 2 max; |ds| =o(1), by (N2).

Thus (13) follows from (16), (12), (11) and (7). Conclusion (15) follows from
(13) in the same way as (3.2.27) follows from (3.2.26). o

Because of the importance of the i.i.d. symmetric case, we specialize
the above theorem to yield

Corollory 3.3.1. Let F be a d.f, symmetric around zero, satisfying
(F1), (F2) and let Xny, ..., Xon be ii.d. F. In addition, assume that {dni,
cni} satisfy (N1), (N2), (2.3.4) and (2.3.5). Then, for every 0 < B < o,

(17) su |Z&(t, u) — Z&(t, 0) — u'Zi dni cni q*(t)] = 0p(1),
0<t<1, ||u]|<B
4 1
18 sup | Ta(em) — Td(p,0) + i dnicni uf q'(t)de’(t)| = op(1),
OB . J. a®de" (1)) = op(1)
where q'(t) := 2[f(F}((t+1)/2)) - £(0)], 0 <t < 1. o

Remark 3.3.1. Van Eeden (1972) proved an analogue of (18) without
the supremum over ¢, but for square integrable ¢’s. She also needs
conditions like those in Theorem 3.2.3 above. Thus Remark 3.2.1 is equally
applicable here when comparing Corollory 3.2.1 with Van Eeden’s results. 0

Now, we return to Theorem 3.3.1 and expand the p3-terms further so
as to recover an extra linearity term. Define, for 0 <t <1, u € RP,
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* - -
(19) Ya(t, w) := % doilT(] Xai — €ai u| < I7(t)) — Fra(@ 7 (t))]
E 3 - -

va(t) = i dni Cai [fas(371(t)) — fas(-371(t))]

where
Fiu(x) := Fai(x + ciu) — Fai(—x + ciu), x> 0.

Note the relation: For arbitrary {dns},
(20) Ya(t, u) = Ya(HIX(t), u) — Ya(H(-JX(t)), u).
From (20) and (2.3.25) applied with dp; = 0~ /2, we obtain

(21) sup | Yi(t, w) - ¥i(t, 0)] = op(1).

Note that in the case dn;=n Y/ 2 (2.3.5) reduces to (3.2.30).
Next, under (11) and (2.3.5), just as (3.2.24),

(22) lim,  lim sup, sup llud(t) - Vd(S)" =0,
|t-s] <&

for the given {dni} and for dp;= n /2
Using (21), (22) and calculatlons similar to those done in the proof of
Lemma 3.2.2, we obtain

Lemma 3.3.2. Under the conditions of Theorem 3.2.1 and (3.2.30)

(23) supe,u |nY/2(IT5E(E) —t) + Yi(t, 0) + u wi(t) | = op(1)-
Consequently,
(24) sups,u |02 (II54(t) —t)| = Op(1). 0

Similarly arguing as in Lemma 3.2.3, we obtain the following Lemma
3.3.3. Init pug(t), pi(t) etc. stand for pg(t, 0), wi(t, 0) etc. of (1).

Lemma 3.3.3. In addition to the assumptions of Theorem 3.2.1, (3.2.30)
assume that for every 0 < k < w,

(25) max;  sup , n'/% |udi(t) — phi(s) — (t-8)Ehi(s)| = o(1)

|t—s] <knV/2
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where {uni} are as in (1),
(26)  £i(s) = [fai(37'(5)) — fai(-37X(s))] / B (I 7X(s)), 0¢s<l,
h¥(x) =01 % [fai(x) — fai(—x)], x> 0.

Moreover, with dn(t) := n !y dnifni(t), 0 <t <1, assume that

1/2 5
(20) 5upy¢, ;|22 &()] = O(1).
Then,
+17-1 + * ‘X 1/2 5+
(28) sup | pa(JInu(t)) - ma(t) + {Ya(t)u vi(t)}n™" du(t)| = op(1),
where the supremum is taken over the set 0<t<1, ||u||<B. o

Finally, an analogue of Theorem 3.2.3 is

Theorem 3.3.3. Under the assumptions of Theorem 3.3.1, (3.2.30), (25)
and (27), for every 0 < B < m,

(29)  sup | Zi(t, u) — Z&(t, 0) —u [Wi(t) — w82 EX(1)]] = 0p(1),
0<t<1, ]| u||<B

(30) sup | Ti(pu) - Tilp0) + w’ [ W50-+iO8E)] d6°0)] = 0p(1),

where the supremum in (30) is over e € ||ul|<B. o

Remark 3.3.2. Unlike the case in Theorem 3.2.3, there does not appear

1/2

3 . . * 3
to be a nice simplification of the term v§ — »; n'/“ di. However, it can be

rewritten as follows:

Vi(t) — mit)nt2 4(t) = B dies [H(I74(1)) + (-3 71(1)) - 265(0)]
+ 51 (di - d5(t)) e [H 7)) £(-37 ()]

This representation is somewhat revealing in the following sense. The first
term is due to the shift u’c;in the r.v. X; and the second term is due to the
nonidentical and asymmetric nature of the distribution of X;,1<i<n. o

Remark 3.3.3. If one is interested in the symmetric case or in the i.i.d.
symmetric case then Theorem 3.3.2 and Corollary 3.3.1, respectively, give
better results than Theorem 3.3.3. o
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3.4. WEAK CONVERGENCE OF RANK AND SIGNED RANK W.E.P.’S.

Throughout this section we shall use the notation of Sections 3.2 — 3.3 with

u = 0. Thus, eg., Zd(ti), Z4(t), etc. will represent Zq(t, 0), Z3(t, 0), etc. of
(3.2.2) and (3.3.1g), ie,for 0<t <1,

(1) Zg4(t) = 2i dni I(Rai € nt), Z4(t) = Zi dni I(Rai < nt)s(Xni),
%(t) = Zidni I(Xni < Hp (t)),  pa(t) = Zi dni Las(t),

where Rpi (Rni) is the rank of Xp; (|Xni|) among Xpg, ..., Xon (| Xnil,

ceey nn

We shall first prove the asymptotic normality of Zq and Z3 for a
fixed t,say t =v, 0<v<l. To begin with consider Zg4(v). In the following
theorem v is a fixed number in (0, 1).

Theorem 3.4.1. Suppose that {Xni}, {Fni}, {Lni}, L4 are as in
(2.23..33) and (2.2a.34). Assume that {dni} satisfy (N1), (N2) and that H
13 strictly increasing for each n. Also assume that

(2) lim,  lim sups [La(v + 8) — La(v — 6)] =0,

and that there are nonnegative numbers fni(v), 1<i< n, such that for every
0<k<o,

(3) max; sup 22| Lpi(t) — Lai(v) = (t=v)lai(v)] = o(1).
|t—s] {kn™ 2

Denoting
(4) da(v) ="' % dnilai(v), 03(v) := 5 (dni - du(v))*Lai(v)(1-Lni(v)),

assume that

(5) 2'/?|d4(v)| = 0(1).
(6) lim inf, 03(v) > 0.
Then,

{oa(n)} {Za(v) - pa(v)} — N(0, 1).

The proof of Theorem 3.4.1 is a consequence of the following three
lemmas. In these lemmas the setup is the same as in Theorem 3.4.1.
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Lemma 3.4.1. Under the sole assumption of (2.2a.34),
-1
SUPy¢4cy |HH, (t) —t] = op(1).
Proof. Upon taking u =0 in (3.2.19), one obtains

sup |HHZl(t) —t| ¢ sup |Hu(x)—H(x)| +n!= op(1),

0<t<1 —ol{x{+m
by (3.2.14) of Lemma 3.2.1. o

Lemma 3.4.2. Let Yq4(t) denote the Yy(t, 0) of (2.3.1). Then, under
(3), for every € > 0,

lim,  lim supy P( sup |Ya(t) — Ya(v)| > €) =0
Jt-v|<é

Proof. Apply Lemma 2.2a.2 t0 7ni = H(Xni), Gni = Lnpj, to obtain
that Yq = W4 of that lemma and that

P( sup |Ya(t)— Ya(v)| >¢)
|t-v] <&

< ke 2La(v + 8) —La(v — )% + P(| Ya(v — 6) — Ya(v)| > €¢/2)
+ P(| Ya(v + 8) — Ya(v —6)| > €/4)
< (5 +20)€ 2 [La(v + 6) — La(v = 6)), (by Chebyshev).
The Lemma now follows from the assumption (3). o
Lemma 3.4.3. Under (3), for every € > 0,
lim supn P(| Ya(HHz'(v)) - Ya(v)| > ¢) = 0.
Proof. Follows from Lemmas 3.4.1 and 3.4.2.. ]

Remark 3.4.1. Lemmas 3.4.2 could be deduced from Corollary 3.3.1
which gives the tightness of the process Yy under stronger condition (C*).
But here we are interested in the behavior of Y4 only in the neighborhood of
one point v and the above lemma proves the contnuity of Yy at the point
v at which (3) holds. Similarly, many of the approximations that follow
could of course be deduced from proofs of Theorems 3.2.1 and 3.2.2. But
these theorems obtain results uniformly in 0<t{1 under rather stronger
conditions than would be needed in the present case. Of course various
decompositions used in their proofs will be useful here also. o
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Proof of Theorem 3.4.1. In view of (3.2.9) and (N2), it suffices to prove
that {oa(v)} ! Ta(v) — N(0, 1), where

(7) Ta(v) = { %(v) — pa(v)}-
But, from (3.2.11) applied with u = 0,
Ta(v) = Ya(HHL'(v)) + pa(HHz ' (v)) — pa(v), w.p. 1.
(8) = Ya(v) + op(1) + pa(HHz'(v)) — pa(v), by (6)-

Ag)ply the identity (3.2.33) with u = 0 and Lemma 3.4.3 with d;= n 2 4o
obtain,

(9) n'2[HHL(v) - v] = —Yi(HHZ'(v)) + 0p(1) = ~Yi(v) + op(1).

Since Yy(v) —2 N(0, v(1 — v)), | Yi(v)| = Op(1). Again, argue as for

(3.2.37) with u=0, t=v (i.e., without the supremum on the L.h.s. and with
u=0,t =v), to conclude that

(10) pa(BHZ'(v)) — pa(v) = =Yi(v) 0% d(v) + op(1).
Combine (9), (10) to obtain
(1) Ta(v) = Ya(v) =072 d(v) Y,(v) + op(1)

= § (dns — 809) f(Kas < H(9) ~ Lai(9)} + o).

The theorem now follows from (6) and the fact that { od(v)}—l- leading term
in the r.h.s. of (11)} =2 N(0,1) by the L-F CLT, in view of (N1) and (N2).0

Remark 3.4.2. If {Fp;} have densities {fy;} then /yi(v) can be

taken to be foi(H (v))/h(H 1(v)), just as in (3.2.34). However, if one is
interested in the asymptotic normality of linear rank statistic corresponding
to the jump score function, with jump at v, then we need {Lp;} to be
smooth only at that jump point.

The above Theorem 3.4.1 bears strong resemblance to Theorem 1 of

Dupac—Hajek (1969). The assumptions (N1), (N2) and (4) correspond to
(2.2a), (2.13) and (2.2a2) of Dupat-Hajek. Condition (3) above is not quite

comparable to condition (2.12) Dupac-Hijek but it appears to be less
restrictive. In any case, (2.12) and (2.13) together imply the boundedness of
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{i(v)} and hence the condition (5) above. Taken together, then, the
assumptions of the above theorem are somewhat weaker than those of

Dupac-Hajek. On the other hand, the conclusions of the Dupac-Hajek
Theorem 1 are stronger than those of the above theorem in that it asserts not

only {Za(v) — pa(v)}oa (v) » N(0,1) but also that E[ogl(v)(Za(v) —

pa(v))]F — 0, for r =1, 2, as n — o. However, if one is only interested in
the asymptotic normality of {Zq(v)} then the above theorem appears to be
more desirable. Moreover, in view of the decomposition (3.2.11?, the proof
presented below makes the role played by conditions (3) and (4) clearer.

The assumption about H being strictly increasing is not really an
assumption because, without loss of generality, one may assume that {F;}
are not flat on a common interval. For, if all {F;} were flat on a common
interval, then deletion of this interval would not change the distribution of
Ry, ..., Rn and hence of {Zq4}. o

Next, we turn to the asymptotic normality of Z3(v). Again, put u =0
in the definition (3.3.1) to obtain,

(12)  %'(t) = Bi dni I(| Xas] < Ja'(£))s(Xns),
phi(t) = Fas(37(8)) + Fai(=37'(t)) — 2Fni(0), 1<i<n
S&(t) = Bi dnil(| Xni| < I7(t))s(Xa1), 0 <t < 1,

pA(t) = i ds pms(t), 0<ECL YS = S5 — 4.
Like (3.2.9), we have

(13) SUPy¢peq | Za(t) — %47 ()] <€ 2 max; |ds].
Because of (N2), it suffices to consider %" only. Observe that
Yi(t) = Ya(HITH(t)) + Ya(H(-37(t))) — 2 Ya(E(0)),
where Yy is as in (2.3.1). Rewrite
(14)  Ya(t) = { Ya(HI (1)) — Ya(H(0))} — { Ya(H(0)) — Ya(-3™'(t))}

%k %
= Yal(t) — Yast), say.

This representation motivates the following notation as it is required in the
subsequent lemma. Let p;:= Fi(0), qi:=1—p; and definefor 0 <t <1,
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(15) Liy(t) == {Fi(3"'(t)) — pi}/as, qi >0,
= 0, qi = 0;

Lis(t) := {ps — Fs(-371(t))}/ps, pi >0,

=0, pi=0; 1<i<n.

Observe that pi(v) = qiLii(v) —piLiz(v), 1<i< n. Also define
(16) Li(t) := qiLis(t) + psLia(t) = P(|Xi] < I71(t)), 1<i<m,

Lii(t):= Zi df @i Lixt), Liu(t) := S ps Lia(t),  0¢tgl.

Argue as for the proof of Lemma 2.2a.2 and use the triangle and the
Chebychev inequalitites to conclude

Lemma 3.4.4. Forevery e>0 and 0 <v <1 fized,

P( sup | Ya(t) - Yai(v)] > ¢)

[t-v]<é
(17) < (k+20)7 [LE(v + 6) —LE(v—6)], j=1,2
where Kk does not depend on €, § or any other underlying quantities. o

Theorem 3.4.2. Let Xy, ..., Xnn be independent r.v.’s with respective

continuous d.f.’s Fnpy, ..., Fun and dpy, ..., don  be real numbers. Assume
that {dni} satisfy (Nl) (N2) In addition, assume the following.

With {Lg;} asin (16), for v fized in (0, 1),
(18)  lim,  limsups |Lgj(v + 8) = L3j(v—9§)| =0, j=1,2.

(19) There ezist numbers {fij(v), 1<i<n; j=1,2} such that for all
0<k<w j=1,2,

max;  sup n!/2|LY(t) — L(v) — (¢ = v)&5(v)| = o(1).
Jt—v] {kn™ 2
With
(20)  dp(v) := n'g; dni{qifis(v) — psfiz(v)},
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(v) = Bt {3[Las(v)-{hi()}] + (@5(v))? Lis(v) (1-Lis(v)) -
— 2dni &(v) phi(v) (1-LEs(¥))},

(21a) lim inf,, 1'2(v) > 0.

(21b) lim supq n!/ 2|<~1§(v)| < o
Then,

(22) {r(n)) H2i(v) — 4] — N(O, 1)

where g is as in (12).

Proof. The proof of this theorem is similar to that of Theorem 3.4.1 so
we shall be brief. To begin with, by (13) and (N2) it suffices to prove that

{f(v)} T8 — N(0, 1), where T3(v) := %"(v) - ui(v).

Apply Lemma 3.4.1 above to the r.v.’s |Xpy|, ..., |Xnn|, to conclude
that

sup |J(Tal(t)) —t| = op(1).
0<t<1

From this, (14), (17) and (18),

T4(v) = YSQIR()) + 1(331(v)) — k(v

= Y4(v) + (83351 (v)) — wd(¥)] + op(1).

Again, apply arguments like those that yielded (9) to {|Xai|} to obtain

/23351 (v) = v] = =Y}(v) + 0p(1),
where Y:(v) is as in (3.3.19) with t = v and u = 0. Consequently,

Ti(v) = Yi(v) —n2E ()Y (v) + 0p(1) = K3(v) + 0p(1)

where
K3(v) = Yi(v) —n'/2d}(v) Yi(v)

= %i {dnilI(3(| Xail) € v) 8(Xn1) = pms(v)]
- da(v)I(] Xai]) < v) = Las(v)]}-
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Note that Var(K§(v)) = 7 (v) The proof of the theorem is now completed
by using the L-F CLT which is justified, in view of (N1), (N2), and (21a). o

Remark 3.4.3. Observe that if {F;} are symmetric about 0 then
gi=0=dh and 72(v) = % d%; Liy(v). o

Remark 3.4.4. An alternative proof of (22), using the techniques of

Dupa¢ and Héjek (op. cit.), appears in Koul and Staudte, Jr. (1972a). Thus
comments like those in Remark 3.4.1 are appropriate here also. o

Next, we turn to the weak convergence of {Zq} and {Z3}. These
results will be stated without proofs as their proofs are consequences of the
results of the previous sections in this chapter.

Therorem 3.4.3. (Weak convergence of Zg). Let Xnpji, ..., Xon be
independent r.v.’s with respective continuous d.f’s Fpy, ..., Fon. With
notation as in (2.2a.33), assume that (N1), (N2), (C*) hold In addition
assume the following:

(23) There are measurable functions {ni, 1 <i < n} on [0, 1], such
that for all 0 <k < o,

max;  sup _ . 0"/?|Lni(t) - Lui(s) — (t=8)bas(s)| = 0
|t—s| {kn™ 2

Moreover, assume that

. 1/2, 5
(24) lim supy SUP)yeq B / |dn(t)]| < o,
(25) lim,  limsupn sup 0'/?|dn(t) — du(s)| =0,
|t-s] <6
(26) lim inf, ¢ (t) >0, 0<t<l1.

ﬁinally, with Kq(t) := 3i (dni — dn(t)){I(Xni < H_l(t)) — Lni(t)}, assume
at

(27) C(t, s) = lim, Cov(Ka(t), K4(s))
= limp, %; (dnj - dn(t))(dni- dn(s))Lni(s)(1 - Lni(t)),
exists forall 0<s<t<1.

Then, Zq — ua 2 to a mean zero, covariance C continuous Gaussian
process on [0, 1], tied down at 0 and 1. O
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Remark 3.4.5. In (23), without loss of generality it may be assumed
that n_IEi bhi(s) = 1, 0 <s < 1. For, if (23) holds for some {fy;, 1<i< n},
then it also holds for {l:,i, 1<i<n}, l;i(s) = nl/ 2[Lni(S+n_1/ 2) - Lni(s)],
1<i<n, 0<s<1 Because n % Lni(s) =5, n 1% l;i(s) =1. o

Remark 3.4.6. Conditions (C*), (N1) and (24) may be replaced by the
condition (B), because, in view of the previous remark,

2/21dn(t)] = |02 % dnili(t)| < 0% max; |dns|, 0<t<1. o
Remark 3.4.7. In the case Fp; have density f,;i, one can choose

bi= fni(H_l)/n_IEj fnj(H_l), 1<i<n. O
Remark 3.4.8. In the case Fp; = F, a continuous and strictly

increasing d.f., Lni(t) = t, fui(t) = 1, so that (C*) and (232l (26) are trivially
satisfied. Moreover C(s, t) = s(l—t) 0 < s <t<1,so that (27) is satisfied.

Thus Theorem 3.4.3 includes Theorem V.3.5.1 of Hajek and Sidak (1967). o

Theorem 3.4.4. (Weak convergence of 73). Let Xpi, ..., Xnn De
independent r.v.’s with respective d.f.’s Fyy, ..., Fun and let dm, .oy dnn e
real numbers. Assume that (N1) and (N2) hold and that the Jollowing "hold.

(28) With Lg; as in (16),

lim lim supn, sup [La;(t + 6) —Lg;(t)] =0, j=1,2.
0<t<1—5

(29) There are measurable functions &5, 1<i<n, j=1,2 on [0, 1]
such that for any 0 <k < w,

max; sup _ n1/2|LJ§j(t) - L3j(s) - (t - 8)&5(s)| = o(2).
|t-s]| {kn™ 2

(30) With dn as in (20),

lim supp, sup n1/2|d t)] < w,
0<t<1

(31) lim  limsups sup n'/%|d5(t) — di(s)] = 0.
|t-s] <&
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(32) With ° as in (20),

liminf, 72() >0, 0<t< 1.
(33) With K3(t) as in the proof of Theorem 3.4.2,
limy, Cov(Kq(s), Kd(t)) = C'(s,t) exists, 0<s<t<l.

+ + . . .
Then, Zq — pa + to a continuous mean zero covariance C* Gaussian
process, tied down at 0. )

Remark 3.4.9. Remarks 3.4.5 through 3.4.7 are applicable here also,
with appropriate modifications. o

h Remark 3.4.10. Suppose that Fy; = F, F continuous, and dp; = 2 2
en

sup |Zd(t) — pd(t)] = sup n'/?|{Hy(x) — Hy(0)} — {Hn(0) — Ha(—x)}
0<t<1 0<x<w
— {F(x) - F(0)} — {F(0) — F(—x)}|

which is precisely the statistic 'r: proposed by Smirnov (1947) to test the
hypothesis of symmetry about F. Smirnov considered only the null
distribution. Theorem 3.4.4 allows one to study its asymptotic distribution
under fairly general independent alternatives.

If {dni} are arbitrary, subject to (N1) and (N2), then

sup{lzs(t) - ué(t)l; 0 <t <1} may be considered a generalized Smirnov
statistic for testing the hypothesis of symmetry. oo





