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Three different types of stochastic dominance relations are considered: set

dominance, kernel dominance and higher degree dominance. The connections

between these definitions are examined. Preservation results are given and im-

plications between joint and marginal dominance are studied in the finite and

infinite dimensional setting.

1. Introduction. For distributions on the real line, two basic stochas-

tic orderings have been of interest to researchers in many fields: stochastic

dominance with respect to all increasing functions and stochastic dominance

with respect to all convex functions. These orderings can be characterized

by shifts and dilations, respectively, or, in the first case, by inequalities for

distribution functions, and, in the second case, by inequalities for integrals

of the distribution functions. Beginning with these characterizations several

attempts have been made to unify the theory of stochastic dominance rela-

tions in d-dimensional and more general spaces (Brumelle and Vickson (1975),

Fishburn and Vickson (1978), Stoyan (1977) (1983), Mosler (1982)). Based on

this tradition, the primary aim of this paper is to investigate three different

ways by which stochastic dominance relations on several spaces may be char-

acterized. The first one is the characterization via probability inequalities for

certain families of sets. Orderings which allow for this kind of characterization

are named set dominance orderings. The second approach employs Markov

kernels to define a stochastic ordering. These orderings are called kernel dom-

inance orderings. Third, inequalities on integrals of distribution functions are
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used to characterize ordering realations which we call higher degree stochas-
tic dominance orderings. The second part of the paper concentrates on three
more special questions: under which transformations of the underlying ran-
dom variables are the above orderings preserved? Under which circumstances
is an ordering of distributions on a product space implied by the same ordering
of all marginal distributions? How does the ordering of the finite marginals of
a process extend to an ordering of the process?

The paper is mainly expository and certain caveats apply. No complete
survey of the literature is intended. The results presented strongly reflect
the taste of the authors and their past work. Most of the results are not
new. Where applicable, proofs are omitted and references to the literature are
provided. Where proofs are given they serve partly to illustrate the exposition
and partly to support new results.

The paper is organized as follows. Section 2 treats set dominance, Sec-
tion 3 kernel dominance and Section 4 higher degree dominance. Section 5 is
devoted to some preservation results and Section 6 contains a relatively com-
prehensive presentation of marginal vs. global dominance when the copula is
fixed. Section 7 sketches dominance for stochastic processes.

2. Set Dominance. Consider a set V of probability measures on a
measurable space (Ω,<S). The space V can be endowed with a (partial) pre-
order < defined as follows: for Pi, P2 £ V, P\ < P2 if and only if Pχ(A) <

P2(A) ~VA e A, where A C S.

Some of the most usually encountered orders on spaces of probability

measures are of this form (which we will call set dominance).

For any probability measure P G V, P(A) = JQ IA(U) P(dω). Therefore,

if PX(A) < P2(A), VA e A, then

/ TaiIAi(ω) P1(<LJ) < ί TaJ^u) P2(dα;), α t > 0, A* € A,

by linearity of the expectation and

ί φdP1< ί φ dP2 (2.1)
Ju Jo

for all φ such that there exists a sequence φn / φ, with φn(') = ΣΓ=i α«,n/Aj,n( )

α*,n > 0, Aiyn G A, by the Lebesgue monotone convergence theorem. In other

words, (2.1) holds for all functions φ in the closed convex cone generated by

the indicator functions of sets 4 G Λ
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In the sequel, given a class T of measurable functions φ : Ω —• R, for

Pi, P2 € V, we will write Px 3 *P2 if and only if JQ φ dPx < JQ φ dP2 VφζT

for which both integrals exist. Again -<* is a (partial) pre-order on V. It is

usually called stochastic dominance with respect to T. Provided the class A

(resp. T) is rich enough, the pre-order •< (resp. <^) is actually an order

(see Alfsen (1971, p. 22), Mosler (1982, Theorem 4.1)).

We consider some examples. In all the examples the space Ω will always
be a Polish space, and S the Borel σ-field generated by the open sets. When
further structure is necessary, it will be specified. In the examples Λi will be
a class of sets in S and T% will be the convex cone of functions generated by
indicators of sets A € A{.

EXAMPLE 2.1. Let (Ω,<) be a partially ordered Polish space (POPS),

where < is closed. A subset A of the partially ordered space is called upper if

x € A and x < y imply y £ A. An upper set of a POPS is measurable. Let A\
be the class of upper sets of Ω. Then T\ is the cone of increasing functions. In

the whole paper "increasing" means "nondecreasing". The order -< is the

usual stochastic dominance order (Lehmann (1955)), or first degree stochastic

dominance. In this generality it has been studied by Kamae, Krengel and

O'Brien (1977).

EXAMPLE 2.2. Let Ω be as in Example 2.1. For x € Ω the set Ax =

{y : x < y} is an upper interval. Call A2 the class of upper intervals of

Ω. When Ω = 1R , the order < is equivalent to the order obtained by

comparing the survival functions corresponding to Pi and P2. If we define

Δ%=x φ(..., θ, ...) = <£(..., y, ...)-</>(..., x,...), then Ti is the cone of func-

tions φ such that

y*i yik

Δ . . . Δ # . . . , « , 1 , . . . , θ fc,...)>0

and for all the values of the other arguments of φ whose index is not in
{ii,.. .,ϊfc}. This order has been studied under different conditions by Cam-
banis, Simons and Stout (1976), Tchen (1980), Ruschendorf (1980), Mosler
(1984), Scarsini (1988a).

EXAMPLE 2.3. Endow a POPS Ω with a linear space structure and define
A3 as the class of upper convex sets. We note that T$ contains all the in-
creasing quasi-concave functions (by definition, a function φ is quasi-concave
if the set {x : φ{x) > a} is convex for all α G R). The set of increasing
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quasi-concave functions is not convex, though: in general the sum of two in-
creasing quasi-concave functions is not quasi-concave. The case Ω = IR, has
been studied by Levhari, Paroush and Peleg (1975) and Bergmann (1991).

EXAMPLE 2.4. Let Ω be a POPS with an inner product structure. A set

Aa,a C Ω is a half-space if it has the form Aa^a = {x : (a,x) > a}. Call A\

the class of upper half-spaces. If

φ{

pp

x) = υ((a,x))7 with v : R —• IR increasing, and a > 0, a φ 0, (2.2)

then φ € T\, but the set of functions defined in (2.2) is not convex. This order
has been studied by Scarsini (1986) and Muliere and Scarsini (1989), and has
been used to compare random cash flows or bundles of commodities, when the
price vector is not fixed.

EXAMPLE 2.5. Consider Ω = ΈLd with the Schur ordering < s , which is a
closed pre-order, and let As be the class of Schur-convex sets (a set A is Schur-
convex if I A is a Schur convex function). Then T*> is the class of Schur-convex
functions (see Nevius, Proschan and Sethuraman (1977), Marshall and Olkin
(1979)).

When Ω is a linear space, another relation can be defined in terms of a

dual family of functions as follows. For given T,A, define

J~ —

jdual _ t_-T .^duai _ ζ_A . A € ^ w h e r e ,4 _ Ω \ ^ and - A = {x : -x € A}.

Then,
<τ T̂ d u a l *r 'T dual *r

. . . Δ ^ ( . . . , 5 t l , . . . , θ t fc,...)>0

jrdual -̂  ^ . φ j g i n c r e a s i n g a n ( j quasi-convex},

The class ^ u a l has interesting economic applications, since it contains
the utility functions that represent multivariate risk aversion (see Section 4 for
details).

Again, the class ff^ is generated by the indicator functions of sets in
Λ?ual, where
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and

= {B : Ω \ B is a lower interval},

A = {5 : Ω \ JB is a lower convex set}.

EXAMPLE 2.6. Let Ω be a linear space, and let Ae be the class of convex
sets symmetric about the origin. T§ is the cone of central unimodal functions
(see Anderson (1955), Sherman (1955), and for recent results Dharmadhikari
and Joag-Dev (1988), Bergmann (1991), Eaton and Perlman (1991)).

EXAMPLE 2.7. Let Ω be a normed space and let Aγ be the class of sets

Aa = {x : \\x\\ < α}. Then Tt is the cone of decreasing in norm functions

(Rύschendorf (1981)).

EXAMPLE 2.8. Let Ω = Ωi x Ωi, where (Ωi,/>) is a metric space. Let As
be the class of sets As = {x : p(x\,X2) < δ}. Then Tg 9 φ : Ω -» R, if and
only if φ(x) = v(p(xι,X2))7 with υ decreasing. This ordering has some useful
applications in the study of variability and is connected to some variability
measures like Gini's mean difference.

EXAMPLE 2.9. Let Ω be arbitrary and φ a given function Ω -> R. Con-
sider the class A9 of sets {x : φ(x) > α}, α 6 E . Then Tg is the family
of all functions υ 0 φ with v : 1R —• IR increasing. Obviously Examples 2.7
and 2.8 are special cases of this ordering. The ordering has applications in
multivariate choice under risk with deterministic preferences (Kihlstrom and
Mirman (1974), Levy and Levy (1984)).

If Pi X P 2, implies Pi X P 2, we write < D < . I n general, if A C /?,
then < D X . Thus -< D X for j = 2,3,4. Furthermore -< D

j D X .

For a broad exposition about set dominance relations we refer to Bergmann

(1991).

3. Kernel Dominance. Consider a measurable space (Ω,«S) as above.
We investigate situations where a probability distribution dominates another
one if and only if it is the other one's transform through a proper Markov
kernel. For Pi G V and a Markov kernel M,

MPX(A) = / M(x, A) dPx(x) AeS,

defines a probability distribution MPi 6 V. The discrete case is simple: Let
Pi € V and S be a finite or countable set containing the support of Pi,
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S = {si,s2?.

with

• •}•Define

M(χ,{y})=<

y

1,

.0,

ϋ ^ °

if x = a, and

if x $. S and

otherwise,

Vi,i,

1 V».

(3.1)

(3.2)

Then M is a Markov kernel,

~~~ ijPi(isi}) Vj, (3.3)

and MP\ has support contained in 5, again. On the other hand, if M is a

Markov kernel and Pi and MP\ have finite or countable support contained in

Sj there must be numbers τrt j such that (3.1), (3.2) and (3.3) hold for M.

For two Markov kernels JV, M denote

(N o M)(x, A) = J N(y, A) M(x, dy),

hence (N o M)P = N(MP), and let £ denote the unit kernel, J5P = P, VP.

We consider a family M of Markov kernels which is closed under o and contains
M

E. We say that Px < P2 if and only if

P 2 = MPi for some M e M.

M
The relation -< defines a pre-order in V. For instance, any Markov semigroup

M = {Mt : t £ R+} containing E may serve.

In the following examples, (Ω, S) is a Polish space bearing some additional

structure as specified.

EXAMPLE 3.1. Let Ω be endowed with a closed partial order < and let

Λ4χ be the family of all upward Markov kernels, i.e., the kernels such that

M(x,Ax) = 1, Vx, with Ax = {y : x < y}. This again yields the usual

stochastic dominance order which, in our framework, is both a set dominance

and a kernel dominance order. See Example 2.1 for references.

EXAMPLE 3.2. Let Ms denote the set of upward kernels on an Euclidean
d-space, endowed with the Schur-ordering <s, which is a closed pre-order. See
Example 2.5.
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EXAMPLE 3.3. Let Ω be a linear space and let M\o be the set of kernels

M such that

x = I y M{x,dy) Vz € Ω. (3.4)

The ordering •< is called dilation ordering.

More generally, let T be a family of measurable functions Ω -» I t . Let

ex be the degenerate probability measure at x. A Markov kernel M is called

an ^-diffusion if, for all x,

ex<
τMex = M(x, ), i.e.,

Φ{x) < j Φ(y) M(x, dy) Vφ e T. (3.5)

We denote by Mjr the family of all ^-diffusions; we say that M? is generated

by T. It is easily seen that E is in M?, and N o M belongs to Mjr whenever

N and M do. In the sequel, for the sake of brevity, we will write Mi for Mrr

It is easy to show that M\, Ms and ΛΊio are special cases of .F-diffusions:

for Mi choose T[ = {IA A upper set} or T\ = {φ : φ increasing}, analo-

gously for M5. The class M\o is generated by T\Q = {φ : φ convex} as well
as by T[o = {φ : φ affine}. We continue with two more examples, which are

M10

related to the dilation ordering X .

EXAMPLE 3.4. Endow Ω with a closed partial order and a linear space
structure and let T\\ = {φ : φ increasing and affine}. Observe that T\\ C ^10,

Λtio Λ4ii

hence M\Q C M\\] the dilation ordering -< is contained in -< .

EXAMPLE 3.5. Consider the set Tγι of functions on Rrf which are convex

and permutation symmetric, i.e. φ(x) = φ{xp) for every x G lRrf and every

permutation p. Obviously Pi -< P2 implies P\ < P2.

The following theorem exhibits the equivalence between kernel domi-
M τ

nance -< and stochastic dominance -< for the above cases when M is an
oj rsj

^-diffusion. The result is due to Kamae, Krengel and O'Brien (1977) for

k = 1, Nevius, Proschan and Sethuraman (1977) for k = 5, Strassen (1965),

who generalized a famous theorem by Hardy, Littlewood and Polya (1967) and

others, for k = 10 and 11, Rύschendorf (1981) for k = 12. The cases k = 7,8

and 9 are similar.

THEOREM 3.1.Let k G {1,5,7,8,9,10,11,12} and assume Ω = ΈLd, when

kφl. Then P1<
TkP2 if and only ifPx -< P2,
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Mk

PROOF. Sufficiency is proved as follows. Let P\ •< P2, Φ € Fk- Then for
some M £ λΛk ,

JφdP2 = Jφ dMPx = j J φ(y) M(x, dy) Px(dx) > j φ dPu

because of (3.5). Necessity can be shown by proper application of Strassen's
(1965, Theorem 3) result. I

When Ω is compact and T contains only continuous functions, Theorem
3.1 follows from a general result proved in Meyer (1966, chapter XI, T53): Let
Ω be compact, let T be a cone of continuous functions closed under maximum
formation and containing the positive constants. Then Pi -< τ P2 if and only if

PX < P2.

We observe that the cones T2 to T\ and TQ of Section 2 are not closed
under the maximum operation, whereas T\, ^5, T-j and T% are. As we see,
Mx Mb M7 Ms
-<,-<,-< and -< are orderings which are both set dominance and kernel

M10

dominance relations, whereas ^ is an example which is not a set dominance
relation, since JΊo, the cone of convex functions, cannot be generated by any
set of indicator functions. On the other hand, there exist examples of set
dominance which are not kernel dominance relations, e.g. ^ ^ 3 .

In several important cases an ^"-diffusion allows for a pointwise charac-
terization of Λ4p-dominance (for proofs, see, e.g., Rύschendorf (1981) when
k = 5,10,11,12, Kamae, Krengel and O'Brien (1977) when k = 1. The cases
k = 7,8 and 9 are proved similarly.).

THEOREM 3.2. Let k 6 {1,5,7,8,9,10,11,12}. Assume that Ω = ΈLd

when k φ \ and that P\,Pi have first moments when k = 10,11,12. Then
Mk

Pi •< P2 if and only if there exist two Ω-vaiued random variables X, Y such

thatC(X) = Pi, C(Y) = P 2 and, P-a.s.,

X<Y if Jfc = l,

X<SY if fc = 5,

ρ(XuX2)>ρ(YuY2), where X = (XUX2) and Y = (YUY2), if k = 8,

ψ(X)<ψ(Y) if k = 9,

X = E(Y\X) if k = 10,
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φ(X) < E(φ(Y)\X) for all φ increasing affine, if k = 11,

X<SE(Y()\X) if fc = 12,

where 17 ) denotes the downward ordered random vector.

Mi
For given discrete distributions it is possible to check whether Pi -< P 2,

i.e. P 2 = MPi for some M e Mi, as follows. In view of (3.1), (3.2), (3.3) we
have to search for numbers πt j > 0 which fulfill

Mi**}) Vj,

plus a condition from Theorem 3.2 which corresponds to (3.4). For instance,
when k = 1, this condition reads

similarly (< being the Schur ordering <s in R d ) with k = 5. With k = 10
and 11, the additional conditions are

and

Σ πijΦ(sj) ^ V (̂5t) f°r all increasing affine φ
3

respectively. When Ω = H , these two cases can be easily solved by linear

programming methods. For k = 10, Shaked (1980) gives a numerical example

while Kemperman (1973) determines the πt j 's when P 2 is a binomial and P\

is a hypergeometric distribution.

4 Higher Degree Dominances. When Ω = R the orders < , -< ,

- < , - < , are equivalent and assume a very simple form: Pi -< P2 if and

only if

or, equivalently,

^ W ^ P p ^ x ) VxGE,

where, for i = 1,2, Pp. is the distribution function and Fpi is the survival
function associated with Pt : Fp{{x) = P t {(-oo,x]}, Fp^x) = 1 — Fp^x).
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This is not the case when Ω = K*, d > 1. Let (a,b) = x?=1(α t ,δ t )
Define

G+(ΈLd) = iφ : φ(x) = / f\(xi - ί i ) "" 1 M(Λ) + c, where c € R,

ί d 1
and μ is a positive measure on ΈLd such that / TT |x"| μ(cίx) < oo. >,

α-CR11) = iφ : < (̂x) = - / fUu - Xi)n-χ

I Λx.°°) ,=i

and /x is a positive measure on H such that / TT |x"| //(dx) < oo. >,

μ(dt) + c, where c € H,

For m > n, we have Q+ D {/+ and Q~ D Qm.

Let P be a probability measure on (B/*, Bor(]Rrf)). Let Fp and ΎP be the
distribution function and the survival function associated with P, respectively:

Fp(x) = P{ x (-00, *,-]}, Fp(x) = P{ x (xi9 oo)}.

Define

^t) A, TΪ(X) = / Tp-^t) A.

The following theorem holds.

THEOREM 4.1. Let Pi,P2 be probability measures on (IR/̂

(a) Pi X α- P 2 if and only if F^ (x) < P̂ >2 (x), Vx € Md,

(b) Pi ^ α - P 2 if and only if Ffr (x) > F^ (x), Vx G R d .

PROOF, (a) Given any d-dimensional survival function Pp, the following

representation holds

7p(x) = [(n - I)!]"" / Π ( ^ - ^i)""1 ^ W (4-1)
()

If ^(t) = [(n - l) ! ]- d Πi=i(*i " ^ O Γ 1 ' t h e n ^ € ΰ+, therefore Pi ^ ρ ί P 2
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dWe have to prove the converse. If FPl(x) < Fp 2(x), Vx G B, , then

/ 7^(x)μ(Λc)< ί TP2(x) μ(dx),
Jtid JRd

when μ is a positive measure. Then, by (4.1),

and, by Fubini's Theorem,

[(n - I)!]" 4 / / Π ( ^ - XiΓ1 μ(dx) dFPl (t) <

[(n - I)!

The proof of part (b) is analogous. |

The univariate case has been studied by Rolski and Stoyan (1974) and

Rolski (1976) in the case of n G IN. Fishburn (1976), (1980a) employed frac-

tional integrals to study the general case of n G [1, oo). The multivariate case

with n = 2 has been investigated by Bergmann (1978) and Mosler (1982),

(1984). The bivariate case has been studied by Scarsini (1985).

The conditions used to define classes Gn a n d Gΰ have an economic mean-

ing in terms of multivariate risk aversion. We start with the univariate case

and show how the utility functions in (/~ can be characterized in terms of pref-

erences among lotteries. The lotteries characterizing the class Gή a r e defined

recursively in terms of the lotteries characterizing Gή-i-

Consider a decision maker whose utility functions φ is in the class £7̂ ~(]R).

For every x G H, for every h > 0 and for every pairs of lotteries

Lχ(x) = x with probability 1 Mχ(x) = x + h with probability 1

she will prefer Mi over Li. Every decision maker whose utility function is in
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Q~(ΈL) prefers M& over Lfc, VA; € { 1 , . . . ,τι}, where

w.p. 1/2 _ Γ Mfe_i(aί) w.p. 1/2

w.p. 1/2 \ Lfc_i(x + h) w.p. 1/2

To be precise, we should make explicit the dependence of the lotteries upon

ft, but we want to avoid cumbersome notation. Preference of M2 over L2

corresponds to concavity of the utility function, i.e. to risk aversion (Pratt

(1964)).

The construction for the multivariate case is similar in its structure to

the univariate one. We describe the bivariate case more extensively. Consider

Φ € GϊO&2). It satisfies

+i 2+2

Δ Δ φ(sus2)<0 Va?i,a?2 €lR, VΛi,Λ2 > 0.

which is equivalent to the preference of lottery Mi over lottery Li, where

w. p. 1/2

+ h2) w. p. 1/2,

w. p. 1/2

w. p. 1/2,

(where again the dependence on h has not been made explicit). This preference

represents bivariate risk aversion (see Richard (1975)). Bivariate risk aversion

is different and independent from risk aversion a la Arrow-Pratt. It has nothing

to see with concavity of the utility function and is defined only in terms of

different combinations of commodities.

A utility function in (?~(]R2) implies preference of M& over L*, Vfc G
{1,.. .,n}, where

w. p. 1/4

w. p. 1/4

Mk-ι(xi,x2 + h2) w. p. 1/4

h2) w. p. 1/4
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w. p. 1/4

w. p. 1/4

w. p. 1/4

> Mfc-i(a;i + Λi, x2 + h2) w. p. 1/4.

In general, for the d-dimensional case, we have φ G ί/~(IFtd) if and only

if M*(x) is preferred to L*(x), Vx G R d , Vh G IR+ \ {0}, Vfc G {1,.. ., n}. The

lottery Lχ(x) has 2d~1 equally likely outcomes z G Z (where z G Z if and only

if 2t = either # t or xt + Λ, and the number of Zi — Xi + hi is even); the lottery

Mχ(x) has 2d~~λ equally likely outcomes w G W (where w G W if and only if

Wi = either # t or xt + hi and the number of W{ = Xi + hi is odd). L*(x) has

2rf equally likely outcomes each of which is a lottery: either Lfc-i(z), z G Z or

Mfc-i(w), w G W. M^(x) has 2d equally likely outcomes each of which is a

lottery: either M^~i(z), z G Z or Lfc_χ(w), wG W.

It is worth noticing tha.t, if two lotteries that we are comparing are

marginalized (i.e. if one of the commodities is omitted in the lotteries), then

they become equal. The reason for using the term risk aversion for the above

preferences among lotteries is that the lottery L* always contains the worst

possible outcome and it is reasonable to assume that a risk averter wants to

avoid it.

For an investigation of further multivariate risk postures and stochastic

dominance with respect to them, see Mosler (1987).

Necessary conditions can be established for n-th degree stochastic domi-

nance. These conditions, which involve the moments of the distributions, have

been established by Fishburn (1980b), O'Brien (1984) in the univariate case,

and by O'Brien and Scarsini (1991) in the multivariate case.

5. Preservation Under Transformations. In this section we will

consider random variables with values in (Ω',<S'), which are transformations

or compositions of other random variables with values in (Ω,5). Given a

random variable X, we will denote C{X) by Pχm

Given a measurable tranformation h : (Ω,<S) —*• (Ω;, 5'), we want to

determine conditions on T and T1 under which

Px 3 τPγ implies Ph{x) < τ'Ph(γy (5.1)

First assume that Ω is partially ordered, Ω; = 1R, h : Ω —• R is increasing

and T1 = ^ ( I R ) . If T = T\, then the implication is well known. In the case
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), Marshall (1991) gave necessary and sufficient conditions on T

for the validity of (5.1). For general Ω', Λ, .T7, .F' we have the following result.

THEOREM 5.1. Let φ o h G T, whenever φ G T1. Then (5.1) holds.

The proof is obvious. We list several examples in which the condition

of Theorem 5.1 is met (see also Mosler (1982, pp. 78 ff.)). Ω and Ω' will be

endowed with a partial ordering and/or a linear structure as necessary.

EXAMPLE 5.1. Consider an increasing transformation h : (Ω, <) -*

EXAMPLE 5.2. Let Ω' = ΈLd with the usual ordering, let febea convex

transformation Ω —»1R and let T = T\§, T1 = T\\.

EXAMPLE 5.3. Let Ω = R/*, Ω' = R,

•̂ 13 = {Φ € C*(R ) : dφ/dxj is nonnegative, decreasing and convex for all j}.

A differentiate function is in T\z if and only if it is in ί?3~(R) with respect to

each argument Xj. T\$ includes the utility functions which are risk averse in

every attribute with increasing second derivative (cf. univariate third degree

stochastic dominance, Whitmore (1970)). If T = T\z, T1 = ^13, and h G ^13,

then the conditions of Theorem 5.1 are satisfied.

EXAMPLE 5.4. Again, let Ω = ΊR,d and Ω' = R. A univariate utility func-

tion φ G C2(ΈLd) has decreasing absolute risk aversion (DARA) with respect

to Xj if and only if —d/dxjlog(dφ(x)/dxj) is decreasing in Xj. Let T\± de-

note the set of those functions which have DARA in every argument Xj. With

T = ^14, h G T\4 and T1 the set of univariate DARA utility functions, (5.1)

holds. For d = 1, see Vickson (1977).

Let Ω be a linear space, T a set of functions Ω -» 1R. T is called scale

invariant if Mφ G J7, Vα > 0, φa G T, where φa(x) = φ(ax). T is trans-

lation invariant if V<£ G T, Vy G Ω, φy G T, where φy{x) = φ(x + y). For

instance, it is easy to see that Tj is translation and scale invariant when

j G {1,2,3,4,5,10,11,13,14}, it is scale but not translation invariant when

j G {6,7,12} and is neither translation nor scale invariant when j G {8,9}.

THEOREM 5.2. Assume that T is scale invariant and α > 0. Then

Px^Py implies ^

PROOF. The result follows from Theorem 5.1.
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THEOREM 5.3. Assume that T is translation invariant, that X and Z are
independent and that Y and V are independent. Then

Pχ^PYj Pz<TPv implies Pχ+Z ^

PROOF. Let φ € T. For every JZ,X, we have φz,φx G T. Hence, by

Pχ<τPγ,

jφz{x) dPχ(x) < Jφz(x) dPy(x) = jφx{z) dPγ(x),

J φ dPx+z = j j Φz(x) dPχ(x) dPz(z)

< j j Φx(z) dPγ{x) dPz(z)

= J Jφx(z)dPz(z)dPy(x)

< J Jφx(z)dPv(z)dPγ(x)

= /φdPγ+y,

where the last inequality stems from Pz < * Pv* I

COROLLARY 5.1. Assume that T is scale and translation invariant, X^...,
Xd are independent random variables and Yi,..., Yd are independent, too. Let

αu..., αd > 0, β e l . Tien

Pxi^PYi i = l , . . . , ί implies ^

The proof of Corollary 5.1 is obvious. Analogous results may be obtained
for dependent random variables when orderings of conditional distributions
are employed.

THEOREM 5.4. Assume that T is translation invariant. Let Pχ\z and

Pγ\z denote proper versions of the conditional distributions ofX and Y given

Z = z; then
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PROOF. For all φ € T,

J φ dPx+z = j J Φz(x) dPxlz dPz(z)

Pγ[z dPz(z)

φ dPy+z-•I'
Similarly, Theorem 5.4 extends to the dependent case: If Pχ\z=z ^ * Pγ\z=z

\fz and Pz\Yτ=y < ̂ PviY^y Vy, then Pχ+z < ̂ Py+v More preservation results

are given in the papers by Arnold (1991), Eaton and Perlman (1991) and Mar-

shall (1991).

6. Joint and Marginal Dominance. For i = 1,.. . ,d, let (Ωt ,<S;) be
a measurable space, endowed with some additional structure (see the above
examples), and let (Ω,S) = (x?=iΩt ,®? = 1 S t ). If P € P(Ω,«S) has marginals
P 1 , . . . ,P d ,wewri tePGΓ(P 1 , . . . ,P d ) . LetP,Q
Q € Γ(Qi,..., Qd)- For some T consider

(6.1)

and

Pi<nUi)Qi, i = l , . . . , < * . (6.2)

THEOREM 6.1. Forφ G ̂ ( Ω , ) defineφ{x\^.. .,a?f> >z<0 = Φ{χ%), (^i> v

Xi, . . . , Xd) € Ω. Assume t h a t φ G ^ ( Ω ) , whenever φ G ^(^i), i = 1 , . . . , <ί.

Then (6.1) implies (6.2).

THEOREM 6.2. Assume tha t -< τ is a set dominance ordering, -< ̂  = -< ,

and that pro~ x (i4) G ^4(Ω) whenever A G ^ ( Ω ^ ) , i = l , . . . , d (where pro t

denotes the i-th projection). Then (6.1) implies (6.2).

The proofs are obvious. It may be easily checked that Λj meets the
assumptions of Theorem 6.2 when j G {1,2,3,4,6} and that the hypotheses
of Theorem 6.1 are satisfied when j G {10,11,13,14}. Hence these orderings
are preserved under marginaJization.

When a suitable regularity condition is assumed, n-th degree stochastic
dominance is preserved under marginalization, too. The condition that insures
the preservation is called "margin-regularity". For details we refer to O'Brien
and Scarsini (1991).
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The reverse implication ((6.2) = ^ (6.1)) is in general not true. However,

there exist some results if P and Q are both product measures and some

weaker results when P and Q have the same dependence structure. The latter

case will be presented in detail.

THEOREM 6.3. Let P = Pλ ® . . . <g> Pd, Q = Q\ ® . . . ® Qd- Then (6.2)

implies (6.1), when T = Tj,j G {1,2,3,4,10,11,13,14}.

PROOF. Proofs for all j can be found in Mosler (1982). If j € {1,2,3,4}

and Pi(Bi) = Qi(Bi) for all i, the theorem follows from Theorem 6.4 below. |

A function C : [0, l]d -* [0,1] is called a copula if it satisfies the following

properties

(i) C ( # i , . . . , Xd) = 0, if at least one X{ = 0,

(ii) C ( l , . . . , l , a ? ib , l . . . , l ) = a?jb,

(iii) Δ ^ = ί C l . . . Δ ^ d C ( 5 l , . . . , 5 d ) > 0 V* t <yf- i = l , . . . , < * .

(see Sklar (1959), Schweizer and Sklar (1983)).

A relation on a space Ω is called a (strict) weak order if it is negatively

transitive and asymmetric. Let -< be a strict weak order. Let b ~ a if -ι(α -< b)

and ->(δ -< a). Then ~ is an equivalence relation. Let a ^ b if a -< b or a ~ b.

Let (Ω,Bor(Ω),-<() be a weakly ordered Polish space (WOPS), endowed with

the Borel σ-field. For x G Ω, define Ax = {y : x ^ y} and let B = {A^ : a: € Ω}.

Then β is an increasing class of measurable subsets of Ω, i. e., for x,y € Ω,

either Ax C Ayy if y X x, or Ax D Ay, if x ^ y.

For i = 1,.. .,d, let (Ωt ,Bor(Ωt ), -<t ) be a WOPS, and let B{ be the in-

creasing class of subsets induced by -<t . Since every weak order -<,• on a space

Ωt induces an increasing class B% and vice versa, we can indicate a WOPS also

by (Ωt , Bor(Ω, ), Bi). Let B = (Bi, > ^d) Let P be a probability measure on

( x t t = i Ω ή Θ t l i B o Γ ( Ω ί ) ) ^ ^ € Γ ( P i , . . . , P d ) . Then there exists a copula C£

such that, for A{ € Bi {i = 1 , . . . , d),

P(Ax x . . . x Ad) = C£(P1(Aι),...,Pd(Ad)).

Define P t (β t ) the range o ί A π P;(A), A € β t . Then C% is unique on

xf=1Pi(Bi). Therefore C$ is unique on [0, l]d if P t ( β t ) = [0,1], for i = 1, . . . , d.

Given P i , . . . , P d , C$ uniquely determines P(J9) for every B € ®Uισ(βi)>

where σ(β t ) is the σ-field generated by Bi. Therefore, if σ(Bi) = Bor(Ω ),

i = 1,..., d, then P is uniquely determined by Cp, P i , . . . , P^. Details can be

found in Scarsini (1989).
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THEOREM 6.4. If xd

i=\pi(βi) = xf=1Qi(Bi), Cp* =• C%, and T = Tx (the
class of increasing functions), then (6.2) implies (6.1).

PROOF. Call U(ίl) the class of upper sets in Ω. We have to prove that

P(A) < Q(A) VA € W(x?=1Ω, ). We start considering the case of Pt (£, ) =

Qi(Bi) = [0,1], i = 1, , d. Define

and

G p (x) = (Gf (xi),.. ., Gp(xd)), Xi € Ω, , i = 1,..., d.

Gp: xf=1Ω, -+ [0, l]d. If we write GP(A) = {y : y = G p (x), x e A}, then

where /ip is the measure induced by Cf on ([0,l]<i,Bor([0,l]<i)). Since

is unique on (xf-ιPi(Bi)), then ^p is unique on <S>,=iσ(^»(i^>)) If A

U (xf= 1Ω<)» t h e n G P ( ^ ) € H([0, l]d). From (6.2) it follows that

Gf(x)>G?(χ) Vz<EΩ, i = l , . . . ,d (6.3)

and therefore

GP(A) C GQ(A).

Since /ip = /XQ, then

that is P(A) < Q(A).

When Pi(Bi) φ [0,1], even if A is upper, generally GP(A) is not. The

proof can be adjusted to encompass also this case. For A € ZY(xf=1(Ω, )), let

GP(A)=

and let

BnGp(A)=Q
d

If Pi(βi) = [0,1], * = 1,.. .,d, then G^(A) = GP(A).

Let i/ = P o (Gp)" 1 . If i> (^, ) φ [0,1], then 3s, ί € [0,1] such that
Cp is not unique on [0,1]'*"1 x (s,t) and v concentrates positive mass on
some subset of [0,1]4"1 x {*}• Consider the measure v on ([0, l]d,Bor([0, l]d))
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such that v = v on [0, l]^""1 x ([0,1] \ (s^t)) and the mass concentrated by
v on [0,1]**"1 x {t} is uniformly spread by v on the right over the interval

[(Ul^xCM).
Repeat the procedure for all the points t where the phenomenon appears

(the discontinuity points of Gf) and for all the coordinates 1,.. . ,d. Eventu-
ally, (in a countable number of steps) a measure ι/* with continuous marginals
on [0, l]d is obtained. The distribution function corresponding to i/* is a copula
of P with respect to B (see Schweizer and Sklar (1983), Scarsini (1989), for
this construction), and therefore

* (G£(A)) = v(Gp(A)) = P(A).

Since xf=ιPi(Bi) = xj=iQi(Bi), then the distribution function associated to
v* is also a copula of Q with respect to B. Therefore, if (6.2) holds, i.e. if
(6.3) holds, then G£(A),GJ}(A) € W([0, l]d) and

hence

i.e.,
P(A) < Q(A) VA € W( ί Ω<) •

The result was proved by Scarsini (1988b) for the case Ωi = H, with the
natural order.

Of course, since orderings -< , -< , -< are finer than <̂ on ΈLd,
' ° ~A2 ^Λz ~\ ~*! '

but they are equivalent on 1R, it is clear that, if Cp = CQ , then (for j = 2,3,4),
Pi < Qi V« = 1,..., d, implies (6.1).

~ Aj

7. Dominance for Stochastic Processes. Some dominance condi-
tions for stochastic processes can be embedded in the framework previously
described. We can consider a stochastic process as a random variable with val-
ues in a suitable functional space. If we endow it with a topological structure
that makes it Polish, then the above results for Polish spaces apply. In this sec-
tion we will be concerned with sufficient conditions for some of the orderings.
In particular we will try to express these conditions in a way that is natural for
stochastic processes, for instance through the marginal laws of finite dimen-
sional vectors drawn from the processes. For instance, let X = {Xn,n £ IN},
Y = {Yn,n € IN} be two discrete-time real valued random processes. Let
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Pi,P2 e ί>(κΛBor(]RN)), Px = £(X), P2 = C(Y). Consider the following

two conditions

(α) P1^P2

(b) P{<GdP\ VdGlN, VielN 4,

where i = {h,...,id} € Vd, and P{ = £(Xil9...,Xid), P\ = £ ( 1 ^ , . . . ,1^) .

For suitable choices of J7 and Gd, condition (b) implies (a). For instance,

when T and Gd a r e *^e classes of increasing functions, the implication has

been proved by Kamae, Krengel and O'Brien (1977), where the more general

case of processes with values in a POPS was studied.

For the case of real valued discrete time stochastic processes, we will give
a different proof of Kamae, Krengel and O'Brien's result. Our proof has the
advantage of working for other types of set dominance, and not only for the
usual stochastic ordering. Kamae, Krengel and O'Brien resort to Theorem
3.2. Such result does not hold for all set dominances, so, in order to achieve a
general result, we have to work directly on the classes Aj.

THEOREM 7.1. Let X, Y be discrete time real valued stochastic processes,

with £(X) = Pl9 £(Y) = P2, C(Xl9...,Xd) = Pf, £(y 1 ? . . . ,y d ) = P*. If, for

A = Λι, A2, A3, A4, Aβ,

then

A (8-2)

PROOF. Let A G ̂ (IR1*), let Ad be the projection of A on JRd and let Ad

be the cylinder generated by Ad (Ad = Ad x IR x 1R •). Then Ad G ̂ 4(RN).

By (8.1), Pι(Ad) < P2(Ad). We have Ad D A and IM \ IA. Therefore by

the Lebesgue monotone convergence theorem, Pχ(Ad) \ Pι(A) and P2{Ad) \

P2{A)^ therefore P\(A) < P2(A). Since this is true for any A £ A, we obtain

(8.2). I

Bassan and Scarsini (1991) proved the implication for the classes of con-

vex, concave, increasing convex and increasing concave functions, but for these

results an assumption of continuity of the functions in T must be added. Since

these orderings cannot be defined in terms of any set dominance, then a differ-

ent argument must be used to prove the result, namely the approximation has
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to be carried out on the functions of the classes T and Q&, rather that on the
probabilities of some sets. We refer to Bassan and Scarsini (1991) for details.

REFERENCES

ALFSEN, E.M. (1971). Compact convex sets and boundary integrals. Springer,
Berlin.

ANDERSON, T. W. (1955). The integral of a symmetric unimodal function over
a symmetric convex set and some probability inequalities. Proc. Amer.
Math. Soc. 6, 170-176.

ARNOLD, B.C. (1991) Preservation and attenuation of inequality as measured
by the Lorenz order. This volume.

BASSAN, B. and SCARSINI, M. (1991). Convex orderings for stochastic pro-
cesses, Comment. Math. Univ. Carolinae 32, 115-118.

BERGMANN, R. (1978). Some classes of semi-ordering relations for random
vectors and their use for comparing covariances, Math. Nachr. 82, 103-
114.

BERGMANN, R. (1991). Stochastic orders and their application to a unified
approach to various concepts of dependence and association. This volume.

BRUMELLE, S. L. and VICKSON, R. G. (1975). A unified approach to stochas-
tic dominance. In Ziemba, W. T. and Vickson, R. G. (eds.), Stochastic
Optimization Models in Finance, Academic Press, New York.

CAMBANIS, S., SIMONS, G. and STOUT, W. (1976). Inequalities for Sk(X,Y)
when the marginals are fixed. Z. Wahrsch. Verw. Gebiete 36, 285-294.

DHARMADHIKARI, S. and JOAG-DEV, K. (1988). Unimodality, Convexity, and
Applications. Academic Press, San Diego.

EATON, M. L. and PERLMAN, M. D. (1991). Multivariate probability inequal-
ities: Convolution theorems, composition theorems and concentration in-
equalities. This volume.

FISHBURN, P. C. (1976). Continua of stochastic dominance relations for bounded
probability distributions. J. Math. Econom. 3, 295-311.

FISHBURN, P. C. (1980a). Continua of stochastic dominance relations for un-
bounded probability distributions. J. Math. Econom. 7, 271-285.

FISHBURN, P. C. (1980b). Stochastic dominance and moments of distributions.
Math. Oper. Res. 5, 94-100.

FISHBURN, P. C. and VICKSON, R. G. (1978). Theoretical foundations of
stochastic dominance. In Whitmore, G. A. and Findlay, M. C. (eds.),



282 SOME THEORY OF STOCHASTIC DOMINANCE

Stochastic Dominance: An Approach to Decision Making Under Risk.
Health, Lexington, MA.

HARDY, G. H., LITTLEWOOD, J. E. and POLYA, G. (1967). Inequalities, 2nd
edition. Cambridge University Press, Cambridge.

KAMAE, T., KRENGEL, U. and O'BRIEN G. L. (1977). Stochastic inequalities
on partially ordered spaces. Ann. Probab. 5, 899-912.

KEMPERMAN, J. H. B. (1983). Moment problems for sampling without replace-
ment. Indag. Math. 35, 149-188.

KIHLSTROM, R. E. and MIRMAN, L. J. (1974). Risk aversion with many com-
modities. J. Econom. Theory 8, 361-388.

LEHMANN, E. (1955). Ordered families of distributions. Ann. Math. Statist.
26, 399-419.

LEVHARI, D., PAROUSH, J. and PELEG, B. (1975). Efficiency analysis for mul-
tivariate distributions. Rev. Econom. Stud. 42, 87-91.

LEVY, H. and LEVY, A. (1984). Multivariate decision making. J. Econom.
Theory 32, 36-51.

MARSHALL, A. W. (1991). Multivariate stochastic orderings and generating
cones of functions. This volume.

MARSHALL, A. W. and OLKIN, I. (1979). Inequalities: Theory of Majorization
and its Applications. Academic Press, New York.

MEYER, P. A. (1966). Probability and Potentials. Blaisdell, Boston, Mas-
sachusetts.

MOSLER, K. C. (1982). Entscheidungsregeln beiRisiko: Multivariate stochasti-
sche Dominanz. Springer, Berlin.

MOSLER, K. C. (1984). Stochastic dominance decision rules when the at-
tributes are utility independent. Management Sci. 30, 1311-1322.

MOSLER, K. C. (1987). Multiattribute risk posture and decomposition of util-
ities. Universitat der Bundeswehr Hamburg.

MULIERE, P. and SCARSINI, M. (1989). Multivariate decisions with unknown
price vector. Econom. Lett. 29, 13-19.

NEVIUS, S. E., PROSCHAN, F. and SETHURAMAN, J. (1977). Schur functions in
statistics II: Stochastic majorization. Ann. Statist. 5, 263-273.

O'BRIEN, G. L. (1984). Stochastic dominance and moment inequalities. Math.
Oper. Res. 9, 475-477.

O'BRIEN, G. L. and SCARSINI, M. (1991). Multivariate stochastic dominance
and moments. Math. Oper. Res. 16, 382-389.



K. MOSLER and M. SCARSINI 283

PRATT, J. M. (1964). Risk aversion in the small and in the large. Econometrics,

32, 122-136.

RICHARD, S. F. (1975). Multivariate risk aversion, utility independence and
separable utility functions. Management Sci. 22, 12-21.

ROLSKI, T. (1976). Order relations in the set of probability distribution func-
tions and their applications in queueing theory. Dissertationes Math. 132.
Warszawa.

ROLSKI, T. and STOYAN, D. (1974). Two classes of semi-orderings and their
application in the queueing theory. Z. Angew. Math. Mech. 54, 127-128.

RϋscHENDORF, L. (1980). Inequalities for the expectation of Δ-monotone
functions. Z. Wahrsch. Verw. Gebiete 54, 341-349.

RϋscHENDORF, L. (1981). Ordering of distributions and rearrangement of func-
tions. Ann. Probab. 9, 276-283.

SCARSINI, M. (1985). Stochastic dominance with pair-wise risk aversion. J.
Math. Econom. 14, 187-201.

SCARSINI, M. (1986). Comparison of random cash flows. IMA J. Math. Man-
agement 1, 25-32.

SCARSINI, M. (1988a). Dominance conditions for multivariate utility functions.
Management Sci. 34, 454-460.

SCARSINI, M. (1988b). Multivariate stochastic dominance with fixed depen-
dence structure. Oper. Res. Lett. 7, 237-240.

SCARSINI, M. (1989). Copulae of probability measures on product spaces. J.
Multivariate Anal. 31, 201-219.

SCHWEIZER, B. and SKLAR, A. (1983). Probabilistic Metric Spaces. Elsevier,
New York.

SHARED, M. (1980). On mixtures from exponential families. J. Roy. Statist.
Soc, Ser. B 42, 192-198.

SHERMAN, S. (1955). A theorem on convex sets with applications. Ann. Math.
Statist. 26, 763-766.

SKLAR, A. (1959). Fonctions de repartition a n dimensions et leurs marges.
Publ. Inst. Statist. Univ. Paris 8, 229-231.

STOYAN, D. (1977). Qualitative Eigenschaften und Abschatzungen stochasti-
scher Modelle. R. Oldenbourg, Munchen.

STOYAN, D. (1983). Comparison Methods for Queues and Other Stochastic
Models. Wiley, Chichester.

STRASSEN, V. (1965). The existence of probability measures with given margin-
als. Ann. Math. Stat. 36, 423-439.



284 SOME THEORY OF STOCHASTIC DOMINANCE

TCHEN, A. H. (1980). Inequalities for distributions with given marginals. Ann.
Probab. 8, 814-827.

VICKSON, R. G. (1977). Stochastic dominance tests for decreasing absolute
risk-aversion II: General random variables. Management Sci. 23, 478-489.

WHITMORE, G. A. (1970). Third degree stochastic dominance. Amer. Econom.
Rev. 60, 457-459.

FACHBEREICH WIRTSCHAFTS- UND

ORGANISATIONSWISSENSCHAFTEN

UNIVERSITAT DER BUNDESWEHR HAMBURG

POSTFACH 70 08 22

D-2000 HAMBURG 70, GERMANY

DlPARTIMENTO DI METODI QUANTITATIVI

UNIVERSITA DΆNNUNZIO

VlALE PlNDARO 42

1-65127 PESCARA, ITALY




