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WITH APPLICATIONS TO QUEUEING NETWORKS
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The state spaces for queueing networks are intrinsically multidimensional.
As a result, a theory of stochastic ordering for Markov processes on partially
ordered spaces is a natural setting for the formulation of comparison theorems
of queueing networks. The partially ordered structure of the state space gives
rise to a variety of stochastic orders, that are distinct only when the space is
not totally ordered. In particular, we can define stochastic orderings that are
not equivalent to sample path comparisons. For all these orderings, we give a
unified theory that allows us to compare Markov processes on such spaces, given
their initial distributions and infinitesimal generators. Examples will be given to
show how these results apply to queueing networks. In addition, we will give a
simplified proof for a special case of Strassen’s theorem as it applies to a sample
path comparison of random variables.

0. Introduction. Queueing network theory has applications to such
diverse areas as data communications, manufacturing, highway traffic, and
population biology. Abstractly, we can view a queueing network as a collec-
tion of sites and particles. Sites can be thought of as nodes in a network, and
particles as customers for the system. Each object has its own set of instruc-
tions as to how to move from one site to another, and how long to stay at
any given site. The theory that develops is the method by which we analyze
the flows between sites. In particular, we may have interest in how long any
given object may take to traverse these sites, which is better known as the
sojourn time. We may also want to know how many particles may accumulate
at various sites, which we call the queue length vector process. It is the latter
on which we will focus our attention.

Since we never have precise information on the arrival, service, or transfer
patterns for particles in these networks, we are naturally led to the use of
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stochastic processes to model these systems. Due to the complexity of queueing
networks, the theory of continuous time Markov processes plays a larger role
in their analysis than they do for single node systems. We start by modeling
a network in terms of its initial configuration or distribution. How the system
evolves in time is governed by a differential equation that is uniquely specified
by an infinitesimal generator. Such a generator is characterized by the arrival,
service, and transfer rates of the network as well as the routing and service
disciplines. The basic paradigm for Markovian queueing network theory is
to analyze the time evolution of the queue length process, given its initial
distribution and infinitesimal generator. In terms of closed form solutions, a
time dependent or transient analysis for even these Markovian systems can
be difficult. Most results deal with the relatively easier task of finding the
equilibrium distribution for the system. Prominent examples are the work of
Jackson [5] and Kelly [9]. However, even an equilibrium analysis of networks

becomes difficult when we want to treat networks with priority classes of finite
buffers.

Formally, a stochastic ordering is a partial ordering for probability mea-
sures on the same state space. It provides a tool for doing a transient and
equilibrium analysis of these networks, through the derivation of bounds and
limit theorems. In our Markovian content, useful results would be ones where
a stochastic comparison can be established purely in terms of initial distribu-
tions and generators. Results of this nature were first developed by Kalmykov
[6] for one-dimensional Markov processes. Daley [3] identified the critical role
that monotone Markov processes play in such theorems. He also gave nec-
essary and sufficient conditions for monotonicity in terms of the transition
functions on totally ordered spaces. Keilson and Kester [10] and Kester [11]
gave many examples of monotone Markov processes, for the one-dimensional
case, and derived other properties for them such as whether a given process
is stochastically increasing in time. This approach is summarized in Chapter
4 of Stoyan [27]. For queueing networks however, our state space is multidi-
mensional. Such spaces have, at best, a natural partial ordering relation. The
fundamental result in stochastic sample path comparisons of random variables
on partially ordered spaces, follows from a special case of Strassen’s theorem
[28]. These results were generalized by Kamae, Krengel, and O’Brien [8] for
comparing stochastic processes on partially ordered Polish spaces.

The purpose of this paper is first to show that out of the partially ordered
structure of the state space, a wider variety of stochastic orderings can be
defined here than for totally ordered spaces. The appropriate analogy here is
that of topological spaces. A topology can be defined by collection of open
sets, and a weaker topology is obtained by restricting the type of open sets
used. In this same manner, we can construct different stochastic orderings.
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The strongest of these orderings corresponds to a sample path comparison of
the processes. Moreover, the various orderings presented here differ only for
partially ordered spaces that are not totally ordered. Thus these orderings are
useful precisely for the case of queueing networks with multidimensional state
spaces. For all these orderings, we develop a unified comparison theory for
Markov processes on countable, partially ordered spaces. Such a theory makes
it possible to establish a stochastic ordering between two Markov processes
where no sample path comparison exists. This is indeed the case as we will
show in the later examples.

The paper will summarize the results of [21]. In Section 1, we define a
stochastic order and identify three natural candidates for orderings, the strong,
weak, and weak*. Section 2 introduces the notion of a monotone Markov
process, the main comparison theorems, and methods for constructing these
monotone processes. We also generalize these results to time-inhomogeneous
Markov processes. In Section 3 we show what additional results can be devel-
oped for the strong and weak orderings. In Sections 4 and 5 we give examples
of how stochastic orderings can be applied to Jackson networks as well as
birth-death-migration processes. Section 6 serves as an appendix for a proof
of Strassen’s theorem. The proof in Strassen [28] is far more general than is
needed for the case of stochastic ordering, so we give a simplified argument
for our special case of interest.

Finally, we want to emphasize that the work summarized here is only one
part of a larger body of work on stochastic ordering for queueing networks. The
papers of Baccelli, Shanthikumar, Whitt, and Yao explore different aspects of
these issues.

1. Stochastic Orderings. Given a countably infinite, partially ordered
set E,let I(E) be a family of subsets of E that includes F itself and the empty
set. We can then induce a transitive relation for probability measures of F. If
P and @ are two such measures, we say that P <; Q) whenever

P(T) < Q(T) for all T in I(E). (1)

For all z and y in E, let §, be the point mass measure on E at z and
similarly define §,. We will say that < is a stochastic ordering on E if

1. z < y if and only if 6; <1 dy,
2. the relation <y is a partial order on the space of probability measures.

If X and Y are two E-valued random variables, we will say that X <; Y
whenever their induced measures can be so ordered by <;.



W. A. MASSEY 251

For any subset A of E, we borrow the following notation from Kamae
and Krengel [7].

Al ={y|y >z for some z in A} (2)

Al = {y |y < z for some z in A}. (3)

We will define a subset A of E to be an increasing set if A = A'. A family
of increasing sets is said to be strongly separating if for all ¢ £ y, the family
contains a set I' such that z € T and y ¢ I'. Adapting the notion of determining
class used in O’Brien [22] to a family of sets by using their indicator functions,
we can show that I(E) induces a stochastic order, if and only if I(E) is a
strongly separating family of increasing sets that form a determining class.
Note that we are emphasizing only the partially ordered structure of the state
space. In this framework we will not be discussing stochastic orderings such
as convex orderings (see Baccelli, Massey and Towsley [1] and Kirstein [12] for
examples).

While many stochastic orderings can be formulated, there are three nat-
ural ones that can be formed. Let I;(E), I k(E), and I,,x+(E) denote respec-
tively the strong, weak, and weak* orderings where

I(E) = {all increasing sets in E} (4)
Lx(E) = {{z} | 2 € EYU{E,0} (5)
L+ (E) = {{z}*)° | = € E}U{E, 0}. (6)

The strong ordering is the one that is equivalent to a sample path ordering
of the random variables (see Strassen [28]. Weak orderings are equivalent
to comparing tail distribution functions, and weak* orderings serve the same
role for distribution functions. Examples of their usefulness can be found in
Tong [29] and Stoyan [27]. The similarity of the nomenclature above to the
various types of convergence on linear topological spaces is intentional. Just
as weaker topologies are defined by restricting the family of open sets used, we
can define stochastic orderings weaker than the strong one by restricting the
family of increasing sets used. Continuing the analogy, recall that for finite
dimensional spaces, all topologies are equivalent. Totally ordered spaces fill
the corresponding role for stochastic orderings. It can be shown [17] that if E
is a totally ordered space, then all of its stochastic orderings are equivalent.

Now let E and F be two partially ordered spaces, with I(E) and J(F)
defining their respective stochastic orderings. We say that a function f from
E to F is an isotone mapping from I(E) to J(F) if f~Y(J(F)) c I(E). If
E = F and f~Y(I(E)) C I(E), we say that f is I(E)-isotone.
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ProposITION 1.1. If f is an isotone mapping from I(E) to J(F), then for
any two E-valued random variables X and Y we have

X <1Y = f(X) <y f(Y). (7
Any isotone mapping is then an increasing function.

2. Monotone Markov Processes. Let X(t) be a time-homogeneous
Markov process with state space E. Its infinitesimal generator A acts as a
linear operator on the space of bounded, real-valued functions on E. Given
such a function f, the resulting new function will be denoted Af. We will say
that A is the generator of an I( E)-monotone Markov process if X (t) and Y (t)
both have A as their generator, but

X(0) <y Y(0) implies that X(t) <; Y (?). (8)

In Shanthikumar and Yao [26], monotonicity is the key result necessary to
derive their stochastic bounds for closed queueing networks. Now we show
how monotone Markov processes can be used in general to determine stochastic
bounds.

THEOREM 2.1. Let X(t) and Y (t) both be Markov processes having E as
their state space. If A and B are their respective generators, A <1 B, and
either X (t) or Y(t) is I( E)-monotone, then

X(0) <1 Y(0) implies that X (t) <1 Y(¢) 9)

where A <1 B stands for the relation Alp(z) < Blp(z) for all z in E, and 1r
is the indicator function of T.

Suppose that X (¢) and Y(t) are two Markov processes having E and F,
two different posets, as their respective state spaces. Moreover, let f be a
mapping from E to F. Using the operator formalism [21], we can establish a
similar criterion for comparison between f(X(t)) and Y (¢). This is a way of
extending these results to get stochastic bounds for non-Markovian processes.
This topic is pursued in more detail in Whitt [30]. Theorems can also be
developed to establish the notion of being I( E)-time increasing (decreasing).
This is proving that Pr{X(¢) € T} is an increasing (decreasing) function of
time for all I' in I(E). To construct I(E)-monotone generators, we appeal to
the theorem below:

THEOREM 2.2. The class of I( E)-monotone infinitesimal generators form
a cone that is closed under the strong operator topology.
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We conclude this section by generalizing these results for the time-inhomo-
geneous Markov processes. The author [18] used these results for an asymp-
totic analysis of the time-inhomogeneous M/M/1 queue. Let X(to,t) denote
a time-inhomogeneous Markov process with state space E, and let {A(s) |
to < s < t} be its family of infinitesimal generators from time to to time t¢.
For simplicity, we let X (to) = X (to,t0). We define {A(s) | to < s < t} to be
the family of infinitesimal generators for an I( E)-monotone Markov process
on the time interval [to, t] if X (to,t) and Y (%o,t) both have the same family of
generators, and

X(8) <1 Y(s) implies that X(s,t) <1 Y(s,?) (10)
for almost all s in [to, t].

THEOREM 2.3. Let X (to,t) and Y (to,t) both be time-homogeneous Markov
processe having E as their state space. If {A(s) | to < s <t} and {B(s) | to <
8 < t} are their respective family of generators, A(s) < B(s) for almost all s
in [to,t], and either X (to,t) or Y (to,t) is I( £)-monotone on [to,t], then

X(to) SI Y(to) imph’es that X(to,t) S] Y(to,t). (11)

The following theorem gives us a way to construct a monotone family of
generators.

THEOREM 2.4. The family of infinitesimal generators {A(s) | to < s < t}
is I(E)-monotone on [to,t] if A(s) is I(E)-monotone for almost every s in
[to, t].

3. Strong and Weak Orderings. We state here a special case of
Strassen’s theorem as it applies to sample path comparisons of random vari-
ables. This theorem is so fundamental as to sample path stochastic ordering,
that it is overlooked that the results apply to any binary, closed operation. In
the appendix, we will state and prove this more general, but still special case
of Strassen’s theorem.

THEOREM 3.1 (Strassen) Let P and Q be two probability measures on E.
We have P <, @ if and only if there exists a bivariate distribution R on E x E
such that R(z,y) =0ifz £ y, and

P(e) = ¥ R(z,y) (12)

Y2z

Q(z) =) _ R(y, ). (13)

y<z



254 STOCHASTIC ORDERING FOR MARKOV PROCESSES

Assuming that the generator for the Markov process is a bounded oper-
ator is equivalent to saying probabilistically that the process is uniformizable.
This means that we can synchronize the sample path behavior of the pro-
cess to the jumps of a Poisson process. If we let A be sufficiently large then

1 _— .
P(A) =TI+ —)‘-A, is a stochastic matrix. The probabilistic and the analytic
stories merge together in the following formula:

O =)t n
exp(tA) = Z e__('/_\Q_

n=0

Py(A)". (14)

THEOREM 3.2. Let X (t) and Y(t) both be Markov processes having E as
their state space. If A and B are their respective generators, then X (t) <,
Y (t) if and only if X(0) <4 Y(0), and for all z < y in E and sufficiently large
A, we have

P\(4)1r(2) < PA(B)1r(y), (15)

for all T in I(E), where Py(4)1p(z) = 1r(z) + -}{Alp(z).

If we let A = B, then we have the necessary and sufficient conditions for
A to be strongly monotone.

For weak orderings, there is a special class of weakly monotone Markov
processes. They were identified by Kester [11] as M6bius monotone Markov
processes. Letting 1(,) be the indicator function of the singleton set z, we
define an operator Z(FE) as

Z(E)l{m} = 1{,;}1- (16)

In combinatorial theory (see Rota [25]), this corresponds to the Zeta function,
and its inverse, when it exists, is called the M6bius function. A generator A is
said to be M6bius monotone if for some A > 0, there exists a positive operator
M such that

P\(A)-Z(E)=Z(E)- M. 17
Thus using operator techniques, we have a sufficient (but not necessary [21])
condition for weak monotonicity.

4. The Jackson Network. The prototypical example of queueing
network is the Jackson network [5]. This is initially an N node collection
of M/M/1 queues. The ith queue, Q;(t), has a Poisson input at rate J;,
and exponential service at rate p;. The output from a given node ¢ is then
routed either to some node j with probability p;;, or routed away from the
system with probability ¢;. Let Q(t) = (Qi(t),---,@n(t)) equal the joint
queue length process, with ZI_,Y the set of nonnegative integer N-tuples equaling
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its state space. Jackson’s theorem states that if we have equilibrium, then for
all m € ZY we have

N
lim Pr{Qi(t) = ny, -+, Qn(t) = nn} = H(l - pi)p* (18)

i=1
where p; = 6;/u; and 8 = (64, - -,0n) solves the matrix equation
6=0P+ )\ (19)

where P = {p;; | 1 < i, < N} and A = (A, -, An), with the constraint that
0; < Mi.

Suppose we want to know what happens when the total system does
not attain steady state. Some nodes may become unstable, but there may
still be a maximal subnetwork of stable nodes. We can formulate a solution
heuristically. Let # now be the solution of

0= (0ApP+) (20)

where OAp is the componentwise minimum of the vectors # and p = (p1,- -+, un)-
It can be shown [14], that (20) has a unique solution. Moreover, I = {i | 8; <
i} is a good candidate for the maximal stable subnetwork. We should have
for all n in Z¥

i F(n){Q) = i i€ 1) = TT(L - (21)

where p; = 6;/u;, and for all j ¢ I
Jim Pr(Q(t) = n;} = 0. (22)

The problem that arises is that {Q;(t) | ¢ € I}, the subnetwork, is not in
general a Markov process. As such, there is no immediate ergodic theorem to
quote that says that (21) is the limiting distribution. In Goodman and Massey
[4], we instead proved (21) and (22) by stochastic ordering. This allowed us
to bound the non-Markovian system above and below by Markovian processes
whose limiting distributions were known.

Another natural question for Jackson networks concerns their transient
behavior. No general solution is known for these models. Using stochastic
ordering [15], we are able to establish the following bound

N
Pr(Q1(t) 2 na,--+, Qn(t) 2 nwv) < [ Pri(Xil?) 2 mi) (23)

i=1
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where X;(t) is an M/M/1 queue with arrival rate A; + 2?:1 W;pji, and expo-
nential service rate y;.

At first glance, the result is not surprising. However, we can prove that
this inequality is not intuitive! We can show [15] that if X(t) = (X1(2),- -+,
Xn(t)), where the X;(t)’s are independent, then it is never the case that
Q(t) < X(t) (using componentwise ordering) on all sample paths, unless the
two processes are identical. This result can be generalized [19] to bound the
Jackson network by independent, smaller Jackson networks. The resulting
stochastic ordering is one that is not equivalent to either the strong, weak, or
weak* orderings.

Since a stochastic ordering is involved here that is not equivalent to sam-
ple path comparisons, we must resort to methods that are more analytic than
probabilistic. Bounds of the type were derived for the Jackson network, see [15]
and [19], and the Kelly network [16] by creating an operator calculus. Primi-
tive operators are defined that correspond to arrivals, departures, or transfers
from a network. The infinitesimal generator for the network is then defined
by decomposing it into an algebraic function of these primitive operators.

5. Birth-Death-Migration Processes. Here we illustrate how multi-
dimensional processes can be more complex than their one-dimensional coun-
terparts. A birth-death-migration process can be viewed as a multidimen-
sional birth-death process, or a Jackson network where arrivals, departures,
and transfer rates for the system are all functions of the total state of the
system. For some state m € ZI_,Y , we define the infinitesimal rates as follows:

e The birth rate for the ith colony is a;(m).
o The death rate for the ith colony is 3;(m).
o The migration rate from the ith colony to the jth colony is v;;(m).

Recall that one dimensional birth-death processes are always monotone with
respect to the strong, or sample path ordering (see Proposition 4.2.10 of Stoyan
[27]). Below, we show that the general case is much different.

THEOREM 5.1. A B-D-M process Q(t) is strongly monotone if and only if
for all m,n € Zf with m < n, we have

ai(m)+ Y yii(m) < ai(n) + D 7ji(n) (24)
i€k i€k

and

Bi(m) + Y 7ij(m) > Bi(n) + Y %i(n), (25)

JEK JEK
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where {1,2,---, N} is partitioned into sets I and J, such that m; = ny and
my < ny, withi € I and K is any superset of J.

The proof (see [20]) follows from using Theorem 3.2. There, similar
stochastic bounds as for the Jackson network can be proved using both the
weak and weak* orderings.

6. Appendix (Proof of Strassen’s Theorem). In this section, we
will assume that E is a Polish space, and it has a relation ~, that is closed
with respect to the metric topology. For alternate proofs in the case of partial
orderings, see Liggett [13] as well as Preston [23] for the special case where E
is a finite set. Let R be a bivariate probability measure on the space E x E.
We will consider only closed relations. What we mean is that the relation
~ defines a set E(~) = {(z,y) | = ~ y} which is a closed subset of E x E,
with respect to the product topology. The set supp(R) is also defined to be a
closed subset of E x E, where any open set disjoint with it, is a set of measure
zero with respect to the probability measure R. Denoting its first and second
marginals by R®M and R®, respectively, let A equal the following set:

A={(P,Q)|RY =P, RD = Q, R € M(E x E), and supp(R) C E(~)}.
(26)
Our goal is to show that (P,@) € A can be shown simply by using inequali-
ties between P and (). For the theorem below, we will use IE to denote the
expectation of a random variable.

THEOREM 6.1 (Strassen). If X and Y are E-valued random variables, and
~ is a closed relation on E, then we have that X is equivalent in distribution
to some X and similarly Y to Y with X ~ Y if and only if for all bounded,
real valued, continuous functions f on E, we have

E(f(X)) < E(sup f(<))- (27)

PRrooOF. Observe that A, viewed as a subset of M(E) @& M(FE), the direct
sum of the space of countably additive signed measures with itself, is a closed,
convex set. The convexity is clear. The closure, with respect to the vague
topology, follows from observing that if K; and K, are two compact subsets
of E,then

R((K1 x K5)°) < RO(KS) + RO(K3). (28)

So if (P,, Q) is a sequence in A that forms a tight family (see Billingsley [2]),
then the corresponding family of R, forms a tight family as well, which makes
A a closed set under the vague topology.
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A continuous, linear functional on M(E)@® M(E) is represented by (f, g)
where f and g are bounded, continuous, real valued functions on E. Its action
on (P,Q) is defined to be (f,g) - (P,Q) = [ f dP + ng dQ. f X and Y
are F-valued random variables with distributions P and @), respectively, we
will express [ f dP as the expectation of f(X), or E(f(X)), and similarly
set [ 9dQ = E(g(Y)). Now if (X,Y) does not belong to the convex set A,
then by the Hahn-Banach theorem (see Reed and Simon [24]), we can find a
hyperplane (continuous, linear functional), defined by f and g that separates
the point from the convex set such that

E(f(X)+g(Y))> sup E(f(X')+g(Y")). (29)
(X', Y")eA

On the contrary, we have for all f and g,
E(f(X)+9(Y)) < E(Sug f(=) +4(Y))

< sup(sup f(z) + g(y))
yeEE

vy

< sup  E(f(X')+G(Y)),
(X",YeA

hence (X,Y) € A, and this completes the proof. 1
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