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ORDERINGS OF RISKS
AND THEIR ACTUARIAL APPLICATIONS

BY WOLF-RUDIGER HEILMANN AND KLAUS J. SCHROTER

Uniυersitάt Karlsruhe

In actuarial theory a risk is a random variable describing a claim size
(a single claim size, or the total claim amount of one contract in one period,
or the aggregate claim of a portfolio of contracts in one period, e.g.). In the
present contribution a number of (well-known as well as new) orderings of random
variables are discussed. In particular, the relations between these orderings are
investigated, and interpretations in terms of actuarial applications are given.
Furthermore, the stability of the orderings with respect to convolutions and the
forming of random sums is examined. Finally, it is shown that this approach can
be used to generate formulas for risk premiums.

1. Introduction. The starting point of the present paper is given by the
following two questions which are closely associated. First, is there a specific
risk for which insurance companies are exposed to but for which companies
in other economic branches are not (a "technical" or "actuarial" risk)? And
if so, how can it be quantified? Second, how can the "dangerousness" of a
risk (i.e., a claim variable) be described in the models of risk theory? While
a treatment of the first problem involves economic aspects and goes beyond
the scope of the present paper, the second question leads to the introduction
of quantities and functions which induce order relations in the set of random
variables describing risks.

An appropriate framework for such a study is given by the probabilistic
models and methods of risk theory. Therefore, we start with a brief review of
the so-called collective theory of risks. Subsequently, (first order) stochastic
dominance and four order relations associated with stochastic dominance are
introduced. For each of these orderings, interpretations in terms of actuarial
applications are given. For specific distributions which are frequently applied
in actuarial mathematics, necessary and sufficient conditions for domination
in terms of the distribution parameters are derived.
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Furthermore, the relationships between the five order relations under con-

sideration are investigated as well as the question whether domination of one

distribution by another implies a corresponding domination of the moments

of two distributions. Finally, we consider the convolution of distributions and

the forming of random sums and examine the stability of the order relations

with respect to these operations which are essential in actuarial calculations.

In a short appendix we develop two inequalities for premium calculation.

These derivations can be used to give an answer to the above question

for appropriate measures of dangerousness of risks. A decisive answer to this

question cannot be given, however, since all order relations under considera-

tion turn out to have both merits and shortcomings with regard to actuarial

applications and interpretations.

A standard reference for orderings among risks is [2], Chapter 4. A fore-

runner of the present paper is [5].

2. The Collective Theory of Risks. In actuarial mathematics, in
particular in risk theory, a risk is a random variable on some probability space

(Ω, A, IP) describing a claim size (a single claim size, or the total claim amount

of one contract in one period, or the aggregate claim of a portfolio of contracts

in one period, e.g., sometimes a claim amount per event, etc.). To model this,

we consider an independent sequence JV, Yi,l2, of random variables such

that Yi, I2? ' * are identically distributed. Here,

N denotes the number of claims,

Yi denotes the size of the ith claim, i = 1,2, .

Then

X = Σi=i ^ describes the total/aggregate claim.

(For notation and terminology see [6], e.g.)

Usual distributional assumptions are
N ~ π(λ) (Poisson),

B(n,p) (Binomial),

NB(r,p) (Negative Binomial)

L(p) (Logarithmic),

Y ~ Exp(α) (Exponential),

Γ(α,6) (Gamma),

Par(α,6) (Pareto),

LN(μ, σ2) (Lognormal).

In the following we shall also consider
Y ~ (c) (one-point mass in c > 0),

Y ~ ( α , 6 ; p ) ( t w o - p o i n t m a s s i n a a n d b w h e r e 0 < α < 6 , 0 < p < l , a n d

P{Y = a) = 1 - P{Y = b) = p).
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Note that for a risk X the quantities EX, V(X) and ΛJV(X) can be inter-
preted as trivial scalar measures of dangerousness.

The coefficient of variation,

cv(x) = ^f,
is a familiar relative measure of variability, in particular in insurance eco-
nomics, cf. [9].

REMARK 1. The use of the coefficient of variation as a measure of dan-
gerousness of risks can be misleading. Consider the two random sums

with the above independence assumptions and

Ni~NB(lO,jΛ, Y~Exp(α), a > 0,

a' > 0.

Then

CV(Ni) = 1 <

CV(Y) = 1< 2 = CV(Z),

but

cv(xx) = y ϊ | > ̂  = cv(x2).
Hence the CV's of both the claim number and the claim amount distributon
of X\ are smaller than those of X2, but the aggregate claims variable X\ has
a bigger CV than X2.

REMARK 2. In [4] it is shown that there is a relationship between the
degree of "dangerousness" of a distribution and the behavior of its failure rate;
in short: distributions with decreasing failure rate (DFR) describe "dangerous"
risks. Such distributions include, e.g., the Gamma distribution Γ(α,6) and
the Weibull distribution W(a,b) with 6 < 1, respectively, and the Pareto
distribution Par(α,6).

In particular, DFR implies NWUE ("new worse than used in expecta-
tion"), and if X has the NWUE property it follows that CV(X)>1, cf. also
[10].
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REMARK 3. Risks can be transformed (and the degree of their dangerous-

ness can be changed) by providing for measures of risk sharing such as limits

of liability, retentions, and reinsurance. For example, if the insured (or the

first insurer) retains

X = min(X, α)

and the first insurer (or the reinsurer) takes

we talk of a pure or straight deductible in the direct business and of an excess

of loss reinsurance or stop loss reinsurance in the reinsurance business. For

example, this leads to

EX = ί(x - aγF{dx) = Γ°(l - F{x))dx

(where F is the distribution function of the nonnegative random variable X),

the so-called net stop-loss premium with priority α, an expression which will

reappear later.

REMARK 4. The main objective of risk theory is the study of the so-called

risk process (Rt,t > 0). Here we give a simple, but commonly used example.

We denote by

RQ the initial reserve,

Nt the number of claims in the time interval [0,ί].

We shall assume that (Ntjt > 0) is a Poisson process,

hence Nt ~ τr(λ/).

Xt = Σ £ i Yi t h e aggregate claims in [0, ί], hence Xt ~ CP{\t, G),

where CP stands for Compound Poisson, and G

denotes the distribution function of Y.

P = (1 + δ)XEY the premium rate per time unit (calculated according

to the expected value principle with relative loading

6>0).
Then the reserve at time t is given by

Now let T denote the time at which the reserve falls below the initial surplus

for the first time, i.e.

T = inf{* > 0 : Rt < Ro}.

Then for 0 < a < b

P(T < oo,α < Ro-Rτ < b) - {χ + ) ) E γ J (1-G(x))dx,
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cf. [1]. In particular, the amount Y by which the reserve falls below the initial
surplus, given that this occurs, has the density

(Note that g is also the forward recurrence time density of a stationary re-
newal process with lifetime distribution function G.) This function will also
be considered in the following. I

3. Different Orderings of Risks. In the following we shall introduce
five different orderings of risks, beginning with the well-known (first order)
stochastic dominance; the other four are based on and strongly associated with
the concept of stochastic dominance. Throughout we shall consider random
variables X, Y, with distribution functions f1, G, such that JP(X > 0) =
1, EX > 0.

3.1. First Order Stochastic Dominance. This well-known order relation
is defined by

X < Y :& 1 - F(x) < 1 - G(x) for all x > 0.

Actuarial interpretation. For any premium, retention limit, priority, x
the probability that the actual claim is above x is higher in case of Y than
in case of X.

Of course,

X -< Y =*> / (1 - F(t))dt < / (1 - G{t))dt for all x > 0.
Jx J x

Actuarial interpretation. For any priority x, the net stop loss premium
is greater for Y than for X.

In particular, we obtain the well-known implication

X <Y ^EX<EY.

Actuarial application. Generation of an implicit premium loading, e.g. in
life assurance: Instead of the original risk X, consider a risk Y such that
X -< y , and apply the net risk principle to Y.

relative loading

expected value principle applied to X
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This means, for instance, that the use of valuation tables in life assurance

is nothing else but the transition from the net premium principle to the

expected value principle.

3.2. Stop Loss Dominance. From the foregoing discussion we know that

for any risk X and for x > 0

ΛOO ΓOO

mχ(x) := m(x) := (1 - F(t))dt = (t - x)F(dt)
Jx Jx

is the net stop loss premium with priority x. Now we introduce

X <m Y :<& mχ(x) < mγ(x) for all x > 0.

(See the interpretation in the preceding paragraph.)

Of course,
X <m Y => EX < EY

and since

ΓOO ΓOO 1 ΛOO 1

/ m(t)dt = ί(l - F(t))dt = - / t2F(dt) = -EX2,
Jo Jo 2 Jo 2

it follows that

X <m Y =» EX2 < EY2,

X<mF, EX = EY=ϊV(X)<V(Y).

(These implications are well-known, cf. [7].)

Hence the order relation <m can be used to compare risks in terms of

their first two moments. In particular, if P(X) = EX + δV(X), 6 > 0, is the

variance principle of premium calculation, we obtain the implication

X< m y, EX = EY =» P(X) < P(Y).

Furthermore, the (μ, σ)-rule in decision theory is a necessary condition for < m .

3.3. In Remark 4 of Section 2 we considered the density function

Let X be a random variable having this density and let F be its corresponding

distribution function. Obviously,

iχ(x) := £(x) := 1 - F(x) = - L j H ( l - F(t))dt =
m(x)

EX '
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Now we introduce the order relation

X <i Y :& X •< Ϋ & lχ{x) < lγ{x) for all x > 0.

Since
roo

EX = iχ(t)dt =
Jo

EX2 V(X)+(EX)2

2EX 1EX

it follows that

X<eY, EX = EY=ϊEX2<EY2, V(X)<V(Y).

Actuarial application. Premium calculation.

The failure rate function of X is given by

J~ l-F(x)

EX ' EX J™(l-F(t))df

The expression obviously equals the reciprocal value of the (conditional)
mean residual life time function at x. Hence we have the implication

f decreasing Ί . , , , . , . ^ i Γ increasing Ί „ ,
X has < . > mean residual life =ϊ X has < _ > failure rate.

[ increasing J [ decreasing J

Now consider the premium calculation principle

In view of the above derivation, this premium principle can now be char-
acterized as follows. In order to calculate the premium for a risk X
which has increasing mean residual life, we transform X into a risk X
with decreasing failure rate (which is a cautious step), and then apply
the expected value principle with relative loading δ = 1 to X.

3.4. For a risk X let F* be the distribution function of X* := ̂ . Of
course, F*(x) = F(xEX) and

f:x-+(l-F*(z))li0§oo)(x)

is a density of some random variable X with distribution function F, say.
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Obviously,

kx(x) : = k(x) := 1 -F(x) = 1 - Γ ( l - F(tEX))dt
Jo

JxEX

Now we introduce the order relation

X <kY :&X <Ϋ & kχ(x) < kγ(x) for all x > 0.

Note that in general X φ (X) and that

P(X <x) = F(x) = 1 - /(*) = 1 - k

Hence the distributions of X and (EX)X are the same.

Furthermore

EX2

'' 2{EXf

~ 2 {EXf

hence

x <k Y =>
= EY =

REMARK 5. We do not know of any direct actuarial interpretation of the
order relation <&. By definition, <£ is related to •<. Moreover, it can easily
be shown that

X Y
X Y

cf. [5]. (See also the theorem in Section 4.)

Obviously, the order relation <^ is scale independent.

REMARK 6. Let X ~ Exp(α), Y ~ Par(α/,fe). Then it can be shown that

X <kY for all α,α '>0, b > 1.

Hence the order relation <& is in accordance with the opinion that Pareto or
exponential distributions can be used to describe more or less dangerous claim
size distributions, respectively. |
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3.5. Consider the function

(x): = r(x):=E[(X-x)+\X>x}

for x > 0 such that F(x) < 1,

rχ{x) : = r(x) := 0 in case F(x) = 1.

In the language of reliability theory, r is the (conditional) mean residual life-
time function; in terms of actuarial mathematics, it equals the conditional
expected claim above the retention limit (deductible, priority, •) x. A thor-
ough discussion of the function r and its properties is given in [3].

Now we consider the following order relation:

X <r Y : θ rχ(x) < rγ(x) for all x > 0.

REMARK 7. Clearly, the functions A;, / and m are nonincreasing. This is
not necessarily the case with r. For example, for X ~ Par(α, 6) with b > 1 we
obtain

CL + X

rχ(x) = -j—[> X>Q- •

3.6. Assume that the distributions of X and Y belong to the same class,
say exponential. Then it would be helpful to know that a dominance relation
between X and Y was reflected by a certain relation between the parameters
of the distributions of X and Y. In Table 1 we have compiled conditions on the
parameters of some classes of distributions that are necessary and sufficient for
dominance. Since the proofs are elementary (though involved in some cases)
we omit them.

4. Relationships Between the Orderings. For rating and comparing
the above 5 order relations it is of course important to know whether these
orderings imply one another. The relationships between the first four orderings
have already been studied in [5] except for the fact that there it was assumed
that the risks under consideration were strictly positive almost surely - an
assumption which in some cases is crucial.

The results - including counterexamples - are given in Table 2. Since the
proofs are straightforward or even trivial, they are omitted.

The following result which is a direct consequence of the above derivations
is not contained in Table 2.
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THEOREM. For nonnegative random variables X,Y with EX = EY > 0
tie following holds:

X <m Y & X <e Y & X <k Y. I

5. Moment Inequalities Implied by Dominance. The most impor-
tant characteristics of distributions are their moments. In particular, moments
(up to order three at most) are used for the purpose of setting rates in insur-
ance. Generally, in the actual practice of determining premiums, only the
expected value and the variance of the risk under consideration are required
(and available).

Compatibility of any order relation < in the set of risks, and a premium
calculation principle P would mean

X < Y & P(X) < P(Y).

If we only require the implication

X < Y =• P(X) < P(Y) (*)

we immediately obtain results such as the following.

For P(X) = (1 + δ)EX9 δ > 0, (*) is fulfilled for <G {x, < m } , and for
<G {<Q, < r } in case that Y is strictly positive a.s.

For P(X) = EX + δV{X) and for P(X) = EX + δyfV{X), δ > 0, (*)
is fulfilled for <G {^, <fc,«Q, <m> <r} under the additional assumption that
EX = EY.

For the exponential principle P(X) = \ In EeαX", α > 0, (*) is fulfilled
for <€ {^, < m } , and for <G {<Q, < r} in case that Y is strictly positive a.s.

Note that in case of the percentile principle

P€(X) = F-\l - c) = inf{* : F(x) > 1 - c}, ee [0,1),

the following characterization is valid:

X X Y & P€(X) < P€(Y) for all e e [0,1).

A weaker requirement would be that X < Y implies only the corresponding
relations between the moments of X and Y which are involved in the calcula-
tion of P. In Table 3 it is shown whether such implications are valid for the
orderings under consideration and certain types of moments. In the negative
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cases, counterexamples are given. Most of the affirmative statements can be
verified easily.

6. Stability of Orderings with Respect to Summation, In many
applications of probability theory, the formation of sums of random variables
is of utmost importance. In particular, in assurance risks are aggregated (and
their claims added) in order to accomplish the so-called balance (or stability)
by number. Of course, a suitable ordering of risks should be preserved under
summation of random variables (or convolution of distributions). Since in the
collective theory of risks random sums are particularly important, an ordering
of risks should also be stable with respect to the formation of random sums.

A number of results in this direction are compiled in Table 4 where TV, N'
and X, Xi, X2? * * > Y> Y\> ^2?#

 5 Z are random variables describing the num-
ber of claims and the (aggregate) claim sizes, respectively. All random vari-
ables are assumed to be stochastically independent except for X and Y, X\
and Yi, X2 and Y2, * * •> respectively. F and G denote the distribution functions
of X and Y, respectively.

The following relationships between the properties considered in Table 4
are valid.

(PI) =» (P2α) & (P26) =* (P3)

and

(P4) Λ (P5) <* (P6).

The proofs are straightforward though sometimes involved. To prove some of
the statements one can follow the lines of [2], or make use of the theory of
Tchebycheff systems (cf. [8], e.g.).

7. Appendix: Premium Calculation. In this final section we indicate
how some of the functions introduced above can be used to obtain lower bounds
for risk premiums. We employ the Compound Poisson model (cf. Remark 4
in Section 2) with premium rate P > EX\ = λ EY. We know that the
(unconditional) amount Y of the first surplus below the initial level is

λ EY
0 with probability 1 —,

in (α, b] C (0,00) with probability /

Consequently,
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and

,0 " P 2P

We now impose for some c > 0, 7 € (0,1), the condition that

P{Ϋ > c) < 7

which is equivalent to

\EY λ fc,-jJ\l-G{y))dy<Ί.P

Solving with respect to P, we obtain the condition

A f°° f°°
P > - / (1 - G(y))dy = (1 + δ)X / (1 -

1
/ with δ := - - 1.
c 7

Hence if Z\ <m Z2, the lower bound obtained in the preceding calculation is
lower for Z\ than for Z2 for all c > 0.

If instead we impose the condition EY < c for some c > 0, we obtain the
lower bound
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