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Summary

At the Sheffield meeting in honour of Joe Gani I presented the material of

Whittle (1990); this was essentially Theorem 1 below and applications of it in

network contexts. In the ensuing discussion John Bather raised an interesting

point, which I now pursue.

1. Introduction. Suppose that a continuous-time Markov process has state

variable x and infinitesmal generator T. Its equilibrium density π(x) relative to a

suitable measure μ then satisfies T π = 0, where r is the operator adjoint to T in

that j(πTj)μ(dx) = juτ'π)μ(dχ) for functions π(x), f(x). Consider now a

family of such processes parametrised by a vector v = {Vj} for which the

generator has the form

Γ(v) = £ v j } ( 1 )

n

Here the 7j are a set of fixed generators and Vj a set of variable parameters, scalar

and non-negative. One can regard 7j as the generator of transitions by a particu-

lar mode (the f1 mode); these different modes being weighted differently as we

vary the parameters Vj. We shall refer to the vector v = {Vj} as the rate vector,

its essential property is that it enters linearly into the generator.

Let the family of processes generated as v varies in some given set N be de-

noted F. Let us also suppose that the equilibrium density π (x\ v) of the process

with intensity (1) is unique and known, for all v in N. Note that prescription (1)

includes also the non-homgeneous case

T (2)

This corresponds to the case when v0 s i for V in N.

Consider now the mixed density

π(χ) = JπWv)φ(rfv) (3)
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where φ is a probability measure on N. Consider the process with generator

r = £v;(*)7\ (4)
J

where

Then it is a two-line matter to verify

Theorem 1. The mixed density π(x) is the equilibrium density of the process

with infinitesmal generator f.

Despite the formal immediacy of the result, there are substantial and

interesting implications. First, note that we have extended the family of

processes F with generator (1) for varying v to a family F with generator (4) for

varying mixing measure φ. The theorem states that the equilibrium density for a

member of this extended class of processes is just the mixed density π.

One can view φ as a prior distribution for the parameter v, and v as a

corresponding Bayesian estimate of v based upon the assumption that the fixed-

v process has reached equilibrium and that one has observed the current state

value x. (The estimate might more appropriately be termed a * forgetful

Bayesian' estimate in that one utilises only the current state value and not

previously observed values. This is the very point we take up in later sections.)

The effect of modifying v to vis to introduce a feedback into the process, by

which a transition rule of form (1) is adopted, but the rate vector is adapted to

that value which seems most concordant with the current value of x. One might

conjecture that the effect of this feedback is to perpetuate the status quo; to adapt

the transition rule so that it will tend to yield as outcome the very state value

which is current

This effect, if it exists, should be particularly marked in the case when φ
gives mass only to a discrete set of values v^τ\ so that

W v ( Γ )) (6)

say. State space will then decompose itself into sets Dr, where DΓ is the set in
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which v (x) ~ v ( r ) . (More correctly, DΓ is the set in which the maximum likeli-

hood estimate v (*) equals v ( r ) . The forgetful Bayesian estimate v (*) supplies

a smoothed version of v(χ).) The 'perpetuation of the status quo' conjecture

would then amount more specifically to the conjecture that the Dj. constitute ba-

sins of attraction in state space, escape from any given DΓ being rendered more

difficult by the presence of feedback. The r Λ term in (6) could then presumably

be identified as the component of distribution corresponding to sojourn in Dp

One may now ask whether the 'forgetful Bayesian' estimate v might not be

converted into a genuine Bayesian estimate based upon a history rather than a

moment of observation (supposedly, for a fixed-v process in equilibrium). This

was John Bather's query. One imagines that the effect of such an increased de-

pendence upon past history would be to increase attachment to the status quo. In

view of this natural conjecture, the results below are interesting.

2. Incorporation of State-History in the Construction. Rather than

assuming a complete history of observation we shall assume the state variable

augmented by variables which store statistical information from past

observations. Suppose that the state variable x is supplemented by a variable y

such that (i) y(t) is a deterministic function of current x-history (x(s); s < t} and

(ii) the process {x.y} is Markov. This implies that y must obey a deterministic

Markov up-dating rule, so that y(t+Δ) is a function of y(t) and {x(s); t < s < t+Δ}

for any Δ > 0. For example, y(t) might be a partial history: y(t) = {x(s); t-h < s <

t}. A more manageable choice would be that in which y was a finite-

dimensional vector satisfying a differential equation

(7)

One could imagine a scheme of this kind for which y(t) supplied quite a good

summary of those aspects of the history of x relevant for estimation of v; we

give an example in the next section.

We shall now apply the ideas of the last section to the Markov process with

state variable (x, y). The infinitesmal generator defined previously by (1) will

now be modified so that it has the action

7* (v) =Σvy7)* + r . (8)

Here T* induces the transitions in (x, y) corresponding to the transitions in x in-
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duced by 7j, and 7° reflects the changes in y in the absence of any change in x:

the purely deterministic change implied by its deterministic Markov evolution

rule.

The (x, y) process will have an equilibrium density π(x, ylv ) relative to an

appropriate measure. This will have the equilibrium density π(xlv ) of the sim-

ple x-process as marginal x-density, because x-dynamics are not affected by the

values of y.

We can now introduce the mixed density

π(x,y) =Jπ(*j |v)φWv) (9)

the * forgetful Bayesian' estimate

Jvπ(*,?|v)φ(dv)
' ( 1 0 )

Jπ(*,;y|v)φ(<*v)

and the process in which v replaces v in the transition rule (8).

Theorem 2. The process for which v(x, y) replaces v in the definition (8) of the

infinitesmal generator has equilibrium distribution π(x, y). Furthermore, the

marginal x-density of this distribution is the density π(x) defined previously by

(3).

Proof. Since the infinitesmal generator is linear in v, Theorem 1 is applicable to

the compound process {x, y} and the first assertion follows. The second asser-

tion follows from (9) and the fact that π(xlv) is the marginal of π(x, ylv). D

Thus, we can indeed modify the mixing construction so that v is an estimate

of v based upon aspects of x-history as well as upon current x. Surprisingly, this

does not affect the equilibrium distribution of the x-process. However, it must

affect the transient behaviour. In particular, one would expect it to increase the

'persistence' of the process, and to deepen the basins of attraction DΓ We shall

investigate this conjecture by example.

3. An Example. We shall take a linear Gaussian process as example, because

this permits explicit analysis. There would be more interest in a case for which

the mixing distribution φ was discrete; the fact that v will follow a continuous
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distribution will mean that there will not be discrete basins of attraction, and

*perpetuation of the status quo* will at best correspond to an increased

sluggishness of movement rather than to temporary capture in some subset of

state space. However, the case we consider is substantial enough to throw up

some surprises.

Suppose that the x-process has a scalar state variable obeying the stochastic

differential equation

x = α(v-jc) +ε (11)

where α > 0 and ε is white noise of power c. The infinitesmal generator has the

effect

Γψ(x) = α(v-jc)ψ f (*) + (c/2)ψM (JC)

and so is indeed linear in v. In equilibrium the process has a N(v, (c/2α ))

density; this defines π(xlv ). The parameter v is then interpretable as the

equilibrium mean of x. If we choose the mixing measure φ so that v is N(0, τ)

then we find that

(l 2 c)"1

v = ,* y^—7Γ7T = * *(2α/c) + (1/τ)

For the mixed process x is N(0, (c/2α ) + τ) in equilibrium; this defines π(x).

The effect of feedback is to replace a drift towards v by a more sluggish drift,

ultimately to the origin.

Consider now the supplementation of x by a scalar y obeying the equation

? = β (*-?). (12)

where β > 0. Thus y is an exponentially-damped average of past x, and, for a

fixed-v process, would provide good information on v. As β becomes infinite

the damping becomes infinite and y reduces to x itself. As β tends to zero then y

converges to a long-term average of x. It is for small β that one would expect

the mixed version of the process to show considerable persistence.

Consider the process {x, y} specified by (11) and (12). The variables x and

y are jointly normal when the process has reached equilibrium, both having v as

mean. Calculation shows the spectral density matrix to be

/(ω) =
c Γ 1 β/(-iω+β)"

ω2 + α 2 [_β/ (iω + β) β2/ (ω2 + β2)_
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this implies an equilibrium covariance matrix

"2«|jJ/(o+β) β/(o+β)J'

The joint density can then be verified to have the form

π (x, y\v) =A (x, y) exp [ - " ( ^ β ) (y - v)2]

where A(x, y) is independent of v. Thus, on the basis of observations x and y

the variable y is sufficient for inference on the parameter v. Taking again the

N(0, τ) mixing distribution for v we have then

(2α(α+β)y/βc)

(2α(α+β)/βc)

say. This converges to y itself as β tends to zero.

For the mixed process relation (11) then becomes modified to

x = α(χy-x)+ε (14)

this again to be coupled with relation (12). One finds from these relations that

the x-process has spectral density function

C «° 2 + P2> (15)
2 2)=

(iω+β) -αβγ | 2

say, where

χ + η = α+β

χη = αβ(l-γ) = αβ{l + 2α(α+β)τ/(βc) Γ1. (16)

The autocovariance of the x-process is then

2χη(X2-η2)

In particular,

τ ( 0) = c ( ( V * i | ; = (c/2α)+τ.

This is independent of β, in agreement with the second assertion of Theorem 2.
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A measure of persistence might be - τ' (0) /τ (0) the rate of decay of the au-

tocorrelation coefficient at zero lag. We find from expression (17) that

τ' (0) = -c/2 so that

τ'(0)/τ(0) = <xc(c + 2ctτ)-1.

This expression decreases with increasing τ, but is quite independent of β. So,

by this measure, incorporation of process history into the estimate of v, and so

into the dynamics of the process, has no effect at all upon the degree of persis-

tence of the process.

We can see what effect this incorporation has by examining the autocorrela-

tion function (17). It follows from (16) that one of χ or η become small as β be-

comes small. Specifically, we can take it that χ = α + O(β) and η = O(β). Thus,

for small β the term exp(-ηs) in (17) is slowly decaying. On the other hand, it

has a coefficient of order β. One could thus say that, for small β, the variable x

has a persistent component (i.e. a component of slowly decaying autocovari-

ance) but that this component is of small amplitude.

Whether this conclusion is valid more generally has yet to be established.

What it seems to imply is that the incorporation of a long-term state-average

into the dynamics of the process by the construction of section 2 indeed

produces a correspondingly persistent component in the process, but one of

negligible magnitude, possibly because of the very stochastic stability of this

average.

This work was carried out during the author's tenure of a Science and

Engineering Research Council Senior Fellowship.
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