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Abstract

Perturbation-type approximations have been derived by many authors for
epidemics and related problems. Here we use the standard perturbation tech-
nique familiar to physicists to approximate the mean and variance of paths of
some epidemic processes. For epidemics with no removals the saddlepoint ap-
proximation to the distribution of infectives is highly accurate for quite small
populations and can be used to assess the accuracy of perturbation approxima-
tions. For epidemics with removals no saddlepoint approximation is available
and simulations have to be used for comparison. The technique turns out to be
equivalent to Daley and Kendall's method of 'diffusion of arbitrary constants'.

l Introduction. Approximations of the perturbation type have been around
in epidemic theory for a considerable time. Bartlett (1956) used such an approx-
imation to study the fluctuations about the endemic equilibrium in a recurrent
epidemic. Bailey (1968) and Weiss (1971) obtained by different routes essen-
tially the same approximations for the mean and variance of a simple epidemic
in large populations. Barbour (1972) developed the method of 'diffusion of ar-
bitrary constants' introduced by Daley and Kendall (1965) to extend these re-
sults to more general epidemics. McNeil and Schach (1973) considered
diffusion approximations of the Omstein-Uhlenbeck type for epidemic and sim-
ilar processes. Daniels (1960) described what is essentially a perturbation tech-
nique for approximating to the distribution and moments of processes of the
epidemic type. Other references may be found in Bailey (1972) and Renshaw
(1986).

There is, however, a standard procedure familiar to physicists and engineers
for deriving perturbation approximations which can with advantage be used in
problems of this kind. My interest in the method was first aroused by Bellman's
elegant little monograph (Bellman, 1964) though he treats there only determinis-
tic problems. In the present paper the procedure is applied systematically to ob-
tain perturbation approximations for the mean and variance of some epidemic
processes.

2. The Univariate Case. We first consider the univariate birth process
which includes the so-called simple epidemic with no removals and its generali-
zations. At time t there are N(t) infectives and the probability of a new infection
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in time (ί,f+Λ) is λ#V)Λ, ignoring terms which are o(dt). If m is the total popu-

lation size the number of susceptibles in the population is m-N(t), and λf/w)=O.

On a suitable time scale the simple epidemic has λ(N)=N(m-N).

The process evolves according to the equation (Barflett, 1960)

dN = λ(ΛO dt+dZίt) (2.1)

where dZ{t) is a centred Bernoulli variable such that

P{dZ(t) = 1 -λ(Λ0 dt } = λ(Λ0 dt

P {dZ(t) = -λ(Λ0 4* } = 1 - MN) dt

Initially N(0) = a. Then

E{dZ(t)\N(t) = Λ} = 0, £{[dZfO]Γl^(O= Λ} = λ(n)dt when r > 2,

and

EίdZitJdZ^ψitJ = n ^ ( ί 2 ) = n 2 } = 0, ί ^ ί 2 .

Since the moments of dZ(t) involve n implicitly it is convenient to write

dZ(t) = Jλ(n)dW(t)

in which case E(dW(t)\ή) = 0, E[(dW(t))2\n] = dt, but £[(ΛV(0)2ln] = Λ/

[λ (n) ] ̂  , r > 2 still involves n. Since we are concerned only with the mean

and variance of N(t) we shall use a diffusion approximation where W(f) is re-

garded as Brownian motion whose higher moments are free of n.

The basic idea underlying perturbation expansions is to embed (2.1) in the
family of models

dN =

= λ(N)dt + ε*Jλ(N)dW(t). (2.2)

When ε = 0 the model is deterministic with a known solution; when ε =1 we

have the stochastic model (2.1). It is then assumed that the solution of (2.2) can

be formally expanded as a power series in ε

N = N0 + εNλ + ε2N2+... (2.3)

which is substituted in (2.2). Thus
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= λ (NQ) dt + ελ1 (No)Nχdt + ε 2 j λ1 (JV0)#2 + ~λ"

Equating coefficients of powers of ε we obtain the following equations

dN0 = λ(JV0)Λ

dNι = λ'WJN^t+JλίNJdWίή

dN2 = λ1 (N0)N2dt+^λ" (N0)N^dt

The first is the deterministic equation. Once its solution is found the others can

be solved recursively.

The success of the procedure does not depend on ε being small. All that is

needed is that the series (2.3) is a convergent or an asymptotic expansion for

some range of ε which include ε = 1. Bellman refers to ε as a 'book keeping'

variable allowing terms of comparable degrees of approximation to be mar-

shalled in an orderly way. However, in the epidemic application the magnitude

of successive terms is more clearly exhibited in terms of proportions R = N/m

rather than N. Initially R = aim = α. For simplicity we shall assume that λ(Λ0

has the form

(2.4)

This includes the simple epidemic with λ(N) = m2R(l - R) and Severo's

more general form λ(Λ0 = tf(m - N)k = m/+kRj(l - R)k (Severo, 1969). Let T =

mcΛu dB(T) = m(c~1)/2<W(0 and ε = ω*/̂ . Then (2.2) becomes

dR (T) = β (R) dT + ωVβ (R) dB (T) (2.5)

where EdB(T)=0 E{ dB(T)}2=dT. The original stochastic epidemic is recovered

on putting
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(o=\ljm which is now small.

As before, write R = RQ + ω/?i + ω 2 ^ +... and equate coefficients of powers

of w, obtaining

dR0 =

dRx = p

dR2 = β1

The first equation has the deterministic solution

(2 6)

where rQ has been written in place of RQ since it is deterministic. The second

equation can then be solved using the integrating factor

which yields

It follows that EiR^T)} = 0 and

or, in terms of r0,

? 2 β ^ (2-8)

Using the same integrating factor the third equation yields

R2(T) = iβ[

(2.9)
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Notice that in the second term dB(u) is an innovation and should strictly be writ-

ten dB(μ+). Hence E{Rι(u)dB(u)} = 0 and the second term vanishes on taking

expectations. After some manipulation it is found that

which can be written as

Finally, on inserting ω = \/4m we obtain

E(R) = ro+±E(R2) +θ(m *J (2.12)

( (2.13)
nt \ J

where E(R\) and£(#2) are given by (2.8) and (2.11). It follows from the gener-

al theory of birth processes that, necessarily, E (R2) < 0.

A useful consequence of the fact that E {Rλ (u) dB (u)} = 0 in (2.9) is that as

far as terms in ω2 we could equally well have taken E {(dZ) 2 | ή) to be λ (*0) dt,

thus avoiding the need to expand <Jλ(N) in the last term of (2.2). This fact is

used later when discussing the general epidemic with removals.

In terms of the actual number of susceptibles we have

Λo = mro» ^i = J™Rι, N2 = R2 (2.14)

and the corresponding formulae are

« λ(x)

^ (2.15)
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λ(»0)if
ί\ι-τά

The approximations are then

l )

2 J
(2.16)

3. Two Examples. We now calculate the perturbation approximations to

the mean and variance for two particular models. The first is the simple epidem-

ic with λ (Λ) = n (m - n) where the results are found to agree with those obtained

by other methods. The second is that suggested by McNeil (1972) with

λ (n) = Λ 1 / 2 (m - Λ) 1 / 2 as a simplified model for a spatial epidemic.

Except in special cases, or for very small populations, the exact results are

difficult to calculate for comparison. However, it was shown (Daniels, 1982)

that the saddlepoint approximation to the distribution of the number of infec-

tives, even for quite small population sizes, is almost indistinguishable from the

exact distribution. The corresponding means and variances have therefore been

used for comparison. The paper by Daniels (1982) may be consulted for details

of the saddlepoint method.

The simple epidemic λ (n) = n (m - n)

The computations are most easily carried out in terms of /?, with

β (r) = r (l - r). The deterministic solution is r0/ (l - r0) = {α/ (l - α)} ex and it

is found from (2.8) that

from which E{R^> and E(R) can be calculated using (2.11) and (2.12). The for-

mulae agree with those given by Daniels (1960, p.398) and Bailey (1968).

The corresponding results for E(N) and SD (N) = JwaiN are compared with

the exact values (based on the saddlepoint approximations) in Table 1 for m=20

and 0=1,5,10. The deterministic values ΠQ are also shown. Notice first that

when α=l, excluding the initial stages when the process behaves like a linear

birth process, the perturbation approximation to the mean and SD goes seriously
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wrong. This is a well known feature of diffusion approximations, which cannot

properly account for very small initial values. When α=5 and α=10 the values

are in good agreement. There is a tendency for the approximate values of SD(N)

to drop towards the completion of the epidemic but as the distribution is then

very skew the SD is perhaps not very appropriate.

The McNeil model λ(n) = n1 / 2(m-n)1 / 2.

A simplified spatial epidemic is modelled by considering the infections to

take place on the circumference of an expanding circle within which all are in-

fected. In terms of R, β (r) = r 1 / 2 (l - r ) 1 / 2 and the deterministic solution is

r 0 = sin2(sin"Vα+ Γ̂> .

With this model the epidemic is completed in a finite time

Γ(max) = π-2sin1 Ja . From (2.8)

from which E(R) and var/?, and hence E(N) and SD(N) are calculated as before.

Comparisons with the exact mean and SD, and the deterministic value ΠQ are

shown in Table 2 for m=20, α=l and 5. In this case even the results for α=l are

quite good.

4. The Bivariate Case A similar technique is next applied to the bivariate

process

( ' }

which becomes the required process when ε = 1. We shall not specify dG(ί),

dH(f) in detail at the moment In the next section the results are applied to the

so-called general epidemic with removal of infectives where the appropriate

dG(t) and dH(f) are defined.

As before, the solution of (4.1) is formally expanded as
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X = X0 + εXx + ε2x2τ..., Y = YQ + εYι + ε2r2+... and the coefficients of powers of

ε are equated. From ε° we obtain

- £ = φ {x9 γo), - £ = Ψ (Xo, y0). (4.2)

It is assumed (which is often not the case) that (4.2) has a known deterministic

solution *0(ξ,η,0, yo(ξ,Ά,O where ξ, η are the initial values of Xo, Yo, i.e.

*o(ξ,η,O) = ξ, ?o(ξ,η,O) = η .

Theteraisin e*are

x0,)'0)XIΛ + φ(x0, y^dt + dGO) 1

when φ = j.Λ> y , φ = V* » ^ ^ ^ o n ^ ^ e univariate case the equiva-
ox ay

lent equation was solved by using an integrating factor. Here we use the method

of variation of parameters.

The homogeneous equations

= φ ( x

-jf - Ψ' (*o. ?o) x\

are the linearised form of (4.3). They have two independent solutions

as may be discovered on substituting xo(ξ + δξ, η + δη,t), yQ(ξ + δξ,η + δη,t)) in

(4.2), expanding and extracting the coefficients of δξ and δη.

The complete solution of (4.4) is therefore

The solution of the nonhomogeneous equations (4.3) is then found by allowing

ai and a2 to be functions of t in
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On substituting in (4.3) it is found that a\(t), a2(t) must satisfy

dχ0 dχ0

The solution of (4.6) is

Hence

Jo

ί dyo(
u) 9>o(tt) 1

-</G («)

dlξη)

dH (a

3(ξ.η)

(4.5)

(4.6)

(4.7)

(4.8)

where all the Jacobians are known functions calculated from the deterministic

solution.

The terms in ε 2 lead to the equations
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dX2 = φ' (xQ, yQ) X2dt + φ (Xo> yQ) Y2dt

U Φ " ( ^ > O ) ^ + Φ ' (χo>yo)χιγι + ̂ (X»yo)γψ< (4.9)

dY2 = ψ' (x0t

They are solved in precisely the same way, the solution for X2(t), Y2(t) being

1 o l o

(4.8) with dG(u) = {-φ" (*o»;yo)*i + Φ' (χo>yό)χι ̂ 1 + ^Φ^O y o ) ^ ) ^ ^ d dH(u)

the corresponding expression with ψ for φ. Then E(x\), E{XxYx)t E(γ\) and

E (X2), E(Y2) are found on taking expectations. Just as in the univariate case, as

far as terms in ε 2 it can without loss be assumed that E {[dG (u) ] 2 | x,Y} = χQyodt

and so on.

We now apply these results to the general epidemic.

5. The General Epidemic With Removals. The population consists of

X(t) susceptibles and Y(t) infectives. The infection rate is taken to be X(t)Y(t) as

in the simple epidemic, but infectives are removed at rate pY(i) during the course

of the epidemic. The appropriate equations are

dX = -XYdt-dZγ
(5 1)

dY= (X- p) Ydt + dZχ - dZγ

 κ '

where

E(dZχ\XtY) = 0 , E(dZ^XtY) = 0 , E{ (dZχ)
2|X,Y] = XYdt,

E{(dZy)2\X,Y} = pYdt, E[dZχdZy\XfY] = 0.

Initially X(0) = ξ, Y(0) = η. Here Q>(X,Y) = -AT,ψ(X,y) = (X-p)Y and

dG = -dZχt dH = dZχ-dZy.

The deterministic solution is XQJQ where

dx

Όx{plog(x/ξ) x ξ η } L. (5.2)



58 DANIELS

It is convenient to rearrange (4.8) in the form

Jo {-
γ\ W = Jo

where

3 [ *

Then

= Jo

The solution forX2

in (4.8). Then

}

}

a(ξ,η)

) +B*p}yo(u)du

^s obtained by taking

(5.3,

(5.4)

(5-5)

( 5 6>
from which £(X2), £ ( ^ 2 ) c a n be found using £(XiiΊ) as described at the end of

section 9. The expectations have to be evaluated by numerical integration.

0 ^From (5.2), -^ = Xoyo {1 /ξη - (1 - p/ξ) w (x0) }, ^ - = -x^ow (x 0), where

(5.7)

Also ^ ^ These can be used
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to evaluate the Jacobians. In particular the denominator of Ax etc. has the sim-

ple form d[χQ(u),y0(u)]/d(ξtτ\) = χo(u)yo(u)/fy\. As in the univariate case it

was also found easier to work in terms of XQ rather than t in the integrations us-

ing dxo(u) =xo(u)yo(u)du.

Calculations were carried out for ξ = 100, η = 5, p = 25. With these values

the probability of an epidemic failing to develop initially is (p/ξ)η =0.001 which

can be neglected. Unfortunately no saddlepoint approximation is available for

the exact values, which have therefore had to be estimated by simulation. Table

3 compares these with the perturbation approximations for E(X), SD(X) and

E(Y),SD(Y).

In practice, the number of infectives Y at any time in the population cannot

be directly observed. What can be observed is the number of removals

g = ξ + η-X-y. A table has therefore been included of E(Q) and SD(Q) =

{varX + vary + 2co\XY}112, and their perturbation approximations.

There is reasonably good agreement with the exact values for E(X), E(Y) and

E(Q)> but as in the case of the simple epidemic the standard deviations do not

match up so well.

6. General Comments. We have chosen to deal with the particularly sim-

ple case where a diffusion approximation suffices for the first and second mo-

ments. If higher moments are needed, for example, in the univariate case,

powers of m"1 / 2 appear in the expectations which are not accounted for by the

powers of ω. The method can still be used but care is needed in deciding which

powers of m"1 / 2 have to be retained at each stage. Similar considerations arise

when λ (N) does not have the simple form (2.4).

This observation also applies to an approach like that of McNeil and Schach

(1973) which is based on the characteristic function but still employs a diffusion

approximation. On the other hand the methods used by Bailey (1968), Weiss

(1971) and Daniels (1960) do not require diffusion approximations.

The application of the method to the bivariate equation in Section 4 will be

recognised as essentially the same as the method of 'diffusion of arbitrary con-

stants' introduced by Daley and Kendall (1965). Professor David Williams has

also pointed out to me that the treatment of the linearised equations (4.3) is for-

mally equivalent to the Malliavin calculus currently employed in the study of

large deviations.
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TABLE 1

Simple epidemic. λ(n) = n(m -ri),T=mt

m = 20, a = 1

Deterministic

1 flQ

0.2 1.21

0.5 1.61

1.0 2.50

2.0 5.60

3.0 10.28

4.0 14.84

5.0 17.73

6.0 19.10

7.0 19.66

8.0 19.87

Exact

E(N)

1.21

1.59

2.44

5.05

8.61

12.30

15.33

17.42

18.77

19.25

SD(N)

0.49

0.93

1.71

3.42

4.74

5.08

4.53

3.53

2.54

2.17

Perturbation

E(N)

1.21

1.59

2.43

4.90

8.06

11.96

15.75

18.13

19.25

19.87

SD(N)

0.50

0.96

1.84

4.11

5.59

4.65

2.72

1.39

0.71

0.39

m = 20, a = 5

Deterministic

T

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

«0

7.09

9.51

11.98

14.22

16.05

17.40

18.34

18.96

19.36

Exact

E(N)

7.07

9.38

11.70

13.82

15.59

16.96

17.96

18.66

19.13

SD(M)

1.55

2.27

2.63

2.67

2.47

2.14

1.76

1.40

1.10

Perturbation

£(Λ0

7.06

9.37

11.69

13.80

15.57

16.96

17.98

18.69

19.16

SD(N)

1.58

2.36

2.74

2.71

2.40

1.97

1.55

1.18

0.90
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m = 20, a •= 10

Deterministic

T

0.1
0.2
0.4
0.6
0.8
1.0
1.5
2.0

2.5
3.0

«0

10.50

11.00

11.97

12.91

13.80

14.62

16.35

17.62

18.48

19.05

Exact

E(N)

10.50

10.99

11.96

12.88

13.74

14.53

16.21

17.46

18.33

18.93

SD(N)

0.71

0.98

1.35

1.58

1.72

1.80

1.78

1.59

1.35

1.10

Perturbation

E(N)

10.50

10.99

11.95

12.87

13.73

14.53

16.21

17.46

18.33

18.93

SD(N)

0.71

0.99

1.37

1.61

1.76

1.83

1.80

1.57

1.30

1.03
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Table 2

McNeil model. λ(n) = V»(m-«), T = t

ι = 2 0 , α = l

Deterministic

T

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

«0

2.36

4.19

6.39

8.81

11.30

13.71

15.87

17.71

19.05

19.82

Exact

E(N)

2.31

4.02

6.04

8.26

10.56

12.77

14.77

16.45

17.73

18.64

SD(N)

1.33

2.20

2.94

3.51

3.85

3.94

3.75

3.33

2.77

2.18

Perturbation

E(N)

2.30

3.99

6.01

8.25

10.56

12.80

14.83

16.52

17.71

18.23

SD(N)

1.39

2.32

3.08

3.65

3.97

4.01

3.75

3.18

2.32

1.17

m = 20, a -= 5

Deterministic

T

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

"0

7.28

9.76

12.24

14.59

16.64

18.28

19.41

19.96

Exact

E(N)

7.28

9.69

12.09

14.32

16.23

17.70

18.72

19.34

SD(N)

1.57

2.25

2.64

2.76

2.59

2.20

1.70

1.21

Perturbation

E(N)

7.28

9.69

12.09

14.33

16.26

17.74

18.64

18.61

SD(N)

1.59

2.29

2.72

2.87

2.75

2.33

1.62

0.57
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Table 3

General epidemic. X(t) susceptibles, Y(t) infectives

X(0) = ξ = 100, y(0) = η = 5, Removal rate p = 25

Deterministic

t

1

2

3

4

5

6

7

8

9

10

11

12

13

14

XQ

92.90

80.48

62.84

43.90

28.46

18.14

11.89

8.41

5.99

4.62

3.74

3.15

2.74

2.46

Susceptibles

Simulation

E(X)

92.99

81.10

64.99

47.85

33.19

22.45

15.27

10.70

7.80

5.95

4.75

3.94

3.41

3.04

SD(X)

4.06

8.85

13.36

15.52

14.86

12.68

10.21

8.10

6.53

5.44

4.73

4.28

3.99

3.80

Perturbation

E(X)

92.98

81.14

65.13

47.93

32.82

21.63

14.35

9.87

7.16

5.47

4.38

3.71

3.20

2.92

SD(X)

4.13

9.73

13.92

14.92

12.40

9.05

6.44

4.74

3.68

3.01

2.58

2.29

2.09

1.96
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Deterministic

t

1
2
3
4

5
6
7
8
9
10
11
12
13
14

yo

10.26
19.09
30.55
40.52
45.12
44.19
39.88
34.29
28.64
23.51
19.09
15.40
12.36
9.90

Deterministic

t

1
2
3
4
5
6
7
8
9
10
11

12

13
14

%

1.84
5.43
11.62

20.58
31.41
42.67
53.23
62.31
70.36
76.87
82.17
86.45
89.89
92.64

Table 3 continued

Infectives

Simulation

E(X)

10.18
18.54
28.75
37.55
42.15
42.25
39.19
34.53
29.42
24.55
20.16
16.40
13.23
10.64

SD(X)

4.04
7.93
10.85
11.29
9.62
7.72
6.70
6.42
6.28
6.06
5.67
5.17
4.64
4.13

Table 3 continued

Removals Q = ξ + η - X

Simulation

E(X)

1.83
5.36

11.25
19.60
29.67
40.30
50.53
59.77
67.78
74.51
80.09
84.65
88.36

91.32

SD(X)

1.25
2.39
4.21

6.39
8.26
9.41
9.76
9.53
8.98
8.20
7.48
6.72
6.09
5.54

Perturbation

E(X)

10.19
18.50
28.63
37.50
42.52
42.95
39.84
34.92
29.58
24.51
20.03
16.54
13.29
11.25

-Y

SD(X)

4.10
8.24
11.22
10.63
7.94

6.43
6.31
6.30
6.03
5.58
5.05
4.52
4.01
3.55

Perturbation

E(X)

1.84
5.36
11.24

19.57
29.66
40.43
50.22
60.21
68.27
75.02
80.58
84.74
88.50
90.83

SD(X)

1.26
2.43
4.39
6.61
8.17
8.73
8.54
7.93
7.16
6.37
5.64
4.99
4.53
3.96




