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Summary

Observations are made on the individuals from a sample of households at

two points in time. At the first time point it is determined who is susceptible to a

certain infectious disease. At the second time point it is determined which of the

susceptibles have been infected. A method for the analysis of such data is de-

rived with the aid of martingale theory and suitable epidemic model assump-

tions. In contrast to a previously proposed analysis the present approach

requires only a modest amount of manual calculation and is based on less re-

strictive assumptions. An application to influenza data is given.

1. Introduction Consider the spread of an infectious disease through a

community of households. Suppose the disease is transmitted primarily by suf-

ficiently close contacts between susceptible and infectious individuals, and that

such contacts may take place between any pair of individuals.

1.1. Data on Sizes of Outbreaks in Households. Each of the individuals

from a random sample of households is tested at time 0 and again at time τ. At

time 0 it is determined who is susceptible to the infectious disease and at time τ

it is determined which of the susceptibles has been infected since time 0. The

time interval (0, τ) might be the time interval during which the epidemic passes

through this community, or the 'epidemic season* of a disease which is endemic

in the community. It is important to consider this type of infectious disease data,

because it is relatively easy to obtain and is often reliable. When based on tests

of sera one tends to obtain more objective data and can hope to cope with the

presence of subclinical infections.

It has been the practice to analyse such infectious disease data by assuming that

outbreaks within households essentially evolve independently of each other.

However, it seems safer to base the analysis on a model which permits both be-

tween and within household infection. Such an analysis is described by Becker

& Hopper (1983) for a community in which every household is kept under ob-

servation. Complete observation is impractical for large communities. Haber et

al. (1988) propose an analysis which can be applied to data from a random sam-

ple of households from a larger community. Here we demonstrate that the ap-
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proach of Becker and Hopper applies under the assumptions used by Haber et al.

There results an analysis which involves only simple calculations which are

easily performed manually. Furthermore, the assumptions are not quite as re-

strictive as those of the model used by Haber et al.

The proposed analysis is derived using martingale theory for counting pro-

cesses. For a review of the requisite results from that theory see Andersen &

Borgan (1985). We are able to give explicit expressions for estimates and stan-

dard errors. Central limit theorems also exist, see Andersen & Boigan (1985),

which permits hypothesis testing and the construction of confidence intervals.

1.2. Model Assumptions and the Basic Martingales. Consider a random

sample of n households. Label these l,2,...,n. Let Sh(t) denote the number of in-

dividuals from household h who are still susceptible at time t. Write sh for

Sh(0). Of the N^t^s^-S^t) individuals infected by time t there are Ih(t) infec-

tious individuals at time t.

The infection intensity acting on each of the Sh(t) susceptibles of household

h at time t consists of two components. One arises from within the household

and is given by βlh(t), while the other arises from the remaining community and

is denoted by λt Note that \ depends on the total number of infectives in the

community at time t. This makes it more realistic to view \ as a random pro-

cess. Randomness in λt can be accommodated within the present framework,

but is excluded under the assumptions used by Haber et al. (1988).

Let F t denote the history of the infection process up to time t. Then

t t

M\h« = Nh<0 " βj7* Wsh M dχ-\\sh M d x h=l,2,...,n
0 0

are orthogonal zero-mean martingales (ZMMs) with respect to the filtration

{Ft}.

Further characteristics of the disease need to be specified. No specific assump-

tions are made about the latent period. We assume that the infectious period has

a random duration and thereafter the infected individual becomes immune from

further infection for the remaining duration of the observation period.

Individuals who end their infectious period are called removals. Let Rh(t) be

the number of removals in household h at time t. In order to simplify the deriva-

tion we assume that the duration of the infectious period is exponential with rate

parameter γ. This assumption is not crucial to the derivation and when this as-
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sumption is relaxed, see Becker (1979,1981), one arrives at the same estimates.

However, expressions for standard errors need to be modified slightly. The pro-

cesses specified by

t

M2h(0 = Rh(t) -yjlh(χ)dχ h=l,2,...,n
o

are orthogonal ZMMs, with respect to {Ft}, under the present assumptions.

The processes M l h(t) and M2h(t) h=l,2,...,n are the basic martingales used to

derive the method of inference.

We will be integrating step functions with respect to ZMMs on several occa-

sions. The left continuous modification of these step functions will be used on

each occasion, without this being indicated explicitly by the notation. This is

done to ensure that the integration is over a predictable process.

2. Community Acquired Infection. The risk of being infected from out-

side the household over the interval (0, τ) is determined by Λτ = JJ; λχdx, the in-

tegrated global infection intensity. Consider the estimation of this quantity.

2.1. The Integrated Global Intensity Function. For each h define a count-

ing process Kh by

K h ( t ) = l { N h ( t ) > 0 } ,

which simply indicates whether household h has been infected by time t. Note

that Kh(t) can be expressed as $ i{Nh(x) = o } dNk(x). We use this observa-

tion to construct the ZMMs

= 0 }dMlh(x)

t

= Kh{t) -jλxsk{i-κh(x)}dx
o

The choice of 1 {Nh(x)=0} as integrand is made so as to eliminate β from the ex-

pression. Its use restricts attention to the household only as long as it contains

no infected individuals, which ensures that 1 {Nh(x)=0} Ih(x)=0.

By summing the Mx\ over all households one obtains the ZMM
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t

κ(ί) = Kt-U
o I h J

where J = Ysh and £ f = Tκk(t), the total number of households infected by
h h

time t. A further integration leads to the ZMM

(0 = f - dκ(x)

ί'-Σ'AWh

Equating this ZMM, evaluated at τ, to its mean indicates that

dKx

(2.1)

is unbiased for j^ λχi {Kx< n}dx. The latter quantity is Λτ = JJ; λχdx unless ev-

ery household contains at least one infected individual at time τ.

The bias Eίλ τ-Λ τ] is

τ τ

E\\\{Kχ =n }dx = \\P(Kχ = n)dx

which is a rapidly decreasing function of n. The bias is negligible in applica-

tions, where one should aim to have at least 50 households.

For the purpose of providing a standard error we need to consider the vari-

ance of κ*(t). From standard results in martingale theory, see Andersen & Bor-

gan (1985, equations 3.15,3.18), we find
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V[κ* (ί)] = (2.2)

Households of Equal Size. Suppose all households are of the same size, that is

Sh=πih=l,2,...,n. Then

i5
m *^ n-j

o y

Also

dK,

s-

m

dKx

1 Λ
n + 2

n-κAj
(2.3)

v-2

so that, in view of (2.2), we obtain

s.e.(Λ τ)=-
1

"2

(2.4)

Households of Varying Sizes. Often data are available from households of

varying sizes. Strictly speaking, one is not able to compute λ τ as given by (2.1),

because the order in which the households are infected is not known. One way

of overcoming this problem is to obtain a separate estimate of Λτ from each

group of households of a given size. These estimates can then be pooled by tak-

ing their weighted average, with weights proportional to the inverse of their es-

timated variances. This should work well when the numbers in each group is

moderately large. With small numbers there is a risk that a poor estimate re-

ceives a large weight.

An alternative approach is based on the observation that the value of (2.1) is

much the same for all likely orderings of household infections. A good approxi-

mation to (2.1) is provided by calculating
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m a = (mean size of affected households)

and replacing s - ΣSHKH W b y *- Y,maκk W I n o t h e r words, use
A h

» -Kχ

, - l h
*

n

n
1
2

1

2>J

(2.5)

where n* = s/ma.

By a similar argument

s.e. ( λ j s - l
ma

1
1 S +1

2 2J

(2.6)

The expressions (2.5) and (2.6) agree exactly with (2.3) and (2.4), respectively,

when all households are of the same size.

2.2. The Probability of Infection from Global Sources. The quantity

Pτ = l - έfΛ* is of interest because of its meaningful epidemiological interpreta-

tion. It is the probability that an individual makes at least one infectious contact

during (0, τ) with an infective from another household.

From data on outbreaks in n households of size m one can estimate P τ by

b 1 -λ. , ί 1 , ( n >Px = l-e =1-expJ — I n —

The approximation holds when n is large. Using the delta method, see Rao

(1973, section 6a.2), one obtains

-A,

= e s.e. (Λτ)



INFECTIOUS DISEASE DATA 33

1

_ - λ t l Γ n 1"J2
- Kτ rtj

1 1 1

These final expressions for Pτ and s.e. (Pτ) can also be arrived at by starting

from the observation that, under the present model formulation, J^ has a bino-

mial distribution with index n and success probability parameter έfm \ It is en-

couraging that the martingale approach leads to essentially the same estimates as

the classical approach.

For households of varying sizes one simply replaces m and n by ma and n*,re-

spectively.

The estimate of Λτ given by this approach is essentially unbiased. By Jens

en's inequality it follows that l - f** will tend to underestimate Pτ = l - <f Λ \

However, it shares with the maximum likelihood estimate the property that it is

asymptotically unbiased.

3. The Within - Households Infection Potential. There is no continuous

observation over time and so one is not able to estimate the rate parameters β

and γ. We turn instead to the estimation of the infection potential θ=β/γ. The in-

terpretation of θ as an infection potential stems from the observation that it is of

the form

(infection rate) x (mean duration of the infectious period).

Note that households of size 1 contain no information about θ. The discussion

given below is therefore intended only for households having at least two sus-

ceptibles initially.

Consider again the basic martingales M l h(t) h=l,2,...,n. Let

H l h (t)=l{K t <n}l{S h (t)>O}/S h (t)

and

H2 h(t)=l{K t<n}l{Nh(t) = O}(n-L t)/{s-χ shKh(t)},
h

where L t is the number of households with every individual infected by time t,
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sothat £ l { S h ( t ) > 0 } = n - L t .
h

Now construct the two ZMMs

r

*o

{ * , < n} 1 {5 A (x) > 0} Ih (*) dx

o

t

-jl{Kχ<n}λχ(n-Lχ)dx
o

and

o

= f ^ " L ; dKχ-]l{Kχ<n}λχ(n-Lχ)dx.

Note that the choices of H ^ and H 2h have made the terms involving λχ the

same in these two ZMMs. The quantity λ x is therefore eliminated by taking the

difference M * (t) - Λίf ( 0 . However, there is one other term which needs atten-

tion. The term containing β contains the unobservable I h(x) quantities. To

eliminate these unobservable terms we use, for the first time, the ZMMs

Construct the ZMM

t

M2 (o = Σ ί θ l Wx< n > 1 1 5 * w > °> dM2h w
* 0

We finally obtain the ZMM

M* ( t )-Mf(ί)-M 2 * (t)
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-f Λ'Lχ dKx

0* ZJ
h

^\l{Kχ<n}\{Sh(x) >0}dRk(x).

o

= At-Bt-oc(, say.

By evaluating this ZMM at τ and equating it to its mean we obtain the estimate

θ= (Aτ-Bτ)/cτ .

It is not always possible to assign exact values to \ , B τ and Q , but there are

situations when one can.

Suppose K̂  < n, which means that not every household becomes infected.

Then

A - y ^ y " 1 x

A = l y = 0 Λ J

For B τ and Cτ we substitute

respectively. These are the exact values for B τ and Cτ whenever no household

is totally infected, that is when 1^ =0. Otherwise these values are likely to be

larger than they should be and their use will tend to underestimate θ. For infec-

tious diseases of low or moderate infectiousness L̂  will tend to be small, com-

pared with n, and these values for B τ and Q will be good approximations. The

correction term 21^ used for Cτ is somewhat arbitrary. For a household in which

everyone gets infected, the term jτ

oi{Kx<n}i{Sh(χ) >0}dRh(x) is essentially

the number of removals at the time when the last susceptible is infected. This

unobserved quantity takes values in {0,l,...,Rh (τ)-l}. However, its value can be

at most R h(τ)-2 when the last infection arises from a within-household contact.

We have, somewhat arbitrarily, proposed the value Rh(τ )-2.

We now obtain an expression for the standard error of θ. Using the orthogo-
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nality of the ZMMs M l h and M 2 h h=l,2 n, we find

V[M* (t)-Mfθ)~M* (t)]

l* (01 + V [Λ/f (0 ] + V [M* (f) ]

Now use known results from martingale theory, see Andersen & Borgan (1985,

equations 3.15,3.17 and 3.18), to find

V[M* {t)-Mf(t)-M* (t)]

X j l {ίΓ,< «} 1 {Sh (x) > 0} dRk (x)

We need to estimate each of the four terms on the right hand

side, with time t=τ. Unbiased estimates of these terms are given respectively, by

§ 2 C τ =§ 2 (Λ t -2L τ ) ,

n *

Λ= l o

The approximations given for each of the first three estimates are exact when at
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least one household escapes infection and no households are completely infect-

ed. However, they will be good approximations as long as the disease is not

highly infectious, that is as long as L τ is small compared with n. The same is

true for the fourth estimate when all households are of the same size. The ap-

proximations for the fourth estimate rely on the additional approximation of set-

ting Sh = ma, for affected households, when the households are of varying sizes.

With these estimates we may compute

1/2

S.e. (θ) = \Ϋ[M* (τ) -Mf (τ) -M* (τ)] I /C τ.

Suppose the disease is such that the infectious period has the same (constant) du-

ration for each infective. In this case π ^-e"""8 is the probability that a given sus-

ceptible makes at least one infectious contact with a given infective from the

same household during the latter's infectious period. Haber et al. (1988) refer to

π as the secondary attack rate. In the case of a constant infectious period one es-

timates this by

ft = l - e * and s.e. (ft) = e4 s.e. (θ).

An important difference is that, with a constant infectious period, one needs to

set V[Λf2* (τ)] = 0 in the computation of s.e. (θ).

4. Application to Influenza Data. Data on the sizes of outbreaks in Tecum-

seh households over the 1977-78 influenza epidemic season are given in Table 1.

These are taken from Table 1 of Haber et al. (1988).

4.1. Community Acquired Infection. There are Kj = 76 affected house-

holds. The average size of affected households is m a =206/^2.7105.

Substituting these values and n*=616/ma=227.26 into (2.5) and (2.6) gives

λ^ = 0.150 and s.e. (λτ) = 0.017.

This leads to

Pτ = l-eΓ** = 0.139 and s.e. (Pτ) = έfΛt s.e. (λτ) = 0.015,

which compares exceptionally well with the maximum likelihood estimation

0.140 ± 0.015 given by Haber et al. (1988, Table 1).
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It is instructive to compute an estimate of \ based only on the data from

households of size j , for each j=l,2,3 and 4. The four estimates of \ obtained

in this way are shown in column 4 of Table 2, with the corresponding standard

errors in column 5. These estimates should be inspected for large differences and

trends with increasing household size. Such anomalies would cast doubt on the

underlying assumptions. No patterns or large differences are apparent in the

current data set (unless there is a good reason why households of size two seem

less prone to community acquired infection). The weighted average of the esti-

mates of Λj given in Table 2, with weights inversely proportional to the estimat-

ed variances, is 0.124 + 0.014.

4.2. The Within-Household Infection Potential. We now concern our-

selves only with households of size two, three and four. For these households

we have n=200, s=538, K^ =63,1^=9 and m a=193/Kτ. These lead to

BτzJLln( / + 1 / 2 ^28.9034τ ma \tf -Kτ+l/2)

andCτ=/?τ-2Lτ = 79,

from which we find

θ= (Λτ-5τ)/Cτ = 0.159.

The corresponding standard error is computed to be

s.e. (θ) = [21.875 + 13.4845 + 2.0085 -18.8696]1/2/79 = 0.054 .

From these we obtain

ft = l - e * = 0.147 and s.e. (ft) = 0.044 .

These compare reasonably well with the maximum likelihood estimate

0.155 ± 0.035 given by Haber et al. (1988, Table 1). Note that in the calculation

of s.e.(ft ) we deleted the number 2.0085 from the above numerical expression

for s.e.(θ). This is appropriate when it is assumed that there is no variation in

the duration of the infectious period.

When the within-household infection potential is estimated separately for

households of size 2,3 and 4 one obtains the estimates shown in Table 3. These

should be inspected for large differences and trends, which provides a rough
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check of model assumptions. Although the estimates of θ decrease as m increas-

es it is unwise to read too much into this because the standard errors are relative-

ly large . The weighted average of these estimates of θ is also given in Table 3.

This is seen to be close to the pooled estimate given above.

Acknowledgement. The author gratefully acknowledges support from

the Danish Research Academy and the Statistical Research Unit, University of

Copenhagen.

References

[1] Andersen, RK. & Boigan, φ. (1985). Counting process models for life his-

tory data: a review. Scand. J. Statist. 12,97-158.

[2] Becker, N.G. (1979). An estimation procedure for household disease data.

Biometrika 66,271-277.

[3] Becker, N.G.(1981). The infectiousness of a disease within households.

Biometrika 68,133-141.

[4] Becker, N.G. & Hopper, J.L. (1983). The infectiousness of a disease in a

community of households. Biometrika 70,29-39.

[5] Haber, M., Longini, I.M. & Cotsonis, G.A. (1988). Models for the statistical

analysis of infectious disease data. Biometrics 44,163-173.

[6] Rao, C.R. (1973). Linear Statistical Inference and it Applications (2nd edi-

tion). New York: Wiley.



40 BECKER

Table 1. Observed frequencies of outbreak sizes in Tecumseh during the 1977-

1978 influenza epidemic season.

Initial number of susceptibles per household

Number 1 2 3 4

Infected

0
1

2

3

4

65
13

88
14

4

27
15

4

4

22
9

9

3

1

Total 78 106 50 44

Table 2. Requisite data and estimates for community acquired infection.

Household Frequency Affected

size households

Kj Λτ s.e. (Λ τ)

1
2

3

4

Total

78
106

50

44

278

13
18

23

22

76

0.181

0.093

0.203

0.170

0.050

0.022

0.043

0.037

Table 3. Estimates, and associated standard errors, of the within-household in-

fection potential for households of size 2,3 and 4.

Household

size, m

2

3

4

Weighted
average

Infection potential

0.228

0.205

0.140

0.162

Standard error

s.e. (θ)

0.156

0.102

0.056

0.047




