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Abstract

Researchers in applied fields have long recognized the usefulness of
inequalities when exact results are not available. The use of inequalities allows
us to say that one estimate is better than another, that one maintenance policy is
better than another or that a certain selection procedure is better than another
etc., even though, we may not know the best estimator, the best maintenance
policy or the best selection procedure. Such results are generally obtained from in-
equalities between two probability measures or random variables. Inequalities
between random variables are in turn obtained from deterministic inequalities or
deterministic partial orderings.

Hardy, Littlewood and Pόlya (1952) in their classical book entitled
Inequalities have discussed various partial orderings in iϊn, one of which is known
as majorization. Majorization is intimately related to Schur functions. This
partial ordering was used to derive the partial orderings of stochastic
majorization and DT ordering among distributions in a series of papers by
Proschan and Sethuraman (1977); Nevius, Proschan and Sethuraman (1977);
Hollander, Proschan and Sethuraman (1977); and Hollander, Proschan and
Sethuraman (1981). Even though many more partial orderings of this type have
been studied in recent papers and books by Marshall and Olkin (1979), Tong
(1980), Boland, Tong and Proschan (1987, 1988), Abouammoh, El-Neweihi and
Proschan (1989), the above two partial orderings remain the centerpiece in this
type of research endeavor. In this expository paper, we describe the essentials of
stochastic majorization and DT ordering and demonstrate some applications. A
new proof of a slight generalization of earlier result on DT functions in Hollander
et al., 1981 is given.

Introduction

Researchers in applied fields have long recognized the usefulness of
inequalities when exact results are not available. The use of inequalities allows
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us to say that one estimate is better than another, that one maintenance policy is
better than another or that a certain selection procedure is better than another
etc., even though, we may not know the best estimator, the best maintenance
policy or the best selection procedure. Such results are generally obtained from
inequalities between two probability measures or random variables. Inequalities
between random variables are in turn obtained from deterministic inequalities or
deterministic partial orderings.

Hardy, Littlewood and Pόlya (1952) in their classical book entitled
Inequalities have discussed various partial orderings in A71, one of which is known
as majorization. Majorization is intimately related to Schur functions. This
partial ordering was used to derive the partial orderings of stochastic
majorization and DT ordering among distributions in a series of papers by
Proschan and Sethuraman (1977) [PS 77]; Nevius, Proschan and Sethuraman
(1977) [NPS 77]; Hollander, Proschan and Sethuraman (1977) [HPS 77]; and
Hollander, Proschan and Sethuraman (1981) [HPS 81]. Even though many more
partial orderings of this type have been studied in recent papers and books by
Marshall and Olkin (1979), Tong (1980), Boland, Tong and Proschan (1987,
1988), Abouammoh, El-Neweihi and Proschan (1989), the above two partial
orderings remain the centerpiece in this type of research endeavor. In this
expository paper, we describe the essentials of stochastic majorization and DT
ordering and demonstrate some applications in the second and third sections. A
new proof of a slight generalization of earlier result on DT functions is given in
the third section.

Schur Functions

We begin by reviewing some basic concepts and results involving Schur

functions. Given a vector x = (xv x2^'">xn)^ ^ xftγ x\2V"">x\n] ^ e a permutation

of its co-ordinates satisfying x^i > a^i > . . . > Xrny A vector x is said to

majorize a vector y, x > y in symbols, if

i i
Σ^M ^ Σ3f[ti> j = 1, 2,...,n-l,

a n d

£*( i = £ %
Majorization is not a true partial ordering on Rn since x > y and y > x

implies only that the co-ordinate sequence of x is a permutation of the co-
ordinate sequence of y. However it is a partial ordering in the cone {x : x G Rn,

xl ^ X2 — ••• xn}' ^ n a n v c a s e» x ^ V means that the co-ordinates of x are
more spread out than those of y.
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A measurable function / defined on Rn will be called a Schur function if
it is either Schur-convex, that is, if f(x) > j{y) whenever x > jf, or is

Schur-concave, that is, if J[x) < J[y) whenever x > y. It is easy to construct

Schur functions from the example below.

Example 1

Let J[x) = Σ i K x ί ) Then J(x) is Schur convex if and only if g is Schur
convex.

A subset A of Rn is called Schur increasing if it satisfies:

TO

i G A, y > x^ y e A.

Note that the indicator of a Schur increasing set is a Schur convex function and
in fact such indicators are the building blocks of the class of Schur convex
functions and act as their level sets.

A partial ordering for random vectors can be defined as follows using
Schur increasing sets. Let X and X! be random n-vectors. Then X is said to
stochastically majorize X! if for every Schur increasing set A in ΛΛ, P[X G A] >
P[X! G A], or equivalently, E[j{X)] > E[J[Xf)], for every bounded Schur convex

function /on Rn. This is stated, in symbols, as X > X*.
Stochastic majorization is a way of comparing distributions of random

vectors in much the same way as the stochastic ordering is for comparing
distributions functions of real random variables. In fact stochastic majorization
can be equivalently defined as stochastic ordering between certain transformed
random vectors. Recall that Z is said to be stochastically larger than 2! if for
every bounded nondecreasing function Λ, E[h(Z)] > E[h(2f)]. Consider the

transformation y = (yv y2,...,yn) = T(x), where yi = Σ j ^ i ^ i = ^ 2,...,n. It

is clear that C = TRn is a cone. Let X and X! be two random vectors and let Y

= TX and Y = TXt. Then it is easy to see that X * >' Xf if and only if E[g( Y)]
> E[g(Y)] for all bounded measurable functions g such that g(y) > g(yf)

whenever yi > y{, i = 1, 2,...,w-l and yn = yn\ that is, if and only if Y > Y

and Yn=Yn'.

Oftentimes one shows that families of random variables are stochastically
ordered by showing that they satisfy a stronger condition called T P 2 defined
below. A function φ defined on R2 is said to be totally positive of order 2 (TP2)
if it is nonnegative and satisfies

φ(λv x1)<^(λ2, x2) > φ(Xv

whenever λχ < λ2, xχ < x2.
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Let μ denote either the Lebesgue measure on [0, oo] or the counting
measure on the set of non-negative integers. A function defined on (0, oo) x
[0, oo) is said to possess a semigroup property in λ if

+ λ2, x) = j φ(λv x-y)φ(λ2, y)dμ(y).

o

A class of theorems generally known as preservation theorems allows us
to construct new Schur functions and understand their structure. The following
is one of the first preservation theorems for Schur functions. We will see later
that by using the T P 2 and Schur properties with a variety of preservation
theorems, several commonly used parametric families of distributions possess
interesting Schur properties.

Theorem 1

Let J{x) be a Schur convex (Schur concave) function and let <£(λ, x)
defined on (0, oo) x [0, oo) possess the T P 2 property and the semigroup property
in λ. Let μ be the Lebesgue measure or the counting measure. Let the integral

» = 1

be well defined. Then Λ(λ) is Schur convex (Schur concave).
This theorem appears as the main theorem in [PS 77]. In the principal

application of this theorem, one takes φ to be a probability density function and
shows that the operation of taking the expected value of a Schur convex function
transfers the Schur convexity to the parameter vector.

Theorem 2

Let X and Xf be a pair of n-vectors and define S = Σ £-i-^ί a n d & —

Σfci-Xi τ h e n x 8t>' * i f a n d o n l y i f (*) S= S* and (b) for each bounded
Schur convex function /, E\J{X)\S = s] > E{J{Jίf)\Sf = s], for all s G Ap where
the distribution of S assigns probability one to A t.

This theorem is one of the important tools to be found in [NPS 77]. The
notion of a Schur family extends the concept of stochastic majorization to a
family of random variables. Let Xχ be a family of random vectors with a
distribution Pχ indexed by A in Rn. The family Xχ and the family Pχ are said to

be Schur families if A > λ; implies that Xλ > Xχt.

The following theorem shows that in Schur families, stochastic
majorization is preserved among the posterior distributions when there is
stochastic majorization among the prior distributions.
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Theorem 3

Let {Xχ} be a Schur family in A. Let Gx and G2 be two prior

distributions for λ, such that Gλ > Gv Then the posterior of Xχ under Gx

stochastically majorizes the posterior of Xχ under G2*

Example 2. Shock Models.

Consider a system subject to a series of shocks and assume that the
different types of shocks arrive in a Poissonian fashion. For example, suppose
that X^t) denote the number of shocks of the iih type arriving in the interval
[0, i]. Let P(Jfc), where k = (kv £2' >£n)>

 D e ^ e S U Γ V i v a l probability of the
system surviving ki shocks of the type i, i = 1, 2,...,n. Suppose that for each i,
the random variable X^t) has a Poisson distribution with parameter λt f. Then it
follows that the survival function of the system is given by

H(i; X) = E^X^t), X2(t),..,XJ

Assume further that P is Schur concave in k This assumption holds, for
example, if the effects of shocks are independent and the P is the product of n
survival functions, each of which is logconcave. The TP 2 property of Poisson den-
sity functions and Theorem 1 show that the survival function H(t; λ) is Schur
concave in λ. For details see [PS 77].

Example 3. Schur Function of Partial Sums.

Let X^ i = 1, 2,...,n; j = 1, 2,...,£t be independent identically
distributed random variables with common logconcave density function g. Let /
be a Schur concave function and consider

h(k) =

According to a result of Karlin and Proschan (1960), the A-fold convolution
g(k\x) is TP 2 in k and x. Using this and Theorem 1, it follows that h(k) is Schur
concave in Jfc.

Example 4. Schur Concavity of Moments.

Let g be a Schur concave density with the support [0, oo]71. Let α t , i =
1, 2,...,n, be positive numbers and let

r Π 7 1 xai~i

••v nun***™
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be a multivariate normalized moment One can rewrite the integrand as

[ Π JLifcΓΓl Ή / Γ ( « ψ ( * ) exp{ Σ *,-}]• Note that g{x) exp{ Σ *J is Schur con-

cave and that {xor~1e~x/Γ(a)} is TP 2 in (α, x) and is a semigroup on (0, oo).

From Theorem 1 it follows that M{a) is Schur concave. Note that there are

examples where M(a) is Schur convex if the normalizing constant Γ(α) is omitted

in the integrand.

Example 5. Schur Families.

A number of parametric families found in standard textbooks can be
shown to be Schur families. To name a few: multinomial, multivariate negative
binomial, multivariate hypergeometric, Dirichlet. Furthermore, families of
independent random variables such as Poisson, Gamma etc. also form Schur
families. A host of such examples are listed and demonstrated in [NPS 77].

Functions Decreasing in Transposition

The partial ordering of majorization can sometimes be better understood
by a standard partial ordering on the space of permutation on the set of n
integers (1, 2,...,n). This leads to the concept of functions which are decreasing
in transposition (DT) which extends the concept of Schur functions.

Let x = (x1? τr2, .••>?*'n) denote a permutation of (1, 2,...,n). Let S
denote the group of such permutations x. Suppose that x and x ; differ only in
two of their components, say the i and j , where i < j , τr$ < TΓ and that τr{ =
TΓ , πfj = TΓ,-. We say that x' is a simple transposition of x. If a member of 5, say
x ' is obtained from x by successive simple transpositions, we say that x
dominates x" in transposition and write x > x". Clearly this relation
establishes a partial ordering in S.

Suppose that the components of x are such that xχ < x2 < ... < xn. A
permutation obtained by composing it with x is denoted b y x o i a n d defined by

The partial ordering defined above can be extended in an obvious way to the
vectors obtained by permuting components of x.

In many applications one considers two vectors, the first vector
corresponding to a parameter and the second vector to an observed random
variable. It is useful to describe in a mathematical fashion the fact that a
random vector and its parameter vector increase and decrease together.
Oftentimes one needs to study and compare the way in which two random
vectors vary together. For instance, one use of rank correlation is to measure
how similarly two random vectors vary together. We will see below that the
partial ordering on permutations, defined above, provides a satisfactory way to
compare how similarly two vectors, which may be random or deterministic, vary
together.
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Let Λ and Ξ be subsets of R. A function #(λ, x) is said to be decreasing
in transposition (DT) on Λ71 x Ξn if g(\oπ, xo x) = g(λ, x), for every x (that is,
g is invariant under the same permutation on the two vectors) and </(λ, r o i ) >

g(λ, I O T ' ) , where λχ < λ2 < ... < λn; x1 < x2 < ... < xn and x > x'.
When g(x, y) is DT the function g(x, y) gives larger values when the

ranking in the pair (z, y) is more similarly ordered than when the ranking is less
similarly ordered.

In certain applications there is only one vector and it is desirable to
define functions of a single vector which exhibit a monotonicity under this partial
ordering. Let h be defined on Ξn and suppose that the components of x are in
increasing order. Then h is said to be DT if Λ(xox) > Λ(aτox') whenever

x έ x '
DT functions occur quite frequently in statistics. The book of Marshall

and Olkin (1979) has popularized the notion of DT functions under the more
positive sounding name of Arrangement Increasing (AI) functions. The following
theorem shows the relation between DT, Schur and TP 2 functions.

Theorem 4

(a) Suppose #(λ, x) = Λ(λ - x). Then g is DT on R2n if and only if h is
Schur concave.

(b) Suppose #(λ, x) = h(λ + x). Then g is DT on R2n if and only if h is
Schur convex.

(c) Suppose </(λ, x) = Π K \ > xd> * n e n 9 ι s ^ ^ o n ^ U ^ a n ( ^ o n ^ v ^ ^ ι s

TP 2 .

The main result on DT functions is the following preservation theorem
which states that the DT property is preserved under the operation of
composition.

Theorem 5

Let £t , i = 1, 2 be DT on R2n and σ be a measure on Rn such that for
every Borel set A in Λ71, σ(A) = σ(π o ̂ 4) for every x. Suppose that

) = / gχ{x, y)g2(y, x)dσ(y),

A

is well defined. Then g is DT on R2n.
The proofs of the above two theorems can be found in [HPS 77].
Theorem 1 can be derived as a consequence of Theorem 5 and Theorem

4(b). Furthermore, the following result of Marshall and Olkin (1974) can also be
obtained from Theorem 5 and Theorem 4(a).
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Theorem 6

The convolution of two Schur concave functions is Schur concave.
Most of the families considered in the second section can also be shown

to have DT property. In some sense this provides a better tool than Schur
concavity because of the connections seen earlier. One of the interesting
applications is the problem in ranking. Suppose the vector X has density <£(λ, x)
which is a DT function. Let #(λ, r) be the probability that the rank vector of X-
observations is r. By using Theorem 5 above, it can be shown that g is DT.
This has important consequences in nonparametric statistics. For details of this
please see [HPS 77].

It should be noted that the concept of Schur concavity is closely related
to that of unimodality. From the above discussion it can be seen that a function
defined on A2 is Schur concave if and only if it is permutation invariant and its
graph is such that it is unimodal on every section perpendicular to the line of
equality. This definition can be extended to Rn by considering all bivariate
sections obtained by fixing (n-2) arguments and requiring Schur concavity for
each section, in the sense just described.

The convolution of two symmetric univariate unimodal densities can be
shown to be a symmetric unimodal density. This is known as Wintner's
theorem. Using this result it follows that the convolution of two bivariate Schur
concave densities is Schur concave. Again by considering sections, an alternative
proof for Theorem 6 can be provided.

The condition that the set {r J[x) > c} be convex and permutation
invariant, for every c > 0, is sufficient for all the required sections of an n-
variate density J{x) to be symmetric unimodal. Many results that follow from
such basic unimodality have been explored in a book by Joag-Dev and
Dharmadhikari (1988) which are useful in deriving various properties of Schur
concave functions. For instance, consider a random vector whose density
function is logconcave. The logconcavity implies that the set where the density
exceeds a given constant is a convex set and hence it satisfies the condition state
above. If the components of this random vector are also exchangeable, then the
density function is Schur concave.

An important theorem for multivariate logconcave densities is due to
Prέkopa (1973) which is stated below.

Theorem 7

Let Y = (y i , Y2,...,yj have logconcave density. Then Z = (Zv

2̂> >̂ jb) = (Σ β i , i^ ί ί Σα2,»^tv ίΣαjk,i^i) a ^ s o n a s a logconcave density. In
particular all marginals have logconcave densities.

We will use this theorem to derive Schur concavity and DT properties of
densities of some random vectors obtained as overlapping sums of random
variables. We begin with a simple case before going to the general case because
the notation can get quite complicated.
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Theorem 8

Let X12i X23, ^i3 and X123 be random variables such that X12, X23, X13

are exchangeable. Define

X\ = X12 + X13,

^ 2 = ^ 1 2 "^ ^23>

X^ = X13 + X^,

2 3 — A 3 + A 123

Then the density of T = (Tv T2, Γ3) is Schur concave under either one of the
following conditions:

(A) the joint density of X12, X13, Z 2 3 , X123 is log concave

(B) the random vector (X12, X13, X23) has a logconcave density and is
independent of the random variable ^ 2 3 .

Proof. Note that T consists of overlapping sums of random variables. A more
general case of overlapping sums will be considered later.

From the definition of T it is easy to see that it is exchangeable. The
logconcavity of the density of T follows readily from Prekopa's theorem
(Theorem 7) under condition (A). This establishes the Schur concavity of the
density of T under (A). When condition (B) holds, Prekopa's theorem (Theorem

7) once again shows that the density f(xv x2, x3) of (X\ \ X^\ X^ ') is Schur
concave. The density function of Tis given by

where g(y) is the density function of X^ 2 3 . Since a positive mixture of Schur
concave functions is Schur concave, it follows that the density of T is Schur
concave. D

We now generalize the above to random vectors in Rn. Let / = {1, 2,
3,...,n}. For k= 2,...,n, let

Ik= {/: /is a subset of J with cardinality λ},
and

f = Uo {I € h) and h, = {/ 6 A : i G / } .
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Let {X^ i = 1, 2,...,n} and Xj, I G /* be a collection of random variables. Let

W(k) = {Xj : / G /*}, Jί\k) = Σ / € / , * / a n d ^ = ^ 4* )»-»Jί )) w h e r e

t = 1, 2,...,n and k = 2, 3,...,n. Thus JQ ' is the sum of random variables, each
having k subscripts, one of which is i.

Theorem 9

Let X^1^ = (Xv X2,...,A'J be a random vector with probability density
function which is DT. Suppose that the set {Xj, I G i*} is independent of xS '
and one of the following conditions holds.

(A) The set of all variables {Xj, I G i*} is exchangeable and has a
logconcave joint density function.

(B) The collection of random variables in W(k) has a logconcave density
and is permutation invariant for k = 2, 3,...,n-l, and the collections
W(2), W(3),..., W(n) are independent.

Then the joint distribution of Z= (Zv Z2,...,ZΏ) is DT, where

% * Σ ί
k> 2

Proof. The argument is similar to the proof of Theorem 8. Let Γt = Σ Jb > 2^ί
and Γ = { T l f Γ2,...,ΓJ.

The density function of Z is the convolution of the density functions of T
and X" ', the second of which is DT by assumption. If we can show that the
density function of T is Schur concave, then it will follow that the density
function of ZΊs DT from Theorems 4 and 5(a).

We will now show that condition (A) or (B) implies the Schur concavity
of the density of T.

When condition (A) holds it is easy to see that Prέkopa's theorem
implies that the joint density of T is logconcave. The permutation invariance of
this joint density follows from the exchangeability of {Xp I G 7*}. This
establishes the joint density function satisfies the DT property.

When condition (B) holds, Prέkopa's theorem once again shows that the
density function of JPk' is log concave for k = 2, 3,...,n-l and is permutation
invariant. From the independence of W(k), k = 2, 3,...,n-l it follows that the
density function of T^X^^ ny..., Tn-X^^ is logconcave and permutation

invariant and hence Schur concave. Notice that Win) = XfΛ Ύ consists of a

single random variable. From the same argument given in case (B) of Theorem
8, it follows that the density of Γis Schur concave.

This completes the proof of Theorem 9. D
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Theorem 9 generalizes Theorem 2.1 of [HPS 81] and contains a new
proof. As an application of this theorem it can be shown that the density
function of a generalized compound multivariate Poisson is DT. See [HPS 81] for
details.
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