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Let X and Y be two random variables such that X takes
only two values 1 and 2. The notion of total positivity
of order two for the joint probability distribution of X
and Y is discussed in this paper from the viewpoint of
convex analysis. The set of all 2 x oo probability mea-
sures which are totally positive of order two and with
fixed second marginal probability measure is shown to
be convex. Some of the extreme points of this set are
explicitly spelled out, and an integral representation the-
orem in terms of extreme points is presented in a special
case.

1. Introduction. Let X and Y be two random variables having a joint prob-
ability density function /(•, •) with respect to some product probability measure λ
on the Borel σ-field of R2. The random variables X and Y are said to be totally
positive of order two if the determinants

f(χ,y) f(χ,y')
f(χ',v) f(*',yf)

are nonnegative for -oo < x < xf < oo and —oo<y<y'<oo a.e. [λ]. See
Karlin (1968, p. 12). For its relation with other notions of dependence and further
ramifications, see Barlow and Proschan (1981). See also Lehmann (1966).

The main purpose of this article is to perform extreme point analysis on the
notion of total positivity of order two. What this means is that we look at the set
of all bivariate probability density functions, examine convexity of this set, and if
convex, enumerate all its extreme points. This kind of analysis was carried out on
a limited scale in Subramanyam and Bhaskara Rao (1988). It was shown that the
set of all bivariate probability density functions which are totally positive of order
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two is not convex. The attention then was focused on the set of all 2 x n bivariate
distributions

( Pι\ V\2
\ P21 P22

which are totally positive of order two and with fixed column marginals pu +P21 =
ςfi, P12 + P22 = #2? ,P\n + P2n = Qn- The extreme points of this convex set were
explicitly enumerated. The analysis of this convex set was found to be useful in
testing certain hypotheses of independence and total positivity of order two.

The main thrust of this paper is in analyzing total positivity of order two in
the realm of 2 x 00 bivariate distributions. In Section 2, the set Mμ(TP2) of all
2 X 00 probability measures which are totally positive of order two and with fixed
second marginal probability measure μ is shown to be convex. Some of the extreme
points of the set Mμ(TP2) are explicitly spelled out, and an integral representation
of any given λ in Mμ(TP2) in terms of extreme points is presented in a special
case. Some open questions are raised on the extreme points of the set

2. Main Results. To begin with, we frame the definition of TP2 in the
language of probability measures. The basic notation is as follows. Let Ω =
{1,2} x R. The space Ω consists of two lines x = 1 and x = 2 in R2.

Let C be the Borel σ-field on R. We equip Ω with the following σ-field.

β = {Acfi; A = {1} x B1 U {2} x B2 for some Bλ and B2 in C}.

The above representation of A is unique.
For any probability measure μ on #, let μ\ and μ2 denote the first and second

marginal probability measures of μ on {1,2} and C, respectively, i.e.,

and

μ2(B) = μ({l,2} X B), BeC.

For any two probability measures r and v on {1,2} and C, respectively, let r ® v
denote the product probability measure on B. The probability measure r ® v has
the following explicit formula. For any A = {1} x B\ U {2} X B<ι in B with B\,
B2eC,

(T ® u)(A) = τ({l»(2?i) + τ{{ϊ))v{B2).

For any two probability measures μ and λ, we use the notation μ « λ if μ is
absolutely continuous with respect to λ.
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For basic ideas on absolute continuity and product measures, see Halmos

(1950).

DEFINITION. A probability measure μ on B is said to be totally positive of
order two (TP2) if the following determinants

are nonnegative almost surely —oo<y<y'<oo, where / is a version of the
Radon-Nikodym derivative of μ with respect to some product probability measure
τ ® v on B for which μ << τ ® v.

Some comments are in order on the above definition.

1. In the parlance of statistical theory, / is called a probability density function.
One may wonder why one needs the dominating measure r ® v to be a product
measure in the above definition. If we were to allow any measure to dominate μ
so as to get a density function, we could as well take μ itself as the dominating
measure which gives the density function / = 1. Then μ is TP2 always! For the
above definition to be nontrivial, we need to take the dominating measure to be
a product measure. Moreover, the idea that μ is TP2 is a deviation from inde-
pendence, and to facilitate to measure the extent of deviation from independence
one has to incorporate a product probability measure in the definition of TP2.
Thus a product probability measure enters the definition of TP2 in the form of a
dominating measure.

2. The statement that the determinants D(y, y') are nonnegative almost surely
—oo<y<y'<oo requires some explanation. Let

U = {(y,y'): -00 <y <y' < 00}.

Let v\j be the probability measure on the Borel σ-field of U defined by

for every Borel subset A of U. If we let A = {(y, y') ε U : J9(y, yf) > 0}, then the
TP2 condition is equivalent to vχj(A) = 1.

3. It is assumed that 0 < μ({l}) < 1 since, otherwise, μ is trivially TP2.
4. The definition that μ being TP2 can be rephrased purely in terms of μ

dispensing totally with the necessity of working with probability density functions.
The following is a result in that direction.

THEOREM 1. A probability measure μ on B is TP2 if and only if

μ({l} X [α, 6])μ({2} X [c, d\)>μ({l}x [c, d])μ({2} X [o, 6])

(1) for all - oo < a < b < c < d < oo.
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Block, Savits, and Shaked (1982) frame the definition of TP 2 for probability
measures. Their remarks (iii) and (iv) on page 767 are more or less tantamount to
the statement of the above theorem. We will not give a proof of this result here.

REMARK. In the above theorem, one can have either open intervals or semi-
open intervals in (1). In the terminology of random variables, the notion of TP2
has the following description. Let X and Y be two random variables such that X
takes values 1 and 2. Then X and Y are TP2 if

P(X = 1, α < Y < b)P(X = 2, c < Y < d)

> P(X = 1, c < Y < d)P(X = 2, α < Y < b)

for all - o o < α < δ < c < d < o o .

This implies that

P{X = 1, Y < y)/P{X = 2, Y < y)

is a decreasing function of y.

5. A natural product probability measure dominating μ is r ® μ2? where r
is a nontrivial measure on {1,2}. Since all such product measures are mutually
absolutely continuous, it will be convenient for us to let r({l}) = ^ = τ({2}).

Convexity Property. The set of all probability measures on B each of which
is TP2 is not convex. Examples are easy to construct. See Subramanyam and
Bhaskara Rao (1988). We look at the following subset. Let v be a fixed probability
measure on C. Let Mι/(TP2) be the set of all probability measures μ on C such
that μ is TP2 and μ2 = v. We confine our attention to TP2 measures whose
second marginal is a fixed probability measure v. For all μ in Mi/(TP2), we take
Radon-Nikodym derivatives with respect to the fixed product probability measure
r ® 1/, where r ( { l » = \ = r({2».

We now study some of the properties of MI/(TP2).

PROPOSITION 1. Let μ e MU(TP2). Let f be α version of the Radon-Nikodym
derivative of μ with respect to r ® 1/. Then

\f(h y) + «/(2, y) = 1 for almost all y [1/].

PROOF. Observe that for every B in C,
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u{B) = μ2(B) = μ({l,2} X B)

/ f(x,y)(τ®v)(d(x,y))
{l,2}xB

= I f f(x,y)τ(dx)u(dy)
J{1,2} JB

From this, the proposition follows:

PROPOSITION 2. Let μ e Mv(TP<ι) and f a version of the Radon-Nikodym
derivative of μ with respect to r ® v. Then

(i) /(l,y) is a decreasing function of y almost surely [UJJ]

and

(ii) /(2,y) is an increasing function of y almost surely [vu]

PROOF. Since μ e MU(ΎV2), f{hy)f%Vf) > f{l,y')f{2,y) a.s. [vu]. Thus,

/(I , y)[l - 1/(1,2/0] > /(I, ifOfl - | / ( 1 , v)\ a β. M

and so, /(l,y) > /(1,2/') a.s. [ι/f/] Thus, (i) follows, (ii) is a consequence of (i)
and Proposition 1.

THEOREM 2. TΛe set Mι/(TP2) is a compact convex set. (Compactness is in
the topology of weak* convergence.)

PROOF. We first settle convexity. Let μ and λ belong to M^(TP2) and 0 < a <
1. Let / and g be versions of Radon-Nikodym derivatives of// and λ, respectively,
with respect to τ®v. Observe that α / + ( l — ά)g is a version of the Radon-Nikodym
derivative of aμ + (1 — α)λ with respect to r ® v. Then a.s.

[α/(l, y) + (1 -

, y')][af(2, y)+(l- a)g(2, y)]

= [o/(l, y) + (1 - α)fif(l, y)][α ( l - | / ( 1 , y')) + (1 - α) ( l - i p ( l , j/')

-[α/( l , y') + (1 - a)g(l, y')][a (l - 1/(1, y)) + (1 - α) ( l - 1*(1, y))]

L,2/'))]
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, 2/0 , y) , y))]

= α/(l, 2/) + (1 - α)flf(l, y) - [α/(l, 2/) + (1 - α)g(l9 y')}

= α[/(l, y) - /(1,2/')] + (1 - *)fo(l, v) ~ d(h 2/0]

> 0, by Proposition 2.

For the compactness of M ι /(TP2), let M,, = {μ : μ2 = ^} Since μχ({l,2}) = 1
and μ({l,2} x A) = μ2(A), it is immediate that Mv is compact. Thus, since
M1/(TP2) C M,,, it suffices to show that MI/(TP2) is closed. But, this is immediate
from Block, Savits and Shaked's Remark (vii) (1982).

Extreme Points. Now we embark on determining the extreme points of the
compact convex set MI/(TP2) and obtain a representation of μ in M ί/(TP2) in
terms of extreme points of MI/(TP2). We are not entirely successful.

Let D be the support or spectrum of v. D is the smallest closed subset of R with
v(D) = 1. An equivalent description is: x e D if and only if v{(x - 6, x + e)} > 0
for every € > 0.

For each u e JD, define μu on B by

μu({l} x 5 i U {2} xB2) = v ((-oo, ti] Π

for BuB2eC.
+ i/ ((«, oo) Π B2),

It is easy to check that μu is a probability measure on B and (μw)2 = v. In an
intuitive way, μu is built up on B by splitting i/ into 2 parts: {1} X (—oo,u] and
{2} x (w, ex)). The compression of μu to a 2 X 2 table gives the following picture.

Description of μu

X\Y
1
2

Y<u Y >u
u((—oo,u]) 0

0 *((t*,oo))

Marginal sum
t/((-oo,U]) = (^) 1({l»

I/((ti,oo)) = (μ t t)1({2»
1

Let the function fu : {1,2} x R -> iί be defined by

/w(l,2/) = 2 if - o o < y <
= 0 if u < y < oo

and

/u(2,y) = 0 if - o o < y <
= 2 if u < y < oo.

It can be checked that /w is a version of the Radon-Nikodym derivative of μu

with respect to r ® v. From the description of /w, it is clear that μu e Mι/(TP2).
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Further, for distinct u\ and u2 in Z>, μUl and μU2 are distinct. We now show
that each μu is an extreme point of MI/(TP2). Suppose μu = αμ + (1 — α)λ for
some μ, λ 6 Mί/(TP2) and 0 < α < 1. Let / and g be versions of Radon-Nikodym
derivatives of μ and λ, respectively, with respect to r ® IΛ Then

Λ(l, 2/) = α/(l,») + (1 - α)fl(l?») for almost all y [i/]

and

/tt(2, y) = α/(2, y) + (1 - a)g(2, y) for almost aU y [v\.

From Proposition 1 and the description of / u, it follows that

fu = f = 9 a.e. [τ ® i/]

and

μu = μ = λ.

Now we come to the representation theorem. We need to distinguish several
cases of D.

Case 1. D is bounded.
Let a and 6 be the left and right extremities of D, respectively. Note that α,

b e D. We distinguish two cases. Suppose a is an atom of z/, i.e., v({a}) > 0.
Define μα* on B by

μα*({l} x Bι U {2} x £ 2 ) = v(B2) for all # i and B2 in C.

The measure μa* spreads the measure v on line x = 2 leaving nothing for the line
x = 1. Note that the probability measure μ& spreads v on the line x = 1 leaving
nothing for the line x = 2. One can check that μα is an extreme point of M ί/(TP2)
and distinct from μu for every w in D.

We conjecture that these are all the extreme points of Mi/(TP2). If this con-
jecture is true, then every measure μ in Mί/(TP2) is a mixture of extreme points
of M1/(TP2), i.e., there exists a probability measure λ on an appropriate σ-field on
D* = {α*} U D (which depends on μ) such that

(2) μ(A) = / μu(A)λ(du), for every A e B.
JD*

The conjecture is true if D is finite. This can be shown as follows. Let D =
{1,2,...,n}, μ e AfI/(TP2), ft = K0'})> * = 1,2,...,n, and μ({i>j}) = Pij,
i = 1,2, j = 1,2, . . . ,n . The Radon-Nikodym derivative of μ with respect to
T ® v works out to be
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The measure λ on D* = {α*} U {1,2,..., n) is given by

λ({α*» = 1-

= ίW?2 - i W ? 3 , . ,

= Pln-l/qn-l -Pln/qni

= Pin/in-

The representation (2) is then valid. See Subramanyam and Bhaskara Rao (1988).
The other possibility under Case 1 is that α is not an atom of v. In this case,

μα* and μα are identical. There is no need to introduce μα*. We again conjecture
that the set of extreme points of M ί /(TP2) is precisely {μu : u e D}.

Case 2. D is unbounded.
Assume that D is unbounded on both sides. Introduce two new measures μ_oo

and μoo by

μ_oo({l} X f l j ϋ {2} x B2) = i/(5i)

and

μoo({l} x Bι U {2} x B 2) = i/(J32) for all J9i, B2 e C.

Then μ_oo? μoo^^ (TP2), A*~oo is concentrated on the line z = 1, μ^ on the
line x = 2, and μ_oo and μ^ are extreme points of M ι /(TP2). We again conjecture
that μ_oo> Moo? μ^? ^ € J9 are the only extreme points of MU(TF2)'

The last case that D is unbounded on one side only can be discussed in a
similar vein.
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