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An ordering of dependence is defined on the space of
probability measures on a finite product space, with fixed
marginals. The definition of this ordering involves the
Lorenz curve of the likelihood ratio of a probability mea-
sure w.r.t. the product measure of the marginals. A mini-
mal element w.r.t. this dependence ordering always exists
and equals the product measure. Conditions for the exis-
tence of a maximal element are examined. The ordering
is generalized to the case of infinite spaces. Comparison
with some other orders of dependence is considered.

1. I n t r o d u c t i o n . The purpose of this paper is to study an ordering of
dependence for pairs of random variables (r.v.'s) taking values in sets that are
finite, but not necessarily numerical or (even partially) ordered. The basic idea is
that, when two r.v.'s are stochastically independent, then there is no dependence.
An ordering of dependence should express this fact by having its unique minimum
in the case of independent r.v.'s. Independence is then a reference point and a pair
of r.v.'s is more dependent than another if it is more distant than the other from
the reference situation of independence, in a sense that will be specified later.

If we want to compare two r.v.'s (or, analogously, two probability measures on
a finite product space) w.r.t. dependence, then it makes sense to start considering
only probability measures having the same marginals. The study of dependence
will be carried out by introducing a preorder on the space of probability mea-
sures on a finite product space having the same marginals, or (equivalently) on
the space of all probability matrices of fixed dimensions having prescribed row and
column sums. Since we are considering qualitative r.v.'s, any ordering of depen-
dence should not depend on the order in which the different possible outcomes are
considered, in other words, the ordering should be invariant w.r.t. permutations of
lines (rows and/or columns) in the probability matrices.
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The tool that we will use is the concentration curve of a probability measure
with respect to another, introduced by Cifarelli and Regazzini (1987). Our results
are strictly related to some ideas of Ali and Silvey (1965a), (1965b). Their results
are not expressed in terms of concentration curves, though.

2. Generalized Concentration Curve Let P, Q be two probability mea-
sures on the power set of a finite space X. From now on, for a; 6 I , we will write
P(x) instead of P({x}). Cifarelli and Regazzini (1987) have defined the concen-
tration curve of a measure P w.r.t. Qy as follows. Let ίp be the (generalized)
likelihood ratio of P w.r.t. Q: for x 6 X

where it is assumed that P and Q never vanish simultaneoulsy.
It is clear that ίp is a r.v. on (X, 2 X , Q) with values in [0, oo], and, if P <C Q,

then

If m is the distribution function of ίp

m(t) = Q{x e X : ίP(x) < t},

and mΓ1 is the right-continuous generalized inverse of m

TO""1 (2) = sup{ί : m(t) < z),

then the concentration curve of P with respect to Q is the Lorenz curve of lp,
that is

ru
φp(u) = / TO"1 (Z) dz.

Jo

The rationale for calling φp the concentration function of P w.r.t. Q is the
following. Let A(u) be a set of the form

A(u) = {z : /P(a?) < tι}.

If Q(A(u)) = ί, then P(i4(t*)) =
Therefore, for each set A containing the "poorest" points (in terms of

φp relates the probability mass concentrated on A by Q to the probability mass
concentrated on A by P. For points outside the range of Q, a sort of randomiza-
tion is performed. Actually, in the framework of hypothesis testing, φ is the so
called α-β curve for testing the null hypothesis P versus the alternative Q, when
randomization is allowed (see Lehmann (1986), pp. 76-77).
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The following well known result will be used later.

PROPOSITION 2.1. (Strassen (1965)) Let S,T be two r.υ.'s such that E(S) =

E(T), and let φs(Ψτ) be the Lorenz curve of S(T). Then φs(u) < φτ(u) Mu e

[0,1] iff 35", Z1 defined on a common probability space, such that S = S* and

T = E(S'\Z').

3. Definition of the Dependence Ordering. Let X, Y be finite sets and
let QχiQγ be two probability measures on X and Y, respectively, such that
Qχ(x) > 0 Vx e X and Qγ(y) > 0 Vy £ Y. Let V{Qχ,Qγ) be the set of
all probability measures on X x Y, whose marginals are Qχ,Qγ. Let μ be the
product measure of Qx and Qy. For each P £ V(Qχ^Qγ)y we can define a
likelihood ratio ίp of P w.r.t. the product measure μ.

Since every probability measure on a finite product space can be represented
by a matrix, we will use the same symbol P for the probability measure and the
corresponding matrix, namely

P = {Pij}> Pij = P(Zi> Vj) xi € X, Vj € Y

Let Pi,P2 G V^QXIQY). Using an idea introduced by Cifarelli and Regazzini
D

(1986) to study measures of dependence, a dependence ordering y is defined as
follows

D
Pi t P2 iff φj\(u) < ΦP2(U) Vu £ [0,1].

D
The relation y is a preorder (reflexive and transitive).

The rationale for the ordering y is the following: If X, Y are independent, i.e.
P = μ, then ίp = 1. The more X, Y are dependent, the more P differs from μ,
the more ίp is spread out, the lower φp is. In a situation of strong dependence
between X and Y, many pairs (x,y) will have "small" probabilities, and some
pairs will have "high" probabilities, where small and high is measured in terms
of the corresponding mass concentrated by the product measure μ. Therefore ίp
assumes values far from one with high μ-probability, and φp tends to be low.

From now on, for the sake of brevity, we will use the symbol V(Qχ,Qγ) to
D

indicate the ordered space (V(Qχ,Qγ),y), unless otherwise stated.

PROPOSITION 3.1. Let P e V(Qχ,Qγ) and let R = ΠiPΠ2, where Tίu Π2

are permutation matrices. Then ίp = ip,.

PROOF. Let Lp = {ίp{x,y)}. Then LR = ΠiipΠ 2 . Hence the result. ||

PROPOSITION 3.2. Let P e V(Qχ,Qγ) and let P* be obtained by pooling two
lines of P. Then
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φp+{u)>φp(u) Vt*€[O,l],

and

φP.(u) = φp(u) V«€[0,l]

iff the two lines are proportional.

PROOF. Without loss of generality, let x\,X2 be the two lines that are pooled,
to form a new line x, say. Then

P*(x,y)
fPΛχy) = Qx(χ)Qγ(y)

Qχ(χ2) P{X2,V)

Qx(χi) + Qx(*2) Qx(χ2)Qγ(y)

with

Qx(xι)
a =

If we apply Proposition 1.1, we obtain φp*(u) > φp(u), Vu € [0,1].
Of course, if the two lines are proportional, then

= tp*(χ,y)\

therefore, φp — φp . \\

Related results can be found in Ali and Silvey (1965a), (1965b).
The space V(Qχ,Qγ) has a minimum.

D
PROPOSITION 3.3. Let P* e V(Qχ,Qγ). Then P > P* VP € V(Qχ, Qγ) iff

P* = μ.

PROOF. This is an immediate consequence of the fact that φ(u) = u Vω € [0,1]
iff P = Q (Cifarelli and Regazzini (1987)). ||

(1)

iff

PROPOSITION 3.4. Let P* 6 V(Qx,Qγ) andQx - Qγ. Then

P*P
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(2) P*(x, x) = Qx{x) = Qγ(x) MxeX

(modulo marginal preserving permutations of lines in P*).

PROOF. (2) => (1): If we order the x's according to the value of Qx increas-
ingly, we have that

max ip{x, y) = lP+ {xλ,xλ) = l/Qχ(xλ)
()ex2

where P*(zi,zi) = Qχ(x\). Now, if P*(xux1) = Qχ(xι), then

P*(*i,2/) = P*(y,*i) = 0 V y φ XL

Iterating the procedure, we have

max tp(x,y) = t
(x\{})2

where P*(x2,X2) = Qx(%2), and so on.
D

Therefore P* £ P VP e V(Qχ,Qγ), when P* satisfies (2).
~ D

(1) = • (2): Assume that P y P VP € V(Qχ,Qγ), and P φ P* (modulo
. D D

permutations of lines), where P* satisfies (2). Then P y P*. Now, since P* y P
VP G V(Qχ,Qγ), then <£p = <£P«.. But, then

0p(l - Q2

x(xι)) = φP.(l - Q2χ(xi)) = 1 -

which is possible only if

P(xι,xι) = P*(xuxι) = Qχ(xι).

Furthermore,

- Qx(χi) - Qx(*2)) = ΦP*(I - Q2

x{χi) -

which is possible only if P(#2?#2) = P*(#2,#2) = Qx(x2), etc. Iteration of the
argument gives P = P*. \\

Proposition 3.4 shows that, when Qx = QY, then there exists a maximum on
V{Qχ)Qγ). This maximum is unique modulo permutations of lines. This is not
the only case in which a maximum exists, as the following proposition shows.

PROPOSITION 3.5. Consider V(Qχ,Qγ), with Qχ,Qγ uniform on X,Y, re-
spectively. Let card(X) = M, card(Y) = N, N > M. Let P* be defined as follows.
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Partition P* into n square matrices of the following form: P\ is the largest NW
def

square sub-matrix of PQ = P*. Rn = is the matrix obtained by deleting the lines
of Pn from Pn-\, where Pn is the largest NW square submatrix of Rn-\. Let the
elements of each matrix Pn be zero outside the main diagonal. There exists only
one possible configuration of this type such that P* G V(Qχ,Qγ). Furthermore

D
P* y P VP € V(Qχ,Qγ). IfP = P*, then P is obtained from P* via permu-
tation of lines.

PROOF.

max

If P*(#i,yi) = Qy(yi), then P(x,2/χ) = 0 \/x φ x\. Under this constraint,

max tp{χ,y) = tp*(χ2,y2) = Qγ(y2)
€Xx{Y\}

and so on, for y\,..., yM
Given these constraints, the argument can be repeated for the matrices i2χ,

..., Rnj and the result follows. ||

4. Tetrachoric Tables. In the case of 2 X 2 tables, a (unique) maximum
exists.

THEOREM 4.1. Let X = {xι,x2}, Y = {2/1,2/2}-

() ( = β = l-<* <*<β
Qγ(yi) = Ί <jy(ίfe) = * = 1 - 7 7<s

If P* has the following form

P*(*u2/i) = ot Λ 7 P*(xuy2) = (α -

D
then P* is Λ̂e unique maximum w.r.t. X.

PROOF. Without loss of generality, assume δ < β (whence a < 7). Then

φp*(x) = 0 0 < x < aδ

= f - f (α + 7) α« + /?7 < » < 1 -
= f - J + l 1 - /M < * < 1.

For any P G V(Qχ,Qγ), we have, for i = 1,2,
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,yi) > 1 <=> lp{xuV2) < 1,

and, for j = 1,2,

Therefore, only two possible arrangements are possible:

(3)

or

(4)

M o r e o v e r , if w e i n d i c a t e pij = P ( # t , yj), i,j = 1,2,

0 < Pi2 < 1 - 7

0 < P22 < 1 - 7

If P is such that (4) holds, then φp(x) is a broken line with corners in x = α<5,
αί + /?7, 1 - )9ί.

φp(aδ) = P12 > 0 = φp*(aδ)
φp(aδ + βη) = 7 - α + 2^i2 > 7 - α = φp+(aδ + βη)

φP(l -βδ) = l-P22>Ί = φp*(l

If P is such that (3) holds, then φp(x) is a broken line with corners in x = βδ,
βδ + oηr, 1 - aδ

φp(βδ + α7) = pii +P22 > α + 7 - 1 > &>•(/?* + α 7 ) = (7 - α)

- αί) = 1 -P12 > 7 > ^P (l - ««) = 1 - ^ ( ^ ) .

Since φp(x) > φp*(x) for every x, where <̂ p has a corner, and since φp, φp* are
Lorenz curves (i.e. increasing, convex, with φp(0) = φp+(0) = 0, φp(l) = <^p*(l) =

D
1), then φp(x) > φp*{x) V x £ [0,1]. Therefore, P* is the maximum w.r.t. K ||

It could be proven that, in the case of 2 x n matrices, a maximum exists, but,
in general, it is not unique (not even modulo permutations). No such maximum
exists in general.

5. Comparison with Different Orderings Joe (1985) proposed an order-
ing of dependence for contingency tables with fixed row and column sums. We indi-

J J m
cate this ordering by K Let P 1 ? P 2 € V{Qχ,Qγ). Pi t P2 iff vec(Pi) >: vec(P2),
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m
where vec(P) is the vector obtained by piling the columns of P, and y is the usual
majorization ordering (see Marshall and Olkin (1979)).

Joe's ordering has a major drawback as an ordering of dependence: it does
not have a unique minimum corresponding to the product measure. This is due
to the fact that the values in the probability matrices are not weighed according

J
to their marginals. The ordering y performs well in this respect only when the

D
marginals are uniform. This suggests the connection between the orderings >: and
J

y, at least when Qx and Qγ assume only rational values, which is not a restrictive
assumption for contingency tables.

THEOREM 5.1. Let Qχy Qy assume only rational values. Let Pi ,P 2 €
T^iQxiQy)' Split rows and columns o/Pi,P2 in such a way that their marginals be-
come uniform. (This is always possible, given rationality of the values ofQχ,Qγ).

~ ~ ~ ~ D _ J „
Call Pi,P 2 € V(Unj Um) these new matrices. Then Px >: P2 iff'Pi >: P2.

PROOF. If the marginals are uniform, then ίp assumes each value ίp (xi,yj)
with probability (ran)""1. Analogously for ίp . Furthermore

L
Therefore, if y is the Lorenz ordering, we have

L m ~ m ~ ~ J ~
ίpλ h t-p2 iff lPi >z ip2 iff vec(Pχ) y vec(P2) iff Pi y P 2 .

Since φph = φp , for h = 1,2, then the result follows. ||

Theorem 5.1 shows that considering the likelihood ratio as the keypoint to
study dependence is the same as transforming the matrix so that the marginals
are uniform, and then vectoralize it. The idea of rendering the marginals uniform,
when studying dependence, has been applied to the study of concordance (positive
quadrant dependence).

6. Concordance and Dependence. Consider two linearly ordered measur-
able spaces (X,X), (Y,y), and the class V(QχyYγ) of probability measures on
(XχY,X®y) with marginals Qχ,Qγ. For Pu P2 G V(Qχ,Qγ), Pi is said more

c
concordant (or more positive quadrant dependent) than P 2 (Pi >: P2) iff

Λ { ( £ , υ ) : ξ > x v > y } > P 2 { ( ξ , v ) : ξ > x ; υ > y } V ( x , y ) e X x Y

(see for instance Yanagimoto and Okamoto (1969), Tchen (1980), Scarsini (1984),
Kimeldorf and Sampson (1987)).

c
The class V(Qχ,Qγ) has a minimum P~ and a maximum Pc

+ w.r.t. y, which
are referred to as Frechet bounds.
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, v) : ξ > x; v > y} = mm(Qχ{ξ : ξ > x}, Qγ{υ : v > y»,
,υ) : ξ > x υ > y} = max(g^{^ : ξ > x} + Qγ{v : v > y} - 1,0).

In general P + and Pc

+ differ and there does not exist any permutation of rows
and columns that make the two coincide.

EXAMPLE.

1/4

1/12

1/4

1/12

1/4

1/12

1/3 1/3 1/3

1/4
1/4
1/4
1/4

1/4

1/12 1/6

1/6 1/12

1/4

1/3 1/3 1/3

1/4
1/4
1/4
1/4

No permutation of lines leads from P+ to Pc

+ or vice versa.

7. Infinite Spaces. Generalization to the case of infinite spaces requires
some care in the definition of the generalized concentration curve and poses some
problems in the interpretation of the ordering.

For the definition of the generalized concentration curve, again we use the
results provided by Cifarelli and Regazzini (1987). Let (X,X,Qχ), (Y,y,Qγ) be
two probability spaces and let X,y contain the singletons. Let μ be the product
measure of Qχ,Qγ on (X x Y,X®y). If P £ V(Qχ,Qr), there exists a partition
{JV, Nc} C X ® y and a nonnegative real function ft on I x 7 , such that

P(A) = ί h(z) μ(dz) + PS(A ON)
JAπNc

μ(N) = 0 Ps(N) = PS(X x Y);

N is unique, modulo μ-null sets.
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As before, let m be the d.f. of ίp

m ( ί ) = μ{(x, y)eXxY: tP(x, y) < t}.

Then the generalized concentration curve of P w.r.t. μ is

φP(u) = Γ m"1^) dt ue [0,1)
Jo

and we define φp(l) = 1. Then φp is convex and increasing on [0,1] and continuous
on [0,1). The jump φp(l) — φp(l~) represents the mass of Ps, which can assume
any value in [0,1]. We have

φP(u) = u Vtt € [0,1] iff P = μ
φP(u) = 0 VtiE [0,1) iff PLμ.

D
The dependence ordering y is defined as in Section 2. For PχyP2 G V(Qχ,Qγ),

D
Pi h P 2 iff φPl(u) < ΦP2{U\ Vw € [0,1].

D .
Some phenomena should warn against an acritical use of the ordering y in

this general situation. Let X = Y = [0,1], X = y = Bor([0,1]). Let Qx =
QY = Lebesgue measure on [0,1]. Let Pk G V(Qχ,Qγ) be defined as follows: Pk
concentrates its mass uniformly on the functions

with (x,y) € [0,1]2. Since Pfc-Lμ, V k G W, it holds that φpk(u) = 0 V w G [0,1).

£ D .

But Pfc —• μ. This fact shows that >̂  indicates how concentrated P is on sets of
small //-probability, rather than how dependent P is. These two concepts basically
coincide when X and Y are finite, but they differ in general.

J
Joe (1987) considered an ordering y of dependence for general probability mea-

J
sures on product spaces. This ordering generalizes the ordering y for contingency

D J β m J
tables. The main difference between y and y is that, in defining ^, Joe does not
consider the likelihood ratio of P w.r.t. μ, but a density w.r.t. a generic product
measure (usually Lebesgue or counting measure). This implies the drawbacks that
we noticed for the discrete case in Section 5.

8. Concluding Remarks. We have introduced an ordering of dependence
on the set of probability measures on a product space, with fixed marginals. We
have considered only products of two spaces. The generalization to n-fold product
spaces is straightforward.

D
The ordering y is based on the Lorenz curve of the likelihood ratio of a proba-

bility measure w.r.t the product measure of its marginals. Consider two probability
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measures Px £ V{Qχ,Qγ), P2 G V(Qw,Qz), where X, Y, W, Z are finite and
Qxi Qy-ί Q\Vy Qz assume only rational values. The argument used in Section 5
shows that, by splitting lines of Pi, P2, it is possible to obtain Pi, P2 £ V{Un, Um)y

with {7n, Um uniform, and such that lpλ = ίp^ ίp2 = ίp^ Comparison of Pi, P2

D
w.r.t. y induces an analogous comparison for Pi, P 2. This suggests to remove the
constraint of considering only probability measures with fixed marginals.

It is actually possible to show that, for any probability space (X x Y, X®y, P),
with P e V(Qχ,Qγ), there exists ([0, l]2,Bor([0, l]2),τr) such that π has uniform
marginals and ίp = ίπ.

Transforming a probability measure on a product space into a probability mea-
sure on the unit square with uniform marginals (in a suitable dependence preserv-
ing way) is a common idea in the study of concordance of random variables. It
is interesting to see that it appears here, given that concordance and dependence
are different concepts. The linear order structure on the spaces X, Y is a basic in-
gredient for the definition of concordance, whereas any such structure is neglected
when dealing with dependence.

Once more we want to emphasize that, while in the case of finite spaces the
D

preorder y is a bona fide dependence ordering, in the general case the intuitive
rationale for the ordering fails, especially when a probability measure is not dom-
inated by the product measure of its marginals.
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