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Recently developed product type bounds are utilized for
calculating improvements of the expected stopping time,
the variance of the stopping time and the power of var-
ious sequential testing procedures. These are presented
for testing the mean of a normal distribution, but the re-
sults and techniques apply more generally. These bounds
have been easily calculated to 5th order by taking ad-
vantage of the dependence structure. It should be noted
that these improvements are most useful when the dis-
tribution for the stopping time has its probability mass
shifted towards later stopping times. Testing procedures
that are developed with an early stopping time are eas-
ily handled with lower order bounds such as 3rd order,
which are faster to calculate. This will be demonstrated
in the examples.

1. Introduction. Recently, there has been interest in obtaining improvements
in bounds for multivariate probabilities (Games (1977), Glaz and Johnson (1984),
Miller (1981), and Worsley (1982)). It has been shown that first order bounds
such as the usual Bonferroni bound are often not sharp enough to be useful when
there are many events, J3, , and the P(B{) are not "small", or when there is a
strong dependence structure in the multivariate distribution (Glaz and Johnson
(1984), Miller (1981), Schwager (1984), and Worsley (1982)). Let Yl9Y2,... denote
independent and identically distributed random variables with mean θ and variance
σ2. Define r = inf{fc > 1 | S* £ h}, where Sk = Σ?=i Ή a n d h are intervals of the
same type: (—oo,α*), (6fc,oo) or (—c*,cjfe). The quantity τ is the stopping time of
the sequential testing procedure that is specified by the intervals, 1 .̂ Recall that:

P(r>n) =

E(τ) =
71=0
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and
oo

Var(r) = E(τ)(l - E(τ)) + 2 £ ™P(?" > n).

Additionally, the power function, /?(#), is given by: β{θ) = P$(5T € Rejection
Region) = Σ£=i P^{(nJJ^5jb € /*) Π (£» € Rejection Region)}.

Power calculations will be performed under the assumption that crossing the
boundary results in rejecting the null hypothesis. In the examples of Section 3,
this occurs when the upper boundary is crossed.

The difficulty here is in calculating Pθ(Sk € Ik\ k = l? ?n)? O Γ the similar
term for /?(#), particularly as n increases. By calculating improved bounds for these
probabilities, improvement of bounds for -E(r), and approximations for Var(r) and
β{θ) are obtained.

We consider the following bounds to U^=1At , where A{ are arbitrary events:

(1) first order upper Bonferroni bound

t = l

(2) second order lower Bonferroni bound

P(U?=1 Ai) > £ P(Ai) - £ P{Ai n Aj\
1=1 i<j

(3) Hunter's upper Bonferroni-type bound (A)

£ < Π A,),
t=i t

(4) Hunter's upper Bonferroni-type bound (B)

(i n A i+1),
ΐ = l

(5) Kwerel-Galambos lower bound (for k > 2)

P(U?=1Λ, ) > 2/fcf;P(Λ, ) - 2/(*(fc - l))X)P(Ai Π A,-),
t=l i<j

n

(optimal k = INT(2 ]ΓP(A t Π A^/^PίA,)) + 2,
i<j i=l

where INT(a ) is the greatest integer < a:),
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(6) Sidak's first order product-type approximation

(7) Glaz-Johnson higher order product-type approximations

(Note k = 1 is Sidak's bound)
We note that the approximations (6) and (7) are bounds in the noted par-

enthetical directions under certain positive dependence conditions (see Glaz and
Johnson (1984)).

Since bounds (l)-(6) did not perform as well as (7), for these and other types of
problems, attention has been focused on the bounds of Glaz and Johnson (1984).
Also, these bounds exploit the dependence structure of the partial sums. Thus, it
is not unexpected that they performed more favorably here. More recently, Glaz
(1990) has shown that the product type bounds are superior to the Bonferroni
type bounds under positive dependence conditions which are present here.

As observed, the conditional approximations of Glaz and Johnson are not al-
ways guaranteed to be bounds. A sufficient, but not necessary condition for these
approximations to be bounds, is that the multivariate distribution be multivariate
totally positive of order 2, MTP2, (Karlin and Rinott (1980)).

In some cases, the bounds for E(τ) and approximations for Var(r) calculated
by Glaz and Johnson (1986) for k = 1,2, and 3, were not as good as one might
desire. Here further conditioning, k = 5, will be employed to improve the bounds
and approximations.

2. Calculation Methods. It is expected that evaluation of Pβ(Sk € Ik)
is available as well as the probability density function of Sk- The conditional
probabilities above will be obtained from probability of the joint events and the
probability of the conditioning event [e.g., P(A \ B) = P(A Π B)/P(B)]. For this
problem, it should be noted that high dimensional numerical integration is not
required. By conditioning on the middle term and using conditional independence
we obtain the following formulas, which will be useful in calculating multivariate
probabilities.

^ e h-uSk € / * ) = / P(Sk e h I ft-i =

P(Sk-2 e ifc-2,Sfc-i € Ik-uSk € Ik) =

P(Sk-2 € h-2 I Sk-i = s)fsk_1(s)P(Sk e h I Sfc-x = s)dsL'h-
P(5fc_3 € h-3,Sk-2 € h-2,Sk-l 6 Jfc_l,5fc € /*)
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= / P(Sk-3 e 4-31 Sk-2 = s)fsk_2(s)P(Sk-ι € 4 - i , Sk e 4 I Sk-2 = *)ds

t

Λ f c_2

x / P{Sk e 4 I Sfc-i = t, Sk-2 = s)fSk_1\sk^=s(t)dt

P(Sk-4 £ Ik-4,Sk-3 € Ik-3,Sk-2 € /fc^Sfc-i ^ Ik-i>Sk € /&)

t_4 £ /fc-4? 5jfe-3 € Jfc-3 I 5Ά;-2 = $)

.3 G /jk_3 I Sk-4 = ?̂ 5Ά;-2 =

The sequential probability ratio test (SPRT), the triangular boundary test and
the asymptotic optimal Bayes sequential test are well known and utilized sequential
tests for testing the mean of a normal distribution (e.g., Glaz and Johnson (1986)).
These consider the case where the Y{ are independent, normal random variables
with mean θ and variance σ2 = 1 (or σ2 known). Consequently, the Sk are normal
with mean kθ and variance k (or fcσ2), but are not independent. Cov(Sfc, Sh) =
min(fc,/ι)σ2. For the multivariate normal distribution, MTP2 is equivalent to all
the partial correlations being > 0 or equivalently -(Σ)"" 1 > 0, where Σ is the
variance-covariance matrix (Karlin and Rinott (1980)). This condition is satisfied
here (Glaz and Johnson (1986)).

Thus the probability density functions and the conditional distribution func-
tions for the above are all normal with the appropriate mean and variance.

3. Examples for the Normal Distribution. For testing Ho : θ = 0 vs
Hα : θ = 0i > 0, consider Xt = (YJ - 0i/2). The transformed hypothesis is
Ho : θ = -θχ/2 vs Hα : 0 = 0i/2 and the intervals determining the test boundaries
will be symmetric about 0 since it is usually desired that ot = β. The boundaries
for the various test procedures are as follows:

Test Intervals Ik (α, θ\ such that α = β)

Wald's SPRT (-α/0i, α/0χ)
Triangular (-0 + k/4θu α - k/4θi) k < M < 00
Optimal Bayes (-c* + k/2θu ck - k/2θι) ck = V2αk, α > 0, k < M < 00.

Now, consider the Gauss-Laguerre formulas:

Γ

and the Gauss-Legendre formulas:
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f(x)dx «

n

= y}Γj2Bif{xi), when f(x) is symmetric about 0.
t = l

Since some variables of integration have semi-infinite limits, the Gaussian meth-
ods do have a natural advantage. Other methods require either truncation of the
integral besides performing an approximation of this truncated integral, or usage
of a transformation of the variable of integration which yields finite limits of in-
tegration. In addition, Stroud and Secrest (1966) give a comparison of Gaussian
quadrature with other methods. For an equal number of points the Gaussian
quadrature error is comparable to the other methods, even for cases where it is
not believed the "best". They also compare different approaches to calculating
some specific integrals with semi-infinite limits, including transformations to inte-
grals with finite limits. All these results appear to indicate this approach for these
particular densities. Additionally, the Gaussian methods do have some optimal
properties for numerical integration.

These two numerical integration methods can be used for all three cases of Ik-
This is accomplished as follows.

For Ik = (-oo,α*):

Γ f(x)dx = Γ f(αk - s)e-8+°ds « £ BJ(ak - Si)e«
J-oo Jo ^

or

Γ f(x)exdx = Γ f(αk - s)e-*eα*ds « ea* £ BJ(αk - s{)9

or any appropriate transformation to obtain the desired integral in the form,

For Ik = (6fc,oo):

Γ f(x)dx = Γ f(bk + s)e-*+sds » £ Bifibk + βi)eSi

Jbk Jo ί = 1

or

ix = l- ί k f(x)dx
J — CO

which then becomes the case of Ik = (-oo,^) .

For 4 = (—cjb,cjb):



320 James R. Kenyon

/ f(x)dx = ck f(s ck)ds « ck V Bi[f(si ck) + f(-Si ck)].
J-ck 7-1 Jrί

We now apply these Gaussian integration formulas, which will be useful in cal-
culating multivariate probabilities. Let Φ(0, σ 2, x) be the c.d.f. at x, and φ(θ, σ2, x)
be the p.d.f. at x for a normal distribution with mean θ and variance σ 2 . Then
for J* = (-ck,ck):

Pθ(Sk € h) = Φ(fc0, fc, cjb) - Φ(fc0, fc, -c f c ) ,

fc_! € Ifc-i,S* € 4 ) « cfc_
t"=l

x [Φ(θ + Ck-iSi, 1, cfc) - Φ(0 + Ck-iSi, 1, -ck)]φ((k - l)θ, k - 1, c*_is, )»

-2 € h-2,Sk-i G /fc_i, 5fc € /fc) « cfc_i ^

- 1), (fc - 2)/(* - 1), cfc_2)

- 1), (k - 2)/(fc - 1), -cfc_2)]

x <?!>((fc - 1)0, fc - 1, cfe_iSi)[Φ(0 + cfc_is, , 1, ck) - Φ(θ + <*_!«,-, 1, -c f c )],

n

_3 G /fc-3,5fc_2 € /fc-2, Sk-i € Jfc-i, 5* € J*) w Cfc-acjt-x ^
t = l

x [Φ((c fc_2θ, ) (* - 3)/(fc - 2), (fc - 3)/(fc - 2), ck-3)

" 3)/(fc - 2), (fc - 3)/(fc - 2), -c f c_ 3)]

Pθ(Sk-4 € ifc_4,Sfc_3 G /jt-.3,5jb-2 G Ik-2,Sk-ι e Ik-i,Sk G

x Σ 5j^((c*-2θ,-)(* - 3)/(fc - 2), (fc - 3)/(fc - 2), C j b .

- 3), (fc - 4)/(fc - 3), c*-4)

- 4)/(fc - 3), (fc - 4)/(fc - 3), Cjfc_4
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TO

X Σ B h ^ θ + C*-2Si' *> Cjfe-itlΛ)[Φ(β + Ck-l + Uh9 1, Cfc) -

where m, and n are the number of points used in the Gauss-Legendre approxima-
tion.

For Ik = (-00, αk) :

n

Pθ(Sk-i € /fc-1,5* 6 Jfc) « J35<e"Φ(β + αfc_α - sit l,αk-i)
t = l

χ^((fc - l)θ, k-1, αk-! - Si),

Pθ(Sk-2 € Jk-2,Sk-i € /fc-i,5fc € 4 )

- 1), (* - 2)/(Ar - 1), αk.2)

χφ((k- l)θ,k - l,αk.χ - Si)Φ(θ + αk-i -Λ, ,l,ofc),

P(Sk-3 € /fc_3,5fc_2 € Ik-2,Sk-i € Ik-ι,Sk € 7̂ )

- 2), (Λ - 3)/(* - 2), afc_3)
t = l

P(Sk-4 € Ik-4,Sk-3 € Iks,Sk-2 € Ik-2iSk-.ι € /*_!,£* €

t = l
m

X £ J0ie
1^((afc_2 - β<)(* - 3)/(* - 2), (fc - 3)/(* - 2), afc_3 - ί,)

χΦ((a f c_3 - ίj K* - 4)/(* - 3), (* - 4)/(fc - 3), afc_4

m

X ^ Bhe
Uhφ(θ + αk-2 - Si, 1, βib-i

where m, and n are the number of points used in the Gauss-Laguerre approxima-
tion.

The continuation region given by In is usually determined by selecting an
alternative θ\ > 0 such that β(0) = α, and β{θχ) = 1 - α, where α is the desired
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significance level of the test. Notice that for this situation, Po(Type I Error)
= P^(Type II Error). The power function, /?(#), for the transformed case with
symmetric intervals using Sk and Ik is written as follows:

β(θ) = ΣP<> (n£=ί (5* e ik) n (5» >
n=l

This is similar to the evaluation of the P(τ > n) but, it should be noted that
the important difference in this case is that the n event is not Sn € /n> but
Sn > cn This requires calculation of an additional term, P(Sn > cn | prior Sks £
Ik). As performed previously, the necessary joint probabilities involving the event
Sn > Cn will be calculated and used in calculating an approximation for β(θ).
The calculated result is not necessarily a bound because the intervals are not all
of the same type (Glaz and Johnson (1986)). The formulas for calculating the
approximation to β(θ) are similar to those given earlier.

The following tables illustrate the cases where higher bounds are providing a
needed improvement for the tests considered. This is particularly noticeable for
E(τ) > 30 (i.e., for the distribution of r having more mass for larger values of
r). For all examples used here, the approximation for the power of the test did
not have much room for improvement above the 3rd order calculations. In each
table, the upper value is approximation (7) with k = 3 from Glaz and Johnson
(1986), the middle value is approximation (7) with k = 5, the lower value is from
a simulation with 10,000 trials also from Glaz and Johnson (1986), while starred
values are exact.
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Table I (SPRT)

Lower Bounds and Simulated Values of E$(τ)

θ0 = 0.25 0o = 0.50

α/θ -0.25 -0.125 0.0 -0.50 -0.25 0.0

0.010

0.025

0.050

0.100

31.39
33.53
36.16

24.70
26.41

28.19

19.51
20.82
22.32

14.12

14.93
15.36

46.22
51.18
61.31

34.49

38.05
43.32

25.77
28.20
30.58

17.39
18.68

19.49

59.46
67.39
84.90

41.53

46.61
54.83

29.53
32.71
36.20

19.02
20.57
21.72

9.05
9.23
9.23

7.13

7.27
7.27

5.62

5.69
5.72

4.02

4.03
4.02

14.13
14.94

15.25

10.47

10.89
11.03

7.70
7.86
7.99

5.02
5.04

5.10

19.04
20.59
21.54

13.01

13.71
13.98

8.99
9.22

9.25

5.53
5.56
5.62
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Approximated and Simulated Values of σρ(r)

0O = 0.25 0o = 0.50

α/θ -0.25 -0.125 0.0 -0.50 -0.25 0.0

0.010

0.025

0.050

0.100

16.13
18.51
23.02

13.95
16.03
18.83

11.95
13.68

15.86

9.46

10.64

11.55

26.93
32.27

46.09

21.60

25.73
33.25

17.13
20.17
24.08

12.34

14.12
15.22

37.31
45.78
68.66

27.37

33.18
44.48

20.35

24.25
29.61

13.80

15.91

17.60

5.31
5.56

5.70

4.47
4.74
4.77

3.77
3.90
3.97

2.85

2.88
2.86

9.47
10.65

11.35

7.45
8.13
8.14

5.70
5.99
6.20

3.82

3.87
3.93

13.86
15.92

17.69

9.79
10.82
11.33

6.94

7.32

7.43

4.32

4.38
4.34
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Approximated and Simulated Values of β(θ)

α/θ

0.010

0.025

0.050

0.100

-0.25

0.0099

0.0099

0.0097

0.0244

0.0244

0.0219

0.0474

0.0476

0.0445

0.0906

0.0908
0.0884

6>o = 0.25

-0.125

0.0906

0.0908

0.0886

0.1362

0.1364

0.1376

0.1823

0.1826

0.1798

0.2399

0.2401

0.2425

0.0

0.5000

0.5000

0.5000*

0.5000

0.5000

0.5000*

0.5000

0.5000

0.5000*

0.5000

0.5000

0.5000*

-0.50

0.0099

0.0099

0.0103

0.0245

0.0244

0.0230

0.0475

0.0476

0.0488

0.0911

0.0912

0.0938

0o = 0.50

-0.25

0.0905

0.0907

0.0891

0.1361

0.1363

0.1366

0.1823

0.1825

0.1842

0.2401

0.2402

0.2391

0.0

0.5000

0.5000

0.5000

0.5000

0.5000

0.5000

0.5000

0.5000

0.5000

0.5000

0.5000

0.5000
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Table I I (Triangular)

Lower Bounds and Simulated Values of E$(τ)

θ0 = 0.25 0o = 0.50

α/θ -0.25 -0.125 0.0 -0.50 -0.25 0.0

0.010 39.11 51.67 59.82 10.52 14.04 16.19

40.44 53.89 62.32 10.60 14.19 16.37
41.67 56.54 64.88 10.61 14.16 16.48

0.025

0.050

0.100

29.62
30.63
31.46

22.29

23.01
23.26

14.75
15.11
15.29

37.66
39.17
40.71

27.17

28.13

28.88

16.99
17.42
17.60

42.11
43.78
45.15

29.53

30.58
31.38

17.94
18.40

18.08

8.01
8.05
8.03

6.05

6.06
6.09

4.01
4.01
4.01

10.22
10.29
10.34

7.35

7.37
7.41

4.59
4.59
4.58

11.39
11.47

11.51

7.97

7.99
8.03

4.83
4.83
4.80
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Approximated and Simulated Values of σg(r)

θ0 = 0.25 0o = 0.50

α/θ -0.25 -0.125 0.0 -0.50 -0.25 0.0

0.025

0.050

0.100

13.80
14.97

16.18

11.58

12.48
13.26

9.49

10.12

10.53

6.90
7.21

7.33

18.22
19.57

21.14

14.32

15.25
16.04

11.11

11.72

12.27

7.64

7.94

8.08

19.39
20.47

21.43

15.03

15.83
16.36

11.54

12.09
12.51

7.86
8.14

8.14

3.95
4.05

4.07

3.27

3.32

3.35

2.63

2.65

2.66

1.85

1.85

1.85

5.13
5.23

5.26

3.96

4.01
4.03

3.02

3.04

3.05

2.03

2.03
2.02

5.30
5.38
5.41

4.09

4.13
4.11

3.11

3.12

3.16

2.08

2.08

2.09
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Approximated and Simulated Values of β(θ)

a/θ

0.010

0.025

0.050

0.100

-0.25

0.0071

0.0084

0.0103

0.0205

0.0229

0.0238

0.0450

0.0481

0.0496

0.0964

0.0991

0.0959

θ
0
 = 0.25

-0.125

0.1019

0.1101

0.1177

0.1470

0.1542

0.1585

0.9135

0.1991

0.2022

0.2546

0.2576

0.2573

0.0

0.5000

0.5000

0.5000*

0.5000

0.5000

0.5000*

0.5000

0.5000

0.5000*

0.5000

0.5000

0.5000*

-0.50

0.0094

0.0099

0.0089

0.0244

0.0249

0.0236

0.0496

0.0500

0.0507

0.1000

0.1001

0.1033

0o = 0.50

-0.25

0.1156

0.1182

0.1119

0.1583

0.1597

0.1616

0.2016

0.2023

0.2034

0.2584

0.2585

0.2541

0.0

0.5000

0.5000

0.5000*

0.5000

0.5000

0.5000*

0.5000

0.5000

0.5000*

0.5000

0.5000

0.5000*
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Table III (Bayes)

Lower Bounds and Simulated Values of Eg(τ)

θ0 = 0.25 0o = 0.50

α/θ -0.25 -0.125 0.0 -0.50 -0.25 0.0

0.010 33.86 51.48 65.65 9.61 14.48 17.95
36.49 56.03 71.11 9.86 14.97 18.49
40.02 62.54 79.90 9.89 15.10 18.78

0.025

0.050

0.100

26.69
28.84
31.51

21.12
22.82
24.30

15.32
16.45
17.36

38.75
42.24
47.50

29.13
31.71
34.62

19.70
21.28
22.50

47.03
51.10
56.30

33.91
36.86
40.36

21.93
23.67
25.13

7.60
7.76
7.89

5.98
6.07
6.09

4.22
4.24
4.24

10.82
11.11
11.07

8.02
8.15
8.12

5.21
5.23
5.23

12.78
13.10
13.20

9.10
9.25
9.33

5.67
5.69
5.69
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Approximated and Simulated Values of <τβ(τ)

θ0 = 0.25 0o = 0.50

a/θ -0.25 -0.125 0.0 -0.50 -0.25 0.0

0.010 19.02 28.31 33.62 5.40 7.73 8.63

21.05 31.08 35.99 5.66 8.03 8.85
24.62 35.68 39.32 5.74 8.15 9.00

0.025 16.61 23.63 27.33 4.63 6.25 6.88
18.41 25.92 29.42 4.80 6.45 7.03
21.06 29.30 31.78 4.89 6.51 7.06

0.050 14.39 19.53 22.03 3.87 4.95 5.37
15.93 21.38 23.80 3.97 5.06 5.46
17.56 23.63 25.79 3.96 5.01 5.50

0.100 11.62 14.78 16.18 2.87 3.44 3.65
12.77 16.09 17.49 2.89 3.46 3.68
13.63 17.09 18.77 2.87 3.50 3.65
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Approximated and Simulated Values of β(θ)

θ0 = 0.25 0o = 0.50

α/θ -0.25 -0.125 0.0 -0.50 -0.25 0.0

0.010 0.0083 0.0791 0.5000 0.0086 0.0954 0.5000

0.0084 0.0841 0.5000 0.0089 0.0991 0.5000

0.0086 0.0908 0.5000* 0.0079 0.1031 0.5000*

0.025

0.050

0.100

0.0208
0.0211

0.0207

0.0413

0.0419

0.0471

0.0816

0.0824

0.0790

0.1204
0.1251

0.1279

0.1645

0.1684

0.1760

0.2230

0.2287

0.2283

0.5000
0.5000

0.5000*

0.5000

0.5000

0.5000*

0.5000

0.5000

0.5000*

0.0216
0.0222

0.0204

0.0432

0.0438

0.0445

0.0854

0.0865
0.0854

0.1371
0.1399

0.1431

0.1805

0.1821

0.1822

0.2379

0.2382

0.2379

0.5000
0.5000

0.5000*

0.5000

0.5000

0.5000*

0.5000

0.5000
0.5000*
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