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If multivariate observations taken at adjacent times are
correlated the quality of inferences, based on an inde-
pendence assumption, can be seriously eroded. After il-
lustrating these effects, we propose a new test for de-
tecting dependence among adjacent observations. Our
test statistic is the maximum absolute value of the lag 1
correlation obtainable from a linear combination of the
observations. We express the statistic in terms of two
eigenvalues and then obtain the asymptotic null distri-
bution. Asymptotic power is examined for sequences of
local alternatives in a multivariate normal autoregressive
process. An explicit expression is obtained for the den-
sity of the limit distribution in the bivariate case. We
then compare power with the likelihood ratio statistic.

l Introduction. The presence of even a moderate autocorrelation, among
univariate observations, can cause serious difficulties for procedures based on an as-
sumption of independence. To illustrate, suppose normal observations are treated
as independent but they actually follow a first order autoregressive (AR) model

Xt - μ = φ(Xt-i - μ) + εt

where the ε± are independent and identically distributed with mean 0 and variance

σ2

ε and \φ\ < 1. It is well known that coττ(Xt,Xt-i) = φ and y/n(X - μ)/s —>

iV(0, (1 + φ)(l - φ)"1). The coverage of the large sample nominal 95% confidence

interval X ± 1.96s/y/n depends rather dramatically on φ.

Table 1. Coverage Probability of the Interval X ± 1.

φ
Coverage probability

-0.3 0 0.3 0.5 0.7

.992 .950 .849 .742 .590
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In the context of X charts, the value X = Σ^Xt/n is plotted on a chart with
control limits 2s/y/n where s is based on a large number of observations. The X
chart will produce an excessive number of false signals under positive correlation.

Table 2. False Signal on X Chart

P[X outside

Φ

2-sigma limits]

-0.3

.01

0

.05

0.3

.14

0.5

.25

0.7

.40

Johnson and Bagshaw (1974) have shown a similar deterioration occurs for the
distribution of time to signal with CUSUM charts.

In the multivariate setting, both inferences about the mean μ, and covariance
matrix, Σ, can be severely affected by serial correlation. Let the k x 1 random
vectors X* follow the multivariate AR(1) model

(1) Xt-μ = Φ(Xt-1-μ) + εt

where the εt are independent and identically distributed with E(εt) = 0 and
Cov(sf) = Σe and all of the eigenvalues of Φ are between —1 and 1. Under this
model Cov(Xt,Xt_j) = ΦjΣχ, where

Σx = Cov(Xt) =

As a consequence of the ergodic theorem

(2)

Also,

X ^4' μ and S = - X)(X* - X)' " "

X*) ^* (I - * Γ X

and y/n(X - μ) is asymptotically normal with this limiting covariance matrix.

Suppose the underlying process has Φ = φlk, \φ\ < 1, then the nominal 95% large

sample confidence ellipsoid

{μ : n(X - μ)'S- χ(X - μ) < χ

has coverage probability P\χ\ < (1 - φ){l + φ)-1χl(.0δ)].
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Table 3. Coverage Probability of the Nominal 95% Confidence Ellipsoid

2
k 5

10
20

-0.3
.996
.999

1.000
1.000

Φ
0

.950

.950

.950

.950

0.3

.801

.690

.547

.341

0.5

.632

.405

.193

.041

In the context of principal component analysis, suppose we wish to analyze
Σε, which is the covariance matrix for X^ under independence, but that the AR(1)
autocorrelation structure is introduced by selecting a sampling interval that is too
short. The first principal component has coefficient vector ei where Σεeι = λχei
and Σe^i = λt e t with λi > > \k If the underlying process is an AR(1) process
with Φ = CΣQ1,

λ3

λ 2 - c 2

so, if c is just smaller than λ ,̂ the ordering of the eigenvalues is reversed. That is,
βfc is incorrectly identified as the coefficient of the first principal component.

The message is clear, a series of observations need to be checked for serial
correlation.

Numerous tests have been proposed for the univariate case. The most common
tests for independence among a collection of vectors {Kt}J=.1 depend on the sample
cross covariance matrix of lag j

T-j

(3) - x ) ' f o r
 J =

t=l

where X = T 1Σj=iyLf The likelihood ratio test is derived by considering the
multivariate autoregressive process of order p

(4) X t = t-i + + t-p + θ + et

where the et are independent and identically distributed normal random vectors
with mean 0, variance Σε and the roots of |I - Φ\ Φp\ = 0 lie outside the
unit circle. The likelihood ratio test of Ho : [Φi, , Φp] = 0 leads to the statistic
that is asymptotically equivalent to

where Φ = [Φi, , Φp] is the solution of the Yule-Walker equations
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-j for ra=l,2, ,p

and

C(p) =

3=1

Co
. . . Cp_

p _ 2

. . . Co

The test based on SL is seemingly the most popular multivariate test.
Chitturi (1974) proposed testing the same hypothesis using the statistic

(6) TΣΣΣMro)M-n*)
m=l u=l v=l

where ruv(πί) is the cross autocorrelation of lag m between the w-th and i -th
components of X t.

The extension of Quennouille's test, due to Bartlett and Rajalaksham (1953),
is based on the test statistic

Σtr

where Gu = A0

1(i7^= 0ΦjC(x_J )Bό, Φo = I and Ao and B o are given by

( C O - C CO1*

(Co — C I C Q (

p̂ O W/

C n-lp' \-

Legget (1977) proposed a multivariate extension of the Bartlett periodogram
test.

While this collection of tests, generalized from the univariate case, may be
adequate for testing for serial dependence, we found it useful to take an alternative
approach. In the next section, we introduce a statistic that concentrates the first
order serial correlation into a single linear combination.

2. A Linear Combination Test. Because first order autocorrelation is most
common, it is worthwhile to develop a test for first order correlation that is both
easy to apply and has a graphic interpretation. We reduce the problem to one
dimension by considering linear combinations a;X<, t = 1,2,.. .,T and selecting a
to maximize the lag 1 correlation

(7)
- X)'a a'Cia

f= 1[ " X)]2
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Our test statistic is then defined as the maximum attainable lag 1 correlation,

RL = sup | r a ( l ) | .

Setting C s = 2~1(Ci + Ci), r a ( l ) can be expressed in terms of symmetric matrices

as

(8) RL = ^

where λi < λ2 < • < λ& are the eigenvalues of CQ 2 C 5 C Q
 2 or C^"1C5. One

point of difficulty is that Cs is not necessarily non-negative definite.
Note that RL has the properties

(i)

(ii) RL is invariant under

X* -> AX tQ

where A is non-singular and Q orthogonal.

A plot of a;(Xt — X) versus a ;(X ί + i - X) displays the concentrated correlation
estimated by RL.

We now indicate the steps leading to the asymptotic null distribution for RL
leaving the more technical algebraic steps until Section 5. We say that the k x k
matrix B is Nk2(0,Σ ® 27"1) if tr(A'B) is ^(O^trA^A'^""1) for every k x k
matrix A. Mann and Wald (1943) showed that

so T ^ C Q 1 / 2 C , C Q
 1 / 2 •£ S where, under the nuU hypothesis, S has pdf

with respect to k(k + l)/2 dimensional Lebesgue measure.
Hsu (1939) encountered the same asymptotic distribution while studying a

normal theory one-way MAN OVA problem. He established that, if S is distributed
as (9), the distribution of its eigenvalues λi < < λ^ has pdf

(10) <7(λi, λ 2,..., λ») = [2 f c/2Πt1Γ(z/2)]"1Πf< i(λ i - λt )



304 Richard A. Johnson and Thore Langeland

Since T1/2JRL i s a continuous function of Γ ^ C ^ ^ C . C Q 1 7 2 ,

For k = 2, the limit distribution is easy to evaluate

(12)P[T1/2RL <x]^ P[-x < Λx < Λ2 < x] = y/2 Γ ue~u2 Ή(u)du = F(x).
J—X

It is considerably more difficult to present expressions for the general case. Set

(13) Gj(t)= f uje~u2/2du, j = 0,1,2,...,*:,

(14) Gjs{x) = Γ Gj(t)tee-t2'2dt, 0<j,£<k
J—X

where it can be shown (see Mehta (1960), p. 399, eqn. (13))

(15) Gj>e(x) = {-if^Gt^x).

In Section 5, we establish

THEOREM 2.1. For k even, the asymptotic cdf of the LCT statistic

under the null hypothesis of independence^ is

F(x) = (Πt1Γ(i/2))-1

for j = 0,2,4,. . . , k — 2 and I = 1,3,5,..., k — 1, where Gjye(x) is defined in (14).

THEOREM 2.2. For k odd, the asymptotic cdf of the LCT statistic T1/2RL,
under the null hypothesis of independence^ is

F{x) = [21/2Πt1Γ

where Gj(x) is defined in (13),

,() ,()

G2Λ(x) G2,z{x)

G2j-2,l(X) G2

G2j+2,i(x) G2j+2<3(x)

G2,k-2(x)

G2j-2,k-2(,x)
G2j+2,k-2(x)

Gk-ι,i(x) Gk-iβ(x) . . . Gk-ι,k-2(%)

for j = 0,1,2,. . . , (k - l)/2, and Gj^(x) w defined in (14).
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A table of 1-st, 5-th, and 10-th percentiles, for k = 2(1)20 were calculated using
double precision arithmetic (see Langeland (1980)).

3. Some Competing Tests and Power Considerations. Most tests for
independence are motivated from consideration of autoregressive alternatives. Let

Xt - μ = Φ(Xt-i ~μ) + et

for t = 1,2,..., T. The hypothesis of independence is then

(16) H:Φ = 0.

A natural test statistic to use is

(17) SL = -[ΛΓ - \{k + k + 1)] log[|C0 - #C o #Ί/ |Col)

where N = T - 1 - 1 and Φ = CXCQ 1. If the {et}£=i are i.i.d. multivariate
normal, then the test statistic in (17) has the same asymptotic distribution as the
logarithm of the likelihood ratio test statistic. See Hannan (1970, pp. 338-341).

THEOREM 3.1. Under the null hypothesis of independence (16), the asymptotic
distribution of the test statistic (17) is a χj,2 -distribution.

In order to obtain an indication of asymptotic power, we introduce the normal
theory AR(1) model (16) where the ε* are independent N(0,Σε). Let {ΦT} be
a sequence of alternatives to independence, where Tλl2Φτ —• H, and let Pτφ
denote the distribution of Xi,..., Xy. Let PT be the distribution of Xi,.. ., X j
under independence.

THEOREM 3.2. Under {PT}

ΛΓ = In ̂ ^ - = tiiΣ^T^ΦrT^d] - l ^ e T ^ Φ r C o Γ 1 / 2 ^ ] + oPn (1)
a±τ Δ

-iV(-iσV)

so {PT} and {Pτφ } are contiguous.

It can then be shown that (Λ τ ,T 1 / 2 Co 1 / 2 C 5 Co 1 / 2 ) is asymptotically normal

under PT SO that we can obtain the limiting distribution of the linear combination

statistic, RL, under {Pτφτ} Even the bivariate case is complicated. The limit

distribution for T1I2RL is

h w h
• ί\l - tί) 2 '+ 1tt 2 i

./o
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for x > 0, where η = (μi + μ3)
2/2, λ = [(μi - μzf + 4μ^]/2 and

1
0
0

0
1/2

0

0
1/2

0

0
0
1

It also follows directly that (Λj, SL) are each jointly normal under {Pτ} From
the contiguity, we then obtain

THEOREM 3.3. Under {Pτφ }, the asymptotic distribution of SL is non-

central χf,2 with noncentrality parameter ^

It is well-known that the likelihood ratio test has several large sample optimal
properties. However, a calculation of asymptotic power in Table 3.1 with k = 2,
Σε = I shows that the linear combination test has higher power than the others
when Tτ/2Φτ —• diag(/&π,0). In the other cases considered, where H is of full
rank or Σε is not proportional to I, the likelihood ratio test has higher power.
The superiority of the likelihood ratio test prevailed in a number of other cases
that are not given in Table 3.1.

4. Example. We consider some data reported by Simon (see Duncan (1959),
pp. 626-630) consisting of burning times of 30 fuses as recorded by three observers.
Since there is one missing observation for the second observer, we first confine
ourselves to the data given by observers one and three. Let X* = (Xtiι,Xti2)\
t = 1,2,.. .,30 denote the observations. The plot of Xtii versus Xt+i,i for i = 1
is given below in Figure 4.1. The plot for i = 2 is similar. Neither exhibits clear
signs of first order serial dependence. The LCT statistic Λ/SORL = 2.40 and it
is significant at the 10 percent level. The value of the corresponding eigenvector
is a = (1.0,—.99)'. The plot of a'X* versus a'Xt+i given in Figure 4.2 gives an
indication of serial dependence in the two series of data. If the missing observation
is estimated, the evidence for dependence with three observers is much stronger.
The statistic becomes significant at the 3% level.

5. Derivation of Limiting Null Distribution. The asymptotic cdf of
Tχ/2RL is given by

(18) F(x) = P[-x <A1<Ak<x}= ί
jQ(-xyx)

where g(-) is defined in (10) and Q(α,6) = {a < Xι < λ2

Πl<t<j<A:(λj ~ λ,) = det

[xi

L 1

•i λ 2

-1 \fc-l

.., λk)dλ1 ...dλk

< Xk < b}. Since

1

ΛA - 1
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Table 3.1
Asymptotic Power

H SL
1 0
0 1

1 0
0 1

0.1 0
0 0

0.5 0
0 0

.0513 0.505

.0849 .0627

1 0
0 1

1 0
0 0

.1769 .1055

1 0
0 1

2 0
0 0

.4666 .3201

1 0
0 1

3 0
0 0

.7714 .6635

1 0
0 1

5 0
0 0

.9952 .9894

1 0
0 1

0.4 -0.2
0.2 0.4

.0731 .0707

1 0
0 1

2 -1
1 2

.6338 .7160

1 0.5
0.5 1

2 -1
1 2

.6890 .7763

1 0.5
0.5 1

2 0
0 0

.0834 .0956
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Figure 4.1
PLOT OF DATA OF OBSERVER ONE VERSUS

THESE DATA LAGGED ONE UNIT

9.6 9.8 10.0 10.2
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Figure 4.2
PLOT OF a'X, VERSUS a'X<+1 FOR DATA FOR

OBSERVERS ONE AND THREE (Y = a'X).

GO

d

CO

d

CM

d

o
d

oo
o

CO
q
d

0.06 0.10 0.14
Yt+i

0.18
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(the Vandermonde determinant), (18) can be rewritten as

e-χV2

ί • / ck det
jQ(-x,x) J

where cfc = [2fc/2Σf=1Γ(j /2)]-1.
In order to obtain an explicit expression for the densities we need some addi-

tional concepts and lemmas (see Aitken (1939), pp. 50 and 111).
The signature function E(x\, #2? ? %k) is defined as

(19) sign(xj - a?t )

= 0 if Xi = Xj for some i φ j ,f o r x = (xι,X2,.. ,Xk)f € Rk, E(xι,X2,...>

i,j = 1,2,. ..,fc, and E(x\) = 1 for all x\ G ϋ .
Let fc = 2m and m = 1,2,..., and let A = {aij} be a skew (fc x k) matrix,

then the Pfaffian of A, P/(A), is defined as

P/(A) =

ttjl J2 * αJ3J4 " " # aJk-lJk

It is well-known that [P/(A)]2 = det A.
de Bruijn (1955) has established the following expression for k even.

LEMMA 5.1. Assume det({φj(xj)}) € L(Rk) and let k = 2m and m = 1,2,...,
then

(20)

/ - / άet({φj(xi)})dx1dx2 --dxk
JQ(a,b) J

Γb ίb

aij = Φi(x)Φj(y)sign{y - x)dxdy}).
J a J a

REMARK, de Bruijn (1955) gives a somewhat unusual definition of the Pfaffian
and his derivation of the integral on the left-hand side of (20), for k odd, is only
valid in a very special case. However, Krishnaiah and Chang (1971, equation 2.6)
give a general solution to the odd case. In their notation φj(x) = xr+^1φ(x) for
r > 0 and some function φ(x) satisfying the integrability conditions. We restate
their results as Lemma 5.2 (an alternative proof is given in Langeland (1980)).

LEMMA 5.2. Assume άet({φj(xi)}) G L(Rk) and let k be odd, then
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Q(a,b)
f άet({φj(xi

where

and

rb

Φj(b)= / Φj{t)dt for j = 1,2,...,*,

0
α21 0 «2,j-l α2,j+l * # «2,A;

ϊj-i,i α j-i,2 0 α j - i j + i a>j-i,k
-1 0 a,i±\h

«fc,i αjb,2 ••• akj-i akj+i -"

/or j = 1,2,..., fc, and Q(a, 6) and at j are as in Lemma 5.1.

We can now establish Theorem 2.1.

PROOF OF THEOREM 2.1. First we notice that

Γ [ Γ uje-u2'2t£e-t2/2sign(t - u)du]dt
J-x J-x

= ΓίV<2/2[/ί vJe-^du- l\ie-^l2du
J-X J-x Jt

= Gj,e(x) - Γ tee-t2/2[Γuje-u2/2du]dt

= Gj,e(x)- Γ uje~u2/2[Γ tιe^>2dt\du
= Gjte(x) - GέJ(x) for 0 < j , £ < k - I.

By (15), the last quantity equals 0 or ±2Gj,t(x). Lemma 5.1 then gives

(21) F{x) =

•Pf

0 2Go,ι{x) 0
0 2Gi f2(a?)

2Gk-2,i(x)
0
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Let k = 2ra, then, according to definition of the Pfaffian and the relation for
signature functions

k k

E{xux2,...,xk) = (2mm!)- 1

J1=1J2=1 j * = l

•E(xhxh). E(xhxk) - E(xJk_lXjk)

established in de Bruijn (1955), the Pfaffian in (21) can be reduced to

mm m

But this is nothing but 2m times the determinant in Theorem 2.1. The proof is
complete.

PROOF OF THEOREM 2.2.

where Aj = {apq} is a (k - 1) X (k - 1) matrix with entries apq = GVΆ - GQyP for
p, q = 0,1,. . . , j - 1, j + 1,..., k - 1. Next, by (13)

GjOO = 0

for j odd. (It can also be shown that Pf(Aj) = 0 for j odd.) According to (15),
for j even, Aj is

0 Go,i(x) 0 . . . GOj+i(x)
Gly0(x) 0 Gιf2(x) . . . 0

A, =
0
0

Gk-2,o(x) 0
0 Gfc_i,i

0
0

0
0

0 Go,k-i(x)

f\ f^ ( Ύ» \

f\ f^ ( >Ύ* \

0 Gfc_2,*-i(a!)
\.k-*(x) 0
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All entries containing j as a first or as a second index vanish, i.e., all Gtj(x) and
Gjyi(x) for I = 1,3,..., k — 2 vanish. The remaining number of terms GPjq(x), with
p even, is exactly (k — l)/2. Thus, the Pfaffian of Aj reduces to

. Gk-l,2jm-l(x)

where m = (k — l)/2. Except for a possible sign change this is nothing but 2^k

times the determinant of the matrix #(j/2) appearing in the statement of Theorem

2.2. By inspection, the sign is given by (—l)^*"1)/2**. The proof is complete.

We remark that nuclear physicists (e.g. Mehta (1967), Wigner (1967)) are
interested in distributions of the eigenvalues of S.
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