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This paper is concerned with arrays of conditionally in-
dependent random elements that become dependent by
mixing. The principal focus is the preservation of prop-
erties known to hold under independence. Findings are
reported in the context of limit theory, including laws of
large numbers and central limit theory, and topics in sta-
tistical inference. Several standard results, ranging from
Berry-Esseen bounds in central limit theory to the use of
Friedman's (1937) test in the analysis of two-way data,
are seen to remain valid under certain models for depen-
dence. The class of limit laws for standardized sums is
expanded to include dependent cases, as are bounds on
rates of convergence to these limits.

1. Introduction. Independence and conditional independence are central to
probability theory and its applications, supporting the theory of Markov chains,
Bayesian analysis, limit theory, and the foundations of statistical inference. See
Dawid (1979), for example. A systematic study of conditionally independent events
dates back at least to de Finetti (1937), who postulated these as models for condi-
tional independence in a random environment. More recently, conditionally inde-
pendent events have been studied as models for weak dependence (cf. Dykstra et
al. (1973), Shaked (1977), and Tong (1980), for example), but there the primary
focus centers on inequalities relating unconditional joint probabilities to products
of marginal probabilities.

The assumption of independence pervades much of mathematical statistics, in-
cluding essential portions of parametric and nonparametric statistical inference.
That independence is a fundamental mathematical concept is not in doubt. Much
less clear is the extent to which it mimics reality. Indeed, apart from highly spe-
cialized models, there appear to be no omnibus empirical tests for genuine inde-
pendence. On physical grounds it even may be argued that observable phenomena
at best can be only conditionally independent, owing to the common background
energy attributed to the big bang.
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In view of these uncertainties, it is essential to regard independence as but one
of many model assumptions subject to misspeciίication. It then is pertinent to
examine questions of robustness and even invariance of critical properties to the
assumption of independence. That is the focus of this paper, an outline of which
follows.

Supporting developments and models for dependence are given in Sections 2
and 3. In Section 4 we consider topics in limit theory. These topics include
laws of large numbers, central limit theory, a study of the types of limit laws
achieved by conditionally independent sequences, and versions of Berry-Esseen
bounds appropriate for these. Section 5 studies topics in statistical inference under
dependence. These include the relative sensitivities of experiments, the use of
Friedman's (1937) test in the analysis of two-way data under dependence, and the
use of Anderson's (1984) classification statistic under dependence by scaling. We
infer that numerous properties of these procedures continue to hold exactly under
certain models for dependence.

2. Preliminaries, To fix notation 9ft* and 9ftίj. a r e Euclidean fc-space and
its positive orthant; FnXk is the space of real (n x k) matrices; Sk and 5jjj"
consist of symmetric (k X k) matrices and their positive semidefinite varieties;
X' = [Xχ,...,Xjt] is the transpose of X G 9ft*; and || || is the Euclidean
norm on 3ft*. Special arrays are the (k x k) identity I*;, the unit vector 1^ =
[1, . . . , 1]' G 9ft*, the Kronecker product A x B = [αijB], and the block diagonal
array Diag (Ai, . . . ,A r ). Cumulative distribution, probability density, and char-
acteristic functions are abbreviated as cdf, pdf, and cΛ/, respectively, with £(X)
as the distribution of X. Let (Ω,f?(Ω),Q) be a probability space. We are con-
cerned with the probability measure P on (9ft*, i?(9ί*)), the cdf -F(x), and the
chfφx(t) generated by X(ω) G 9ft*, as well as sequences {Xχ,...,Xn} on (9ft*)n

which, on occasion, are independent and identically distributed (iid). Moment
arrays for X = [X1 ?.. .,-X*]' G 3ft*, when defined, are the expected vector value
E(X) = θ G 9ft*, the dispersion matrix D(X) = E(X - 0)(X - θ)' G Sjf, and
the absolute central moments {βsj = E \ Xj - θj \δ; 1 < j < k} of order δ > 0.
Some special distributions on $tk are the Gaussian law Nk(θ, Σ) having the mean
θ G 9ft*, the dispersion matrix Σ G S%, and the pdf fpjζx θ, Σ), and mixtures of
these. In particular, #&(#, G) = /5+ iVfc(0, S)dG(S) is a Gaussian mixture over S%
with respect to (?(•) having the pdf

(1) /(x; *,<?)= / /ΛΓ(X;*,S)Λ7(S);
J S k

and Hk = {Hk(θ,G);θ G &k,G G M(S£)} is the class of all such mixtures,
where M(S£) is the class of all probability measures on S£. Specifically, Ήko =
{Hko(0,G);G G Λf(5jf)} C Hk consists of dispersion mixtures of zero-mean
Gaussian laws on 3ft*. The special case for which S = sΣ, with Σ fixed and s
random on Jiίμ, yields scale mixtures of Gaussian laws within the class of ellip-
soidal distributions on 3ft*. The Gaussian law on FnXk representing an iid sample
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X = [Xi,..., XΛ]' from Nk(θ, Σ) is denoted by Nnxk(ln X #', In X Σ).

3. Models for Dependence. We develop models for dependence through
mixing conditionally independent arrays. These consist of sequences of random
elements arising in limit theory, as well as two-way arrays with applications in
inference. It is natural to use cΛ/s, for which bounded convergence applies directly.

3.1. Conditionally Independent Sequences. We consider random sequences in
(3£fc)n, on occasion specializing to the case k — 1. Let (Γ, i?(Γ),μ) be a probability
space, and consider a collection {<&(tt ;7); 1 < i < n} of i?(Γ)-measurable functions
such that each φi(tϊ,η) is a chf on $tk for each 7 £ Γ. Let {Xi,...,Xn} be a
sequence on ($tk)n whose joint chf is given by

(2) # x ( t i , . . . , t n ) = ίH?=1φi(ti;
Jr

with X = [Xi,.. .,Xn] € -ffcxn Clearly {Xi,. . . ,Xn} are conditionally indepen-
dent with mixing measure μ. The special case for which {<fo(t;;7) = Φit^j); 1 <
i < n} follows when {Xi,.. . ,Xn} a r e conditionally iid. For the latter case with
k = 1, {{Xi,..., Xn}; n = 1,2,...} is a de Finetti sequence on &°°.

Observe that 7 may be a scalar, a vector, a matrix, or an arbitrary random
element to be denoted by 7. The concept of dependence by scaling is made pre-
cise in the following definition, where 7 and the typical element Z{ conform for
multiplication.

DEFINITION 1. Random elements {Xi,...,Xn} are said to be dependent by
scaling if there are independent random elements {Zi,..., Zn} and a random ele-
ment 7, independent of {Zi,.. . ,Z n }, such that £(Xi, . . .,Xn) = £(7Zχ,.. .,7Z n).
In particular, random vectors {Xi,..., Xn} on (3?fc)n are called dependent by coor-
dinate scalingifC(Xu.. .,Xn) = A7Z1, >7Zn) such that 7 = Diag(7 l 9.. .,7*).

Standard limit theorems depend heavily on moments. It is useful to distin-
guish orders of dependence under mixing, at issue being the manner in which the
conditional moments depend on the mixing variable.

DEFINITION 2. Conditionally independent random variables are said to be
dependent of order r if their conditional moments of order r depend on the mixing
parameter 7 G Γ.

3.2. Conditionally Independent Ensembles. We assemble a collection of random
elements in a two-way array having r rows. In particular, let {Xt £ FniXki] 1 <5
i < r} be random having the chfs {{^t(Tj;7, );7t € I\ }; 1 < i < r}, and let X =
[Xi , . . . ,X r ] . Our model for an ensemble of conditionally independent random
components is given by the joint chf

(3) <^χ(T!,..., T r ) = / nr

i=1φi(Ti; Ίi)dμ(Ίl,..., Ίr)

where μ( , . . . , ) is a mixing measure on Γ = Γi x x Γ r. If μ( ) is concentrated



286 D.R. Jensen

along the equiangular line {71 = = ηr} in Γ, then this model reduces to that
of Section 3.1. Different versions of (3) are developed in Section 5.

4. Dependent Limit Theorems. We consider various modes of stochastic
convergence, giving unconditional laws of large numbers and results in central
limit theory for conditionally independent sequences. The classical limit theorems
depend heavily on moments. Here we require conditional moments of given order,
whereas unconditional moments need not be defined. Our basic approach uses
chfs. Together with the Dominated Convergence Theorem, this justifies limits of
mixtures as mixtures of limits, so that unconditional versions of the classical limit
theorems follow on mixing.

4.1. Laws of Large Numbers. Let {Xn;n = 1,2,...} be a sequence of con-
ditionally independent random elements on $?*, and let {θn]n = 1,2,...} be a
sequence of parameters. We are concerned with the unconditional convergence of
{(Xn - θn)\ n= 1,2,...} in various stochastic modes. Under the modes of Section
3.1 our basic tools are the representation P(A) = /Γ PΊ(A)dμ(/y), the variance for-
mula Var(Xn) = EΊ[Vvr(Xn | 7)] + Var7[£(Xn | 7)] on ft1, and the corresponding
dispersion formula D(Xn) = EΊ[D(Xn | 7)] + D[E(Xn | 7)] on &k.

Suppose (i) that {Xn; n = 1,2,...} are conditionally independent with mixing
parameter 7, (ii) that {θn;n = 1,2,...} is a sequence of constant elements not
depending on 7 E Γ, and (iii) that (Xn — θn) —» 0 in some mode for each 7 £ Γ.
Assumption (ii) assures unconditional convergence to a constant rather than to a
random variable. Basic relationships among various conditional and unconditional
modes of convergence are summarized in Table 1, arranged in pairs as Cases 1-4 in
which conditional convergence in the first mode of each pair implies unconditional
convergence in the second mode of that pair.

TABLE 1. Unconditional modes of convergence implied
by conditional convergence for each 7 € Γ.

Case Conditional Mode Unconditional Mode
1 Almost Sure Almost Sure
2 Mean Square Mean Square*
3 Mean Square In Probability
4 In Probability In Probability

* Assuming unconditional second moments.

The claims in Table 1 are easily verified using standard arguments. For Case 1,
to show that almost sure conditional convergence implies almost sure convergence
unconditionally, let A = {ω : (Xn(α;) - θn) -> 0}. Then {PΊ(A) = 1;7 £ Γ}
by hypothesis, so that P(A) = /Γ PΊ(A)dμ(η) = 1 unconditionally. For Case 2,
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with E(Xn I 7) = μn(η) on R1, it foUows that E[(Xn - θn)
2} = £7[Var(Xn |

7) + ( M T ) - θn)% where the expression [Var(Xn | 7) + {μn(η) - θn)
2} -> 0 for

each 7 6 Γ by hypothesis. Parallel arguments apply in the vector case. Case
3 follows from suitable versions of Chebychev inequalities on 3ft1 and $lk applied
conditionally. Case 4 follows on using bounded convergence. Observe that Case 2
applies automatically whenever the conditional moments to second order do not
depend on 7.

Various laws of large numbers follow from the foregoing developments uncondi-
tionally without difficulty. Details are supplied for the following version of Khint-
chine's Theorem on 3ft*, where moments of the unconditional distribution are not
required in order to validate the result.

THEOREM 4.1. (Khintchine). Let {Xn;n = 1,2,...} be conditionally iid on

$ίk having the conditional mean E(Xn | 7) = θ. Then the sample mean X n =

(Xi + h X n )/^ is weakly consistent for θ e 9^.

PROOF. Use chfs and dominated convergence to write

(4) , &

Expanding under the integral gives

(5) Urn [1 + it'θ/n + o(\\ t || /n)n =
n—» o o

so that limn-̂ oo φχn(t) = eιt'θ because θ does not depend on 7. This is the chfoΐ
the distribution on 3?* degenerate at 0, thus completing our proof.

It deserves emphasis that moments of the unconditional distribution are not
required to exist, yet a weak law of large numbers nonetheless applies uncondi-
tionally on 3ϊfc.

4.2. Central Limit Theory. We consider scalar and vector sequences of the
types described in Section 3.1. Not only are the limit laws characterized, but
dependent versions of local and global Berry-Esseen bounds are developed. In
particular, {Xi,.. .,Xn} is a conditionally independent sequence on ($tk)n having
the typical cdfGi( ) and moments 2£(Xt | 7) = θ and D(X.i \ 7) = Σz(7). Consider
Z n = ^ / 2 ( X n - 0); and let <£n(t), Fn(x), and Pn( ) respectively be the chf, cdf,
and probability measure induced by Z n , with P( ) as the weak limit P( ) =

ôo Pn( ) Define the Lindeberg function on 3£* as

(6) Zn(2r;7) = n- 1Σ? a B l / || x | | 2 ΛZ, (x).
J\\x\\>z

A principal result is the following.

THEOREM 4.2. Let {Xi,..., Xn} be conditionally independent on (JRh)n having

the typical conditional moments E(X{ \ 7) = 0 and D(X{ \ 7) = Σ;(7). Suppose

that as n -» 00, n " 1 £ ? = 1 Σt(τ) -* Σ ( τ ) Φ ° a n d Ln{nΎl2ε^) -> 0 for each ε > 0
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and 7 € Γ. Then the limit distribution of Z n = nχ/2Xn exists in the class Hko,
and its chf is given by

(7) ϋm^ φn(t) = J e-WWWdμfr).

PROOF. Write the chf φn(t) in its mixture representation and use dominated
convergence to get

(8) lim φn(t) = ί lim pI?=1&(t/»1/3;7)]<*/*(7)
n—»-oo Jr* n—» oo

where

(9) JJ
using standard arguments. This completes our proof.

Limit laws for conditionally independent sequences having conditional second
moments are seen to be dispersion mixtures of Gaussian laws belonging to the
class Tίko- This was noted by Taylor et al. (1985) for exchangeable sequences on
Si1. The class of limit distributions is thus larger than for the independent case. A
special case of some interest is that £(7) = 7Σ, with 7 a positive scalar, in which
case the limit laws are scale mixtures of Gaussian laws. This class contains the
ellipsoidal stable laws as a proper subclass.

COROLLARY 4.2.1. Le£{Xi,...,Xn} be dependent of order r for r > 2 but not
for r < 2. Then the limit distribution of Zn is Gaussian, as when {Xi,...,Xn}
are independent.

4-3. BerryΈsseen Bounds. We first consider the scalar case, for which we seek
global and local bounds as well as invariance properties of the usual Berry-Esseen
bounds. Owing to space constraints, we consider only conditionally iid sequences
on 5Jfc; more general results follow along similar lines. The following result gives
lower and upper bounds on the rate of convergence for conditionally independent
sequences on Si1.

THEOREM 4.3. Let {Xi,...,Xn} be conditionally independent random vari-
ables on Si1 having the typical cdfGi( ;^) with conditionally zero means, the vari-
ance 0^(7), and finite third moments βzii^). Let Fn( ) be the cdf of Zn = n^-^Xn,
and let F( ) = limn_»oo Fn( ) be its limit. Then there are absolute constants c\
and C2 such that the bounds

/ Ln{Sn\η)dμ(η) < sup | Fn(x) - F(x) \
Γ x

(10) <c2 f lSn(Ί\sn{Ί))-ιLn{z;
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hold whenever the integrals are defined, where £^(7) = 0^(7) + h ^n(

K 1 2

PROOF. Apply the bounds of Studnev and Ignat (1967) conditionally.

THEOREM 4.4. Let the conditionally iid variables {Xi,...,Xn} on 5R1 be de-
pendent by scaling, having the conditional cdfG( j) with moments as in Theorem
4-3. Then a global bound is given by

(11) βvφ \ Fn(x) - F(x) \<
X

where c is an absolute constant. Moreover, if G( ;η) either has an absolutely
continuous component or is of the lattice type, then the local bound

(12) \Fn(x)-F(x)\<

holds with c an absolute constant whenever the integral is defined.

PROOF. The first conclusion follows on applying the bounds of Berry (1941)
and Esseen (1945) conditionally and noting that the moment ratio is scale-invariant.
The second follows on applying a result of Bikjalis (1966) conditionally.

We next turn to Berry-Esseen bounds on $tk. We consider only conditionally
iid sequences on (Jϊ*)71, noting that more general results follow without difficulty
along similar lines. Let T be the class of all measurable convex subsets of *$&.

THEOREM 4.5. Let {Xi,...,Xn} be conditionally iid on (3ft*)n having condi-
tional moments E(X \ 7) = θ, D(X \ 7) = Σ(7), and {β3j(l) = E(\ Xj - θj | 3

I 7); 1 < j < k}, with Xj as the jth component o/X. Then global bounds on the
rate of convergence of Pn to P are given by

(13) sup I Pn{A) - P(A) \<^Jr

whenever the integral is defined, where 2(7) = [^(7)] = [^(7)]"^ a n d c 1S a n

absolute constant not depending on k.

PROOF. The proof consists of modifying a result of Bergstrom (1969) in a form
due to Jensen and Mayer (1975), and applying the result conditionally.

COROLLARY 4.5.1. Let {Xi,...,Xn} be dependent by coordinate scaling with
moments as in Theorem 4-5. Then

rk3

(14) sup I Pn(A) - P(A) \< -J75



290 D.β. Jensen

PROOF. The conclusion follows on noting that the expression under the integral
on the right of (13) is invariant under scaling the coordinates on 3ft*.

COROLLARY 4.5.2. Let {Xi,.. .,Xn} be dependent of order r for some r > 3
but not for r < 3, with moments otherwise as in Theorem 4*5. Then

rk3

(15) s u p | p n ( A ) ^ p ( A ) | < ^ _ >
AZf n j=l

PROOF. This follows because the expression under the integral on the right of
(13) does not depend on 7.

There is a rich literature on central limit theory and bounds of the Berry-Esseen
type on 3ft1 and 3ftfc. Many known results carry over to conditionally independent
sequences along the lines illustrated here. For example, unconditional Edgeworth
series expansions of order s on 3ft* will emerge as mixtures of usual Edgeworth
series on 3ftfc as given in Chambers (1967). Moreover, on applying results of von
Bahr (1967) conditionally, bounds on the errors of these Edgeworth mixtures can
be obtained in a manner similar to the unconditional versions of Berry-Esseen
bounds given here. If the expression under the integral on the right of (13) is
uniformly bounded for all 7 6 Γ, then that bound can be used as a nonintegral
version of (13). Note, however, that the integral version depends on the particular
mixture and thus gives a tighter bound.

In another direction, suppose that second moments are not defined condition-
ally, but that the conditional distributions are in the domain of attraction of a
stable limit on 3ft1 or 3ft* with index α. Then limit distributions of standardized
sums are conditionally stable with index α, and unconditionally are mixtures of
these. Again the class of limit laws is larger than for the independent case. In par-
ticular, the chf s for these limits can be studied as mixtures of Levy representations
for stable chfs on 3ft1 or 3ft*, as appropriate.

5. Topics In Inference. Many statistical procedures are based on the as-
sumption of independence. A number of these remain valid despite dependencies
of certain types. Three examples are given here using variations of the basic model
of Section 3.2. In these cases the argument is the same: Conditional distributions
of the statistics in question are seen to be free of the conditioning variables and
thus are identical to their unconditional forms. In all such cases the classical as-
sumption of independence may be replaced by the much weaker assumption of
conditional independence.

EXAMPLE 5.1. Sensitivities of Experiments. The sensitivities of alternative
experiments in the normal-theory analysis of variance may be studied as follows.
Suppose that £(Xi) = Nn(θι,σ\ln) and £(X2) = Nn^^σ^ln) are models for two
independent experiments pertaining to a parameter 0, and that a linear hypothesis
H : Aθ = 0 is to be tested in each experiment. Let F\ and F2 be the corresponding
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variance ratios having noncentrality parameters λi and λ2 Bradley and Schumann
(1957b) studied the ratio R = Fχ/F2 both as a gauge of the relative sensitivities of
the two experiments, and as a statistic for testing H : Xι = X2. The distribution
of R and various applications are treated in Bradley and Schumann (1957a,b),
Schumann and Bradley (1958), Schumann and Bradley (1959); see also Shue and
Bain (1982), Subrahmaniam (1979), and Zerbe and Goldgar (1980) for related
work.

Now let Xi and X2 be conditionally independent as in Section 3.2 such that
£(71X1 I 7i) = Nniβuσlln) and £ ( 7 2 X 2 | η2) = Nn{θ2,σ

2

2In), where ( 7 l i 7 2 ) have
some joint distribution on 3ft+. Because F\,F2 and R are scale-invariant, their
conditional and unconditional distributions are identical, so that all the standard
properties continue to hold exactly under conditional independence of the type
indicated.

EXAMPLE 5.2. Friedman's Test Friedman's (1937) test is used widely in
nonparametrics to compare the effectiveness of k treatments using n experimental
subjects. Let {Y%j\ 1 < j < A:, 1 < i < n) be outcomes of an experiment such that
Yf = \Y%u - ¥ίk] has an exchangeable distribution on 3ft* for each i = 1,..., n. If

Rij denotes the rank of Yij among {Yn, ...Yik} and if {Rj = R\j H \~ Rny, 1 <
j < fc}, then Friedman's statistic is

j

The standard assumption is that {Yi,..., Yn} are mutually independent, in which
case the exact small-sample null distribution is based on the (A;!)n possible permu-
tations, and the asymptotic distribution is χ2(k — 1).

Specializing the model of Section 3.2, let {φι(t\,.. .,tffc); 1 < i < n} be chfs
of exchangeable distributions on 9ft*, and let Γo be the class of all monotonic in-
creasing functions 7 : Jϊ1 —• 3ft1. For a typical chf φ(t\,..., tk) of Y' = [YΊ,... Yfc],
denote by φ(tu . . . , tk\ 7) the joint chf of [7(^1),. , 7(^)] N o w choose [71,..., η/n]
from Γ = ΓQ according to some probability measure μ( ), and consider the joint
distribution of {ji(Yij); 1 < j < k, 1 < % < n). This has the form (3). It is well
known that {[7t(lα),.. .7t(l»Jk)]; 1 ^ i ^ ^} a r e again exchangeable vectors on 3ft*,
but now they are dependent. Nonetheless, the conditional null distribution of X2

does not depend on [71,.. .,7 n], and thus its exact small-sample and asymptotic
distributions are precisely those occurring when responses from subject to sub-
ject are independent. For example, the k responses within each subject may be
randomly scaled, with a different scaling for different subjects.

EXAMPLE 5.3. Classification Rules. Given samples from two Gaussian pop-
ulations, i\Γfc(0i,Σ) and Nk(θ2,Έ), and a random observation X from Nk(θ, Σ)
having unknown origins, the problem of classification is to assign X to one of the
two populations. In particular, suppose £(Xi) = NniXk(lni X ̂ i?Ini X Σ), and let
(Xi,Si) be the corresponding sample mean vector and sample dispersion matrix.
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Similarly, consider £(X2) = Nn2Xk(ln2

 x ^\Λn2

 x Σ!) and (X2, S2) . The standard
procedure uses the classification statistic

(17) V = [X - (l/2)(Xχ + Xa^S-^X! - X2)

where S is the pooled sample estimator for Σ; see Anderson (1984), p. 210. Normal-
theory properties of the usual classification rule using V are based on the mutual
independence of {Xi, X2, X}.

However, we now suppose that {Xχ,X2,X} are conditionally independent,
given a nonsingular random matrix 7 6 i^x*, such that £(Xi | 7) = NniXk(lni X
θ'lΊ,lni x 7 'Σ 7 ),,C(X 2 I 7) = Nn2Xk(ln2 x θ'2Ί,ln2 x 7 Έ 7 ) , and £(X | 7) =
Nk(ifiθ>1f'Έ'y) This is seen to be a special case of model (3) where r = 3. Since
the statistic V is invariant under nonsingular linear transformations, its condi-
tional distribution C(V | 7) is independent of 7 G Γ. It follows that all standard
properties of the usual classification rules carry over to scale mixtures of the types
indicated.
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