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We review the limiting behavior of extreme values of se-
quences of random vectors in Rd by considering mainly
the dependence properties of its nondegenerate limit laws.
We treat separately the i.i.d. case, the stationary case,
the independent non-identically distributed case, and the
general nonstationary case. As dependence concepts we
discuss total dependence, association, positive lower or-
thant dependence, and independence.

1. Introduction. Consider a sequence {Xt*,i > 1} of d-dimensional random
vectors with (multivariate) distribution F{. In this paper, we discuss the behavior
of the maximum M n = (Mni,Λfn2,.. .,Mnd)f where Mnj denotes the maximum
up to time n of the j-th components of X;:

Mnj = max(Xυ , . . . , Xnj), j < d.

Our main interest is the dependence structure of the limiting distribution of prop-
erly normalized M n . More precisely, we deal with the convergence of

P{(M n - b n )/a n < z} = P{Xi < anz + b n , i < n}

(1) ^ G(z) = P{L < z } a s n - ^ o o ,

and the dependence properties of G. Note that all algebraic operations are com-
ponentwise and that the normalization constants satisfy an > 0. The univariate
case has been treated by many authors; c.f. the textbooks by Leadbetter et al.
(1983), Galambos (1987), and Resnick (1987). One additional aspect of extreme
value theory in the multivariate case is the dependence properties of the limit law
G in (1). This important and interesting question is the primary focus of our
review. We investigate the extreme value distribution G for independence, total
dependence, association, and positive lower orthant dependence (see Section 2 for
definitions).

In Section 2 we quickly review the case of i.i.d. sequences, whose study was
initiated by GefFroy (1958/59), Tiago de Oliveira (1958), and Sibuya (1960) for
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d = 2. In the remaining sections we consider more general cases, first beginning
with the case of stationary sequences. Most of the classical results remain valid in
this situation provided a certain mixing condition is satisfied.

Next we treat the case of independent but non-identically distributed random
vectors. This case can only be reasonably treated by introducing a certain uniform
asymptotic negligibility condition. Without this restriction, every (multivariate)
distribution G can occur as a limit in (1). This condition, however, can be inter-
preted as a natural extension of the conditions used implicitly in the classical i.i.d.
case. Finally, we deal with the general case of non-independent, non-stationary
sequences.

2. The i.i.d. Case. For the i.i.d. case (Fi = F), equation (1) becomes

(2) F"(a n z + b n ) ^ G ( z )

or

π(l - F(a n z + bn)) -> -logG(z).

This situation is rather completely discussed in the literature (cf. Galambos (1987)
and Resnick (1987) for references). Therefore we only mention the results which
are relevant to the following discussion of non i.i.d. random vectors. The limit G
is called an extreme value distribution and is characterized by the max stability
property, i.e., for every s > 0 there exist cs and ds such that Gs(-) = G(cs +ds).
Note that the univariate marginals Gj of an extreme value distribution G are obvi-
ously univariate extreme value distributions. Generally a multivariate distribution
on [0, l ] d , a so-called dependence function, is used to discuss dependence proper-
ties of G (de Haan and Resnick (1977), Deheuvels (1984)). For the purpose of
our discussion, however, the following results are more informative and useful in
applications. Because of max stability the extreme value distribution G is max i.d.
(max infinitely divisible), i.e. Gs is a multivariate distribution for every s > 0, (cf.
Balkema and Resnick (1977)). Hence G is associated: Cov(φ(Z),ψ(Z)) > 0 for
any (componentwise) nondecreasing functions φ and φ where G is the distribution
of Z (cf. Esary et al. (1967), Resnick (1987)). The result that extreme value
distributions are associated, is due to Marshall and Olkin (1983).

THEOREM 2.1. Assume that (2) holds for the sequence of random vectors
{X;,i > 1} in Rd, with normalization an and b n . Then G is associated since it is
max stable and max i.d.

Obviously, it also implies the weaker PLOD (positive lower orthant depen-
dence) property: G(z) > Π^=1Gj(^j). If G(z) = nj=1Gj(zj), we say that Z has
independent components where Z has distribution G. As an upper bound for any
multivariate distribution, we have the inequality G(z) < GJ(ZJ) for any j < d. If
this statement holds as an equality, more precisely, if G(z) = mm(Gj(zj),j < d) for
all z, we say that Z has totally dependent components. Also assuming Gj = Gi,
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this means that P{Z\ = Z<ι = . . . = Zd] = 1. It defines the strongest possible
dependence.

The two questions of independence and of total dependence were treated in
the previously mentioned papers by Geffroy (1958/59), Tiago de Oliveira (1958),
and Sibuya (1960) for the bivariate case. Since the limit G is max i.d., bivariate
independence implies joint multivariate independence (cf. Newman and Wright
(1981)). The result on independence was recently improved by Takahashi (1987,
1988). He gave necessary and sufficient conditions such that an extreme value
distribution is characterized by its marginal distributions. Combining these facts
we obtain the following statement.

THEOREM 2.2. Let {X;,i > 1} be a sequence of random vectors in Rd. Assume
that (2) holds with normalization an and b n . Then 7i has independent components
iff for every 1 < j < j ' < d

(3) Jdrn^ nP{XXj > anjzj + bnj, Xljt > anj,zy + bny} = 0

for some Zj, zy such that Gjjt(zj,Zjt) G (0,1), where Gjj' is a bivariate marginal
ofG.

A similar statement holds for the total dependence in place of independence.
The bivariate case was treated by Sibuya (1960). Takahashi's characterization
(1988) also improves upon this statement.

THEOREM 2.3. Let {Xi,i > 1} be a sequence of random vectors in Rd. Assume
that (2) holds with normalization an and b n , and that Gj = G\} j < d. Then Z
has totally dependent components iff for every 1 < j φ j ' < d

(4) Jirn^ n(P{Xτj > unJ9 Xu. > unj,} - P{Xlά > unj}) = 0

for some z, such that G\(z) 6 (0,1), where unj is defined by unj = anjz + bnj.

Note that (4) is equivalent to

l̂im^ nP{Xlά > anjz + bnjy Xxjι > anyz + δnj/} = - log Gλ{z)

in the i.i.d. case. Equation (4) will be used in the following more general case.

3. The Stationary Case. In this section we consider stationary sequences
of random vectors, with Fi = F. In this case the extreme value theory is mainly
discussed for Gaussian sequences (Lindgren (1974), Amram (1985), Hΐisler and
Schύpbach (1988)) or for more general sequences in R (d = 1) which satisfy a mild
mixing condition (cf. Leadbetter et al. (1983)).

In the multivariate situation, if the conditions are such that

(5) P{Mn < anz + b n } - Fn(anz + b n) -+ 0 as n -> oo,
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then all the results of Section 2 remain valid in this more general situation. How-
ever, even under less restrictive conditions, when (5) does not hold, we can still
discuss the dependence properties of the limit G, provided it exists.

As mentioned, the univariate problem for stationary sequences is discussed in
detail (cf. Leadbetter et al. (1983), Galambos (1987)). The general multivariate
stationary problem, however, was only considered in a few papers. An attempt
was made by Villasenor (1976), for the case of bivariate exchangeable sequences.
Hsing (1987) and Hύsler (1987) independently extended the univariate results,
related to Leadbetter's mixing conditions, to the multivariate case. Sbihi (1987)
also discusses the multivariate stationary case. In addition, Hύsler (1987) focused
more on the dependence properties. These results are reviewed below.

We introduce the following mixing conditions. Given z, we set u n = anz + b n

and Bn(I) = {Xt < u n , i ξ /}, where / C {1,..., n). The set / will also usually
depend on n.

Condition Όd = Dd({un,n > 1}) holds for a given z with normalization
a n (> 0) and b n , if there exists an array {αn m, n > 1, m < n) such that

i) \P(Bn(IUJ)) - P(Bn(I))P(Bn(J))\ < anm

for every pair of subsets / and J of {1, . . . , n) which are m-separated (i.e. mint€j(i)—
max2 € / ( i ) > m or minj€/(ΐ) — max ι G j(i) > m) and

ii) limn_H.oo an^m^ = 0 for some sequence {m*, n > 1} with m* —• oo and m * ( l -
F(un)) —• 0 as n -* oo.

This condition restricts the so-called long-range dependence since it implies
that extreme values are asymptotically independent when they occur largely sepa-
rated in time. Note that this condition is weaker than the usual mixing condition.
The following local dependence condition Ό'd excludes the clustering of extreme
values in a small time interval.

Condition D^ = D^({u n,n > 1}) holds for a given z with a normalization
a n ( > 0) and b n , if

lim limsupn Y^ P{Xi ^ u n , X t j£ u n } = 0.
r-κx> n_>o o Jrf

\<%<n(τ

These two conditions imply that (5) holds. Hence

THEOREM 3.1. Let {X, ,i > 1} be a stationary sequence of random vectors in
Rd. Assume that Όd and Όd hold for every z with G(z) > 0 and un = anz + bn,

0), b n the normalization. Then (1) is equivalent to (2). Hence

i) (Association) G is associated, since G is max stable and max i.d.

ii) (Independence) If, in addition, condition (3) holds, then Z has independent
components, and conversely.
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Hi) (Total Dependence) If, in addition, (4) holds, then Z has totally dependent
components, and conversely.

Some of the above statements hold even under weaker conditions.

THEOREM 3.2. Assume that for some stationary sequence {Xt ,i > 1} in Rd

the limit G in (1) exists and that the condition D^ holds for every z with G(z) > 0
and u n = a nz + b n , a n (> 0), b n the normalization. Then G is associated since it
is max stable. Hence G is also PLOD and satisfies the inequality

G(z) > max(G*(z), Π ^ G ^ )),

where G*(z) = limn F
n (a n z + b n ) .

This statement follows since extreme values which occur in mn-separated in-
tervals are asymptotically independent by D^. This implies the max stability in
the stationary case.

The case of independence also occurs if the random vectors Xt are negative de-
pendent in some sense, since the above result shows that under Condition D^ the
limit law G is associated and hence positive dependent. We assume a rather weak
form of negative dependence, namely PNQD (pair-wise negative quadrant depen-
dence): F is PNQD if every bivariate marginal Fjy is NQD (negative quadrant
dependent), i.e., for every 1 < j < j ' < d

Fjj,(x,y)<Fj(x)Fj,(y) for all x, y.

THEOREM 3.3. Let {Xt ,i > 1} be a stationary sequence of random vectors in
Rd such that F is PNQD. Then

i) Condition (3) holds if n(l - F(un)) = 0(1) as n -» oo.

ii) Assume also that (1), D^ and Ό'd hold for every z with G(z) > 0 and un =
a nz + hn, a n (> 0), b n the normalization. Then the limit Z has independent
components.

Independent asymptotic components can also occur in another situation where
Gj φ G'j. This means that extreme values may occur locally in clusters. Gj is still
an extreme value distribution if we assume Condition D^; more precisely, there
exists an extremal index θj such that Gj = (Gp^> (cf. Leadbetter (1983)). By
Theorem 3.2, G is also an extreme value distribution. By the result of Takahashi,
if G(z) = ILj<dGj(zj) for some z with GJ(ZJ) G (0,1) for all j < d, then Z has
independent components. Therefore the joint behavior of the components has to
be restricted in a suitable way to verify the condition of Takahashi. The following
result is a slightly extended version of Theorem 3.4 of Hϋsler (1987) and follows
by similar arguments.
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Condition D^ holds for z with normalization a n (> 0) and b n if

lim limsup r J ] Σ piX*i > Uni-> Xhl > uni} = 0.

THEOREM 3.4. Let {X;,i > 1} be a stationary sequence of random vectors in
Rd, such that (1) holds. Assume that Condition Όd holds for every z with G(z) > 0
and un = anz + b n , a n (> 0), b n the normalization. IfD'd holds for some z with
GJ(ZJ) G (0,1), then the limit Z has independent components.

Finally we discuss the case of total dependence, without assuming Condition
Όd and Όd. This result is not stated in Hϋsler (1987), but it is an immediate
consequence of the more general statement in Section 5, Theorem 5.4.

THEOREM 3.5. Let {X«-,i > 1} be a stationary sequence of random vectors in
Rd. Assume that P{Mnj < anjZ + bnj} -^ G\{z) holds for every j < d with a
normalization anj(> 0), bnj. If (4) holds for all z with G\{z) € (0,1), then the
limit Z exists and is totally dependent.

In general, condition (4) is not necessary as is shown in Section 5 by an example.
Note also, that if Z exists with Gi being an extreme value distribution, it is
sufficient that (4) holds only for some z with G\(z) £ (0,1) by Takahashi's result.

We also mention that Condition D^, Όd and Όd can be verified for a Gaussian
sequence which satisfies a Berman type condition, i.e.,

rjj/(n) log n —» 0 as n —> oo.

Here rjj>(n) is the correlation of X\j and Xnjt. This verification uses the technique
developed in Berman (1964) (cf. Leadbetter et al. (1983)).

In Theorem 3.2-3.4 we did not assume Condition D^. These results, however,
heavily depend upon Condition D<j. Without Condition D^ it would not be pos-
sible to give such a unified treatment of the behavior of extreme values. Note, for
instance, that even negative dependent distributions G could occur as limits in (1)
by taking a sequence of random vectors Xt = Xi for all i > 1 with Xi distributed
as G.

Many of the statements can also be formulated for triangular arrays of random
vectors. We only mention that, in general, a larger class of limit laws occurs for
M n (cf. Hύsler and Reiss (1989) for the Gaussian case).

4. The Nonstationary Independent Case. In the independent but non-
stationary case, we need to consider the convergence of

(6) Πκ n Ή(a n z + b n ) Z G(z) as n -> oo.

The following results are contained in Hύsler (1988a). As mentioned in the intro-
duction, we need to impose some restrictions in this case. We assume the following
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condition A^; the first part is a uniform asymptotic negligibility (u.a.n.) condition.
Without this restriction, any G can occur as a limit in (6).

Condition Ad holds with normalization an > 0 and b n , if

< + b n ) } —> 0 as n -» oo

for all z and if

— F{(anz + b n ) ) -̂ J ιι (z) as n -^ oo.

<n

Assume that w(z) < oo for some z 6 i2d.
Note that Ad implies the existence of G. Conversely, if the u.a.n. condition

holds, then the existence of G in (6) implies the second part of Condition A^ with
w(z) = — logGf(z). Note also that in the stationary case, F^i3LXn = 1 — F(un).
Thus n(l - F(un)) = 0(1) implies the u.a.n. condition, i.e., the u.a.n. condition
is implicitly assumed in the stationary case. In particular, we proved the following
result.

THEOREM 4.1. Let {Xt ,i > 1} be an independent sequence of random vectors
in Rd. Assume that Ad holds with normalization an and b n . Then the limit law
G in (6) is max i.d.} hence associated and PLOD.

This follows by a result of Balkema and Resnick (1977). By assuming a slightly
extended version of Condition A^, the limits G can be totally characterized. This
extended version also implies that the limits of partial maxima M[nί],0 < t < 1
have a max i.d. limit distribution. Since M n = M[nt] V M( n ί n j with M( m n j =
max m < t <n{X1 }, a general decomposition of the limit G can be obtained (see Husler
(1988a)) in an analogous way as for the sup self-decomposable distributions G (see
Gerritse (1986)). These arise from the assumption an = 1 in (6).

The limit law G in (6) also has a positive dependence structure. If every X;
has a negative dependence structure, we again expect a limit with independent
components as in the former sections. The following condition (7) is weaker and
is, in general, the equivalent statement for independence. It follows as in the i.i.d.
case and by Theorem 4.1.

THEOREM 4.2. Let {Xt,ΐ > 1} be an independent sequence of random vectors
in Rd. Assume that Ad holds with normalization an and b n . Then

as nΣ
j<i;<d

for all z such that G(z) > 0, with un = anz + b n , is equivalent to

(8) G(z) = UJ^Gite),

where Gj is the j-th marginal of G.
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COROLLARY 4.3. Let {X;, i > 1} be an independent sequence of random vectors
in Rd. Assume that Ad holds with normalization an and b n . If for every i > 1,
Fi is PNQD, then the limit Z in (6) has independent components.

These two results on the independence can be slightly improved by only assum-
ing the u.a.n. condition and the existence of all the univariate marginal limits Gj,
instead of Condition A^. This weaker assumption will be used in the last section.

The total dependence case can be treated as before but with an obvious change.
Here we assume A^ which implies the equivalence of (9) and (10).

THEOREM 4.4. Let {X2 ,i > 1} be an independent sequence of random vectors
in Rd. Assume that Ad holds with normalization an and hn and that the existing
G satisfies Gj = G\} for every j < d. Then

(9) G{x) = G

is equivalent to

iά> > Unjt} -Y,P{Xii > Unj}) = 0
\i=l t = l /

for all 1 < j φ jf < d and every z with Gχ(z) > 0 and unj = anjZ + bnj.

In this case, it is generally necessary to assume (7) and (10) for all z since the
results of Takahashi, which were proved for max stable distributions, do not hold
for general max i.d. distributions (Hύsler (1989)). Note that because of indepen-
dence of the random vectors, the second sum in (10) converges to - l o g G i ^ ) . In
this case the extreme values M n j , j < d, occur jointly at the same time point,
asymptotically.

In the following situation, a rather restricted but interesting case occurs where
we obtain an associated limit law without assuming Condition D^. This follows
by simple properties of association. The PLOD property follows similarly.

THEOREM 4.5. Let {Xt ,i > 1} be an independent sequence of random vectors
in Rd. Assume that Ad holds with normalization a n and b n . If every F{ is as-
sociated (PLOD), then the distributions o/M n and of Z are associated (PLOD),
respectively.

5. The General Nonstationary Case. The extension of the results in
Section 4 to this more general situation is carried out along the same lines as the
extension of the classical i.i.d. case to the stationary situation. If we find conditions
such that for every z,

(11) P{Xi < anz + b n} - Π;<nΉ(anz + b n ) -• 0 as n -> oo,

all the results of Section 4 can be reformulated in this general case. But again, we
are interested in finding weaker conditions such that the four dependence properties
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hold for a possible limit G in (1). We obviously assume the u.a.n. condition A^
in this section again. The following results are discussed and proved in Husler
(1988b).

The following mixing condition D^ is an extension of the mixing condition
in the stationary case. We use the same notation as before since both mixing
conditions are equivalent in the stationary case.

Condition D^ = Drf({un,n > 1}). We assume that there exists an array
{oίnm-, n>l,m<n} such that

i) \P(Bn(IϋJ)) - P(Bn(I))P(Bn(J))\ < αnm for every pair of subsets I and
J of {1, . . . , n} which are ra-separated and

ii) limn_,oo α n > m * = 0 for some sequence {m*,ra > 1} with ra* —» oo and
+ 0 as n ^ 00.

Note that in the stationary case, m * i ^ a x n = ra*(l — F(un)) = O(ra*/rc).
To prove (11) we use the following extension of the local mixing condition in the
stationary case, which we again denote by Όd. For any / C {1,..., n} and δ > 0,
define d'n(I, δ) by

*" .-

where Σ i e Λ / .P{Xί g un} < 6. Let F*{I) = Σ i € / P{X t g un} and 1% =
i^({ l , . . ,,7i}). Note that we define dn(I,δ) as the sum on a suitable subset J*
of /. This idea is very useful in the Gaussian case, where some random vectors
may have a heavy weight in the sum Σ1</ιG/P{Xt ^ u n, X^ ^ u n }, but not in the
sum ΣtG/P{Xt ^ u n} (cf. Husler (1983) in the univariate case and Husler and
Schύpbach (1988) in the multivariate case). Obviously, this idea is also useful in
the general non Gaussian case.

Condition D^ = D ;

d({un,n > 1}). We assume that there exist an array
{αnrJn > l , r > 1} and a sequence {<7r,r > 1} such that lim^oo rgr = 0,
limr_fOO lim supy^^ rαnr = 0 and for every r > 1 and for all n > rto{r) : d'n(I, gr) <
αnr for all J C {1,..., n} such that F*(I) < F*/r.

Both conditions D</ and D^ together imply that M n behaves asymptotically
as if {X^,i > 1} would be an independent sequence.

THEOREM 5.1. Let {Xj,i > 1} be α general sequence of random vectors in Rd.
Assume that Ad, D^ and Όd hold for every z with G(z) > 0 (or w(z) < oo,) and
with u n = anz + b n and normalization a n (> 0), b n . Then (1) is equivalent to (6).
Hence

i) (Association) G is associated, since G is max stable and max i.d.

ii) (Independence) If, in addition, condition (7) holds, then Z has independent
components and conversely.
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Hi) (Total Dependence) If, in addition, (10) holds, then Z has totally dependent
components and conversely.

We can still prove that G has a positive dependence structure without assuming
the local mixing condition, as in the stationary case.

THEOREM 5.2. Let {Xt ,i > 1} be a general nonstationary sequence of random
vectors in Rd. Assume that the conditions Ad and Όd hold for every z such that
G(z) > 0, with u n = anz + b n and normalization a n (> 0), b n . //

P{Mn < anz + bn} ^ G(z)

as n —> oo, then G is max i.d., hence associated.

The next statement considers the asymptotic independence of the components
for the extreme values. If the local mixing condition D^ is not assumed, there exists
the possibility that the extreme values will cluster in small time intervals. However,
the components of Z can still be independent, if we assume a condition D^, similar
to the stationary case. To illustrate the possibility of clustering, consider, e.g.,
the simple case of independent bivariate random vectors with Xn = X{<ι - 7i,7i
real. Such a sequence satisfies the conditions D^ and Όd. Clustering occurs
at the same time point, jointly in the two components. An asymptotic result
for such an example would still follow from Theorem 5.1. Another interesting
case of clustering arises if we consider, in every component, the joint clustering
of extreme values in small time intervals. For instance, let Y{j be independent
random variables and define Xij = Y[i/Ίj]+ij with 7j integer. Obviously M n

has independent components, but Όd does not hold if η/j > 1. A limit Z with
independent components Zj is still possible for such a clustering. Hence we define
the following restriction.

Condition Ώ"d is defined in the same way as Condition D d , where the expression
d'n(I, δ) is replaced by

<CθM) = mill Σ ΣPiXi3 > Unji Xhl > tin/}-
c i

Condition Όd = D d ({u n ,n > 1}). We assume that there exist an array
{anr,n > l , r > 1} and a sequence {gr,r > 1} such that limr_*oo r9r

 = 0,
limr_^oo lim supn_,oo roί'nr = 0 and for every r > 1 and for all n > no(r) : d^(/, gr) <
ol'nr for all / C {1,..., n) such that F*(J) < FJr.

Then, analogous to the results in the stationary case, the independence of the
components of Z occurs in the following situation described by Theorem 5.3. Note,
however, that the limit G is, in general, not a max stable distribution. Hence we
cannot make use of the results of Takahashi to improve upon the general statement
of the theorem. For the last two statements we use only the u.a.n. condition

* 0 a n d the existence of the univariate marginal limits Gj, i.e.,
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(12) P{Mnj < αnjz + bnj} Λ Gj(z) as n -+ oo

for every j < d with normalization αnj and bnj. The convergence in (12) is dis-
cussed in Hiisler (1983, 1986), where sufficient conditions such as the univariate
versions Di and D^ are formulated. The results in Section 3 do not follow as a
special case of Theorem 5.3 since we are assuming slightly different conditions.

THEOREM 5.3. Let {Xt ,i > 1} be α general nonstationary sequence of random
vectors in Rd. Assume that the u.a.n. condition, (12) and D^ hold for every z
such that GJ(ZJ) > 0, for all j < d with un = a n z + b n and normalization a n (> 0),
b n . Then G{z) = UJ=1GJ(ZJ) if either, for every z with a n and bn,

i) Όd holds and every F{ is PNQD, or

ii) Όd holds.

Finally we consider the total dependence case. The total dependence result
follows rather easily without assuming condition D^.

THEOREM 5.4. Let {Xt ,i > 1} be a sequence of random vectors in Rd. Assume
that (12) and (10) hold for every unj = anjZ + bnj with z such that G\(z) > 0 and
Gj = G\ for all j < d. Then the limit distribution G in (1) exists with

G{z) = Giίπμnte)).

Consequently G is totally dependent.

This statement holds for extreme values of random sequences which exhibit a
behavior similar to that of independent sequences. More precisely, this means that
the extreme values Mn j, j < d, mainly occur jointly at the same time point. It
does not include random sequences such as, e.g., X t = (Yi+ι,Y{) where {Y{} is an
i.i.d. sequence of random variables satisfying (12).

Note also that a general nonstationary Gaussian sequence satisfies Condition
Drf, D^ and D^ for any normalization u n satisfying Condition A^ if a Berman
type condition holds (Hύsler and Schϋpbach (1988)).
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