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A BAYESIAN COMPARISON OF GROUP SEQUENTIAL DESIGNS

B Y ASHIM K. MALLIK1

State University of New York

A Bayesian approach to group sequential designs is illustrated for Anscombe's for-
mulation of the problem of comparing two treatments in a medical trial. It is shown
that an adjusted continuous time stopping boundary is a good approximation to the
optimal group sequential stopping boundary. The Bayes risk and efficiency of the group
sequential designs, using both the optimal and adjusted continuous time boundaries, are
computed.

1. Introduction. In long-term clinical trials, where patients are entering se-
quentially, the strict application of fixed sample size designs is unjustified on ethical
grounds. On the other hand, fully sequential designs may be impractical due to the
need for continuous assessment of accumulating data. The planned use of group se-
quential designs has been advocated as a convenient approach to the monitoring of
clinical trials. In the literature there are many ad-hoc group sequential designs, for ex-
ample in Pocock (1977), O'Brien and Fleming (1979), and Lan and Demets (1983). For
a good review, one can consult Simon (1991) and Whitehead (1997). Recently Lewis
and Berry (1994) and Eales and Jennison (1995) gave some comparisons of different
types of group sequential designs.

In this manuscript we will focus on the following issues:

(a) In a Bayesian framework, how a continuous-time version of the group sequential
problem, where the data arrive as a Wiener process, can approximate the discrete-
time group sequential procedure.

(b) How good the continuous-time "optimal" stopping boundary (with proper adjust-
ment) is as an approximation to the "optimal" discrete-time group sequential
stopping boundary.

1 Ashim K. Mallik died on November 3, 1997, prior to receiving initial referee reports. This
manuscript was substantially revised by the two referees, Vincent Melfi and Nigel Stallard,
and edited by W. F. Rosenberger.
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This paper is organized as follows. In Section 2 some relevant results in the fully se-
quential setting are recalled in enough detail to motivate the group sequential analogues
which are introduced and analyzed in Section 3. The Bayes risk and Bayes efficiency
of the group sequential designs are investigated in Section 4.

2. Background: fully sequential tests. Anscombe (1963) introduced a decision-
theoretic approach to clinical trials. He assumed that the patients are treated in pairs
during the experimental phase of the study, with one member of the pair assigned to
treatment 1 and the other assigned to treatment 2. The difference in patient response
(treatment 1 - treatment 2) is assumed to be normally distributed with mean μ and
standard deviation σ2. Here μ is unknown and σ2 is assumed to be known. Throughout
the current paper the treatment differences are assumed to be independent. It is also
assumed that JV, the total number of patients ever to receive either of the treatments,
is known.

Anscombe (1963) uses the loss function defined by |μ| times the number of patients
receiving the poorer treatment. For n < JV/2, let Sn denote the sum of the response
differences after n pairs of patient responses have been observed. In Anscombe (1963)
it is assumed that the remaining N — 2n patients would be treated according to the
sign of Sn: If Sn > 0 then the remaining patients will receive treatment 1; otherwise,
the remaining patients will receive treatment 2.

In this section some relevant results due to Chernoff (1972) and Chernoff and Petkau
(1981, 1985), are presented. These references may be consulted for further details. The
notation follows that of Chernoff and Petkau (1981).

In the Bayesian setting, the posterior expected loss can be written as

(2.1) nE[\μ\] + (TV - 2n)£[max(0, -sgn(Sn)μ)],

where sgn represents the sign function and the expectation is taken with respect to the
posterior distribution of μ after observing Sn.

Throughout this section, the prior distribution of μ is assumed to be a normal
distribution with mean μ0 and variance σj. After observing the treatment differences
Xι,..., Xn, the posterior distribution of μ is normal with mean Y* and variance s*,
where

( 2 2 ) y ; = σ-Wσ-3ΣΓ^
<TQ + no Δ

Chernoff (1972) showed that for n > m > 0, the conditional distribution of Y* — Y£
given Y£ is normal with mean 0 and variance s^ — s*, and Y* — Y£ is independent
of Y£. Therefore {Y*} behaves like a Gaussian process with independent increments
starting from Y£ = μo

Since the choice of treatment for the remaining N — 2n patients is determined by the
sign of Y*, the expected loss or posterior risk associated with stopping after treating
n pairs of patients is given by

(2.3) nE[\μ\] + (N- 2n)£[max(0, - s g n ( r n » ] ,
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where the expectation is taken with respect to the posterior distribution of μ given
Y*. Let φ and Φ represent the standard normal density and cumulative distribution
functions respectively, and let ψ(u) — φ(u) + u{Φ(u) - 1/2}. Then the posterior risk
can be expressed as

(2-4) Nj?nψ(Y:/J7n) - (1/2)(N - 2n)\Y;\.

Using (2.2) the posterior risk can be written as dι(Y*, s*), where

(2.5) d1(y\ s*) =

and s~λ = σ$2 + (l/2)7Vσ~2. It is of interest to find the stopping time τ that minimizes
the expected risk E{dι(Y*, s*)}, where the expectation is taken over the distribution
of r.

A continuous-time approximation to the above problem is to replace the sequence
of partial sums {Σ?=i Xi : 0 < k < n} by a, continuous-time Wiener process {X(t*) :
0 < t* < N/2} with drift μ and variance σ2 per unit in the t* scale. The posterior
distribution of μ given X(t'),0 < t' < t* is normal with mean Y* and variance 5*,
where

(2.6) y = Vis') = σ*μl?*X_P and s* = (σ^ + ίV"2)-1.

It is shown in Chernoff (1972) that {F*(s*)} is a Wiener process with drift 0 and
variance 1 per unit in the —s* scale with Y*(SQ) = μ0 where SQ = σ\. In Chernoff and
Petkau (1981) it is shown that the posterior risk corresponding to stopping at (F*, s*)
can be written as dχ(Y*,s*), with d\ given by (2.5).

A convenient normalization follows by setting Y = αY* and s = α2s*. Algebra
yields the expression

(2.7) di(lΛO - (N/α)V~sψ (y/y/ϊ) - ασ2{(α2s*yι - s~ι)\y\.

Call the function on the right-hand-side of (2.7) d2(y, s).
Choosing α2 = σ$2 + (l/2)Nσ~2 = (s*)"1, defining 5o = GVQ, and performing

some algebra yields the expression

(2.8) d2(y,s) = σ

3. Group sequential designs. The group sequential setting can be described as
follows. The total number of pairs of patients N/2 is split into K groups of m pairs
of patients, so that Km = N/2. Stopping is allowed only at the values n = im for
i — 1, . . . , K, and stopping is enforced when n = Km — N/2.

3.1. The loss function. The model of the previous section translates as follows. We
have K observations (the mean differences for the K groups) which are independent
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and normally distributed with mean μ and (known) variance σ2 = σ2/m. Here μ is
assumed to have a prior normal distribution with mean μ0 and variance σ\. As in
Section 2, the posterior risk associated with stopping after the zth group is computed
to be
(3.1) miE(\μ\) + 2m(K - z)£[max(0, -sgn(Y*)μ)].

Note the similarity with (2.3). If m is set equal to 1, i is replaced by n, and K is
replaced by iV/2, then the expressions are equal. The theory of the previous section
can thus be applied easily in the group sequential setting.

As in the previous section, one can introduce a continuous-time version of the
problem. For this version, one can write the posterior cost of stopping at (Y*,s*) to
becf(F*,s*), where

(3.2) d*(y*, s*) = m

where s* = (σ^2 + σ~2K). Again use the transformation Y(s) = aY*(s*) and 5 = a2s*
to rewrite the posterior cost of stopping as

(3.3) d*(y*,s*) = m

Call this d**{y,s). Use the value α2 = (σ<f2 + σ~2K) = (s ,)" 1 to get the expression

(3.4) <r(y,s) = σ2(SSoσo-2)1/2 [2(1 - s^)

where So — a^a2 as before.
Note that, for the original group sequential problem, stopping is allowed at the

points
σό2 + mKσ~2

(3-5) sim = — = Γ - : — - .
σ0 + mισ~ι

Also note that since both σ2 and σ^2 are constant, they will not affect the optimal
stopping boundary, so we will set both equal to one and use the following stopping
cost:
(3.6) d(y, s) = ( S S o ) 1 / 2 [2(1 - s^)φ{y/V~s) - (1 - ^ W v / i l ] •

3.2. Computation of boundaries. Let p(y, s) be the risk corresponding to the cost
d(y,s) for the optimal stopping rule starting at (y, s). One can compute p(y,s) by
using the following backward induction algorithm:

(3.7) p(y,sKm) = d(y,sKm)

(3-8) ρ{y,sim) = min{<%, sim),E(p(y

where i ranges over the values 0,. . . , K — 1, z is a standard normal random variable,
and Asim = s ί m - S( i +i)m. If ρ(y,sim) = d(y,sim) than (j/,sim) is a stopping point,
otherwise it is a continuation point. The risk p(0, s0) is the Bayes risk for the whole
procedure. For a procedure P, it will be denoted by pP.
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TABLE 1

Optimal boundaries άopt for various group sequential designs, all with SQ = 104

Stage

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

K = b

0.865

0.581

0.443

0.232

0.089

0.000

K = 10

1.143

0.917

0.760

0.657

0.569

0.495

0.387

0.335

0.179

0.095

0.000

K = 15

1.296

1.085

0.949

0.850

0.775

0.693

0.632

0.547

0.511

0.465

0.408

0.343

0.268

0.186

0.097

0.000

If = 20

1.401

1.185

1.075

0.968

0.894

0.800

0.767

0.710

0.632

0.604

0.566

0.519

0.465

0.433

0.418

0.346

0.268

0.250

0.190

0.097

0.000

The optimal standardized boundary, denoted by aopU is tabulated in Table 1 for
s0 = 104 and for various values of the number of groups, K.

One can use the optimal continuous-time Bayes boundary and use the correction
developed in Chernoff and Petkau (1986) to get an approximate optimal group sequen-
tial boundary as follows. Let ά(s) — yj\β, where y is the optimal continuous-time
boundary. Then one can adjust the continuous-time boundary to approximate the
group sequential boundary, obtaining άαφ as follows:

sim) = ά(sim) - 0.5826)/Άs im/s ίm.(3.9) a

Using the values of ά(s) from Table 1 of Chernoίf and Petkau (1981) leads to the values

of άadj{sim) tabulated in Table 2.

4. Comparison of designs. The results of Section 3 are now applied to investigate

the performance of various group sequential designs.

4.1. Bayes risk. Since for any boundary bimy/s~ leading to a stopping time τ of

the form
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TABLE 2

Optimal boundary, adjusted continuous-time boundary and Bayes risk. The parameter s0 is taken to

be 104 throughout. Also note that the argument of the functions is t = 1/s.

K = 5

K = 10

K = 15

K = 20

K = 100

t

1.000

0.800

0.600

0.400

0.200

10"
4

1.000

0.800

0.600

0.400

0.200

lO"
4

1.000

0.800

0.600

0.400

0.200

lO"
4

1.000

0.800

0.600

0.400

0.200

10"
4

1.000

0.800

0.600

0.400

0.200

lo-
4

άσpt(t)

0.000

0.089

0.232

0.443

0.581

0.862

0.000

0.179

0.387

0.506

0.760

1.140

0.000

0.268

0.387

0.569

0.805

1.293

0.000

0.268

0.465

0.633

0.850

1.398

0.000

0.358

0.542

0.759

1.029

1.944

άadj(t)

0.000

0.109

0.286

0.468

0.724

3.129

0.000

0.176

0.357

0.543

0.800

3.129

0.000

0.208

0.393

0.584

0.845

3.129

0.000

0.229

0.415

0.610

0.875

3.129

0.000

0.305

0.502

0.713

1.009

3.131

6αφ(0,t)

79.780

89.177

92.697

95.776

98.401

1596.292

79.780

86.226

89.772

91.824

91.298

799.605

79.780

85.656

89.127

90.915

89.684

534.367

79.780

85.430

88.832

90.514

88.968

401.928

79.780

84.981

88.174

89.456

87.221

86.509

p(o,*)

79.780

89.591

92.415

95.288

97.861

1579.143

79.780

85.940

89.235

91.222

90.556

791.026

79.780

85.311

88.660

90.059

88.768

528.644

79.780

85.099

87.956

89.391

87.777

397.639

79.780

83.528

84.628

85.363

82.519

85.550



(4.1) τ = inf{z I Y(sim) > bimλβ-}

one can compute the exact Bayes risk b(y, s) at (y, 5) by using the following recursive
formula:

b(y,sKm) == d(y,sKm);

b{y, sim) = E \d(y + z(yjΔsim), S(i+i)m) , for y < bimΛ/s~ι]

b(y,sim) = d(y,sim), ϊoτ y>bimy/s~;

where i ranges from 0 through if - 1.
We can therefore compute the Bayes risk of the optimal group sequential and the

adjusted continuous-time boundaries. The risk for the optimal group sequential bound-
aries for various values of K and s$ are given in Table 3 and the Bayes risk for the
approximate boundary for SQ = 104 are given in the column labeled 6αφ (0, t) in Table 2.
Comparing the values for SQ — 104 in Table 3 and the entries for t = 0 in Table 2, we see
that there is little loss in terms of Bayes risk if one uses the adjusted continuous-time
boundary in place of the optimal boundary.

TABLE 3

Risk for the optimal boundary. The Bayes Efficiency with respect to the K = 100 design is given in

parentheses below the Bayes risk.

10
1

K = 5 2.33

(0.73)

K = 10 1.97

(0.86)

K = 15 1.89

(0.90)

K = 20 1.85

(0.91)

K = 100 1.69

(1.00)

10
2

16.80

(0.3)

9.74

(0.52)

7.63

(0.66)

6.68

(0.75)

5.04

(1.00)

so

10
3

158.86

(0.09)

80.86

(0.17)

55.18

(0.25)

42.51

(0.33)

14.10

(1.00)

10
4

1579.1

(0.05)

791.0

(0.12)

528.6

(0.16)

397.6

(0.21)

85.5

(1.00)

10
5

15781.4

(0.05)

7892.2

(0.10)

5262.8

(0.15)

3948.2

(0.20)

795.7

(1.00)

4.2. Loss of efficiency due to grouping. For any two procedures Pi and P 2 , we
define the Bayes Efficiency (BE) as the ratio of their posterior risks:

(4.2) BE(PuP2) = pPl/pp2.

In Table 3 the posterior risks of some group sequential designs are given, along with
their Bayes Efficiency with respect to the group sequential design with K = 100.
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