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Abstract: An extension of rank regression techniques to multivariate lin-
ear models is proposed and studied. Unlike the co-ordinatewise rank
regression techniques considered by some earlier authors, our approach
is affine equivariant, and it is based on a transformation and retransfor-
mation procedure originally developed by Chakraborty and Chaudhuri
(1996, 1997) for constructing an affine equivariant version of multivari-
ate median. Affine equivariance is expected to lead to superior statis-
tical performance of our procedure compared to other non-equivariant
procedures especially in the presence of substantial correlations among
different response variables in multi-response problems. Some of the sta-
tistical properties of the proposed multivariate rank regression estimates
are discussed, and a few results based on numerical investigation of the
performance of these estimates are presented.
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1 Introduction: multivariate linear model and
rank regression

Linear model is a widely used statistical tool for empirical analysis to un-
derstand and make inference about the nature of inter-dependence that
exists among different variables in the data. Perhaps it will not be an over-
statement to say that various forms of linear model pervade almost every
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area of applied research where statistics has its scope of being effectively
used. Here our focus will be on multivariate linear models of the form

Y = ΓX + e , (1)

where Y is a d-dimensional column vector of dependent or response vari-
ables, X is a p-dimensional column vector of independent or regressor vari-
ables, and Γ is the d x p matrix of unknown coefficient parameters that
determine how different regressor variables jointly influence different re-
sponse variables. This matrix is to be estimated from the observed data
(Xi, Yi), (X2, Y2), , (Xn, Yn)5 and the term e in (1) is a d-dimensional
column vector of random errors representing the random deviation of a
data point from the linear model. In the special case when the response is
real valued (i.e. when d = 1), rank regression techniques have been pro-
posed and extensively studied as an alternative to traditional least squares
regression by several statisticians [see e.g. Lehmann (1963a, 1963b, 1964),
Adichi (1967, 1978), Koul (1969, 1970), Puri and Sen (1969, 1973), Jureck-
ova (1971, 1973), Jaeckel (1972), Hettmansperger and McKean (1977, 1978,
1983)]. These authors explored various extensions of rank based methods,
which were originally developed for nonparametric inference in one and two
sample univariate location problems, into very general linear models includ-
ing standard ANOVA models. A primary motivation behind considering
rank regression is the lack of robustness in least squares regression, which
is known to have very poor performance when the random error e in the
linear model (1) happens to follow non-Gaussian distributions especially
those with heavy tails. Higher statistical efficiency of rank based nonpara-
metric procedures compared to the inference based on sample means in one
and two sample location problems involving univariate non-Gaussian data
is known to extend for parameter estimates and related inference based
on rank regression in linear models with univariate response. An excellent
review of various rank based statistical methods for linear models with real
valued response can be found in Draper (1988) and in fascinating comments
and discussion that Draper's expository article was successful in generating
from leading experts in robust regression in linear models.

Unfortunately most of the work documented in the existing literature
on rank regression is restricted to univariate response. While many prac-
tical situations (e.g. when a medical scientist is interested in studying the
relationship between the age of an individual and his/her systolic and di-
astolic blood pressures) do involve multi-response problems, virtually very
little is available in the literature other than least squares techniques when
the response Y in the linear model (1) happens to be multi-dimensional
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in nature (i.e. d > 1). Rao (1988) and Koenker and Portnoy (1990) con-
sidered robust estimation of parameters in multi-response linear regres-
sion problems and suggested the use of univariate least absolute deviations
method for each co-ordinate of the response vector. Davis and McKean
(1993) have extensively studied the co-ordinatewise extension of rank re-
gression from univariate to multivariate response problems. These authors
have derived some interesting statistical properties of their proposed es-
timates and tests and reported some results on numerical performance of
the procedures. One serious drawback of co-ordinatewise extension of rank
regression as well as that of least absolute deviations regression is that such
extensions fail to take into account the inter-dependence that exists among
the real valued components of the response vector, and in practice it may
not be appropriate to ignore the correlation present among different re-
sponse variables. Such an approach for multivariate linear models leads to
parameter estimates that are not equivariant and to statistical tests that
are not invariant under general affine transformation of the data, and it is
known that procedures that lack affine equivariance/invariance may have
very poor statistical performance in the presence of substantial correla-
tion among the components of the response vector. This issue has been
discussed and investigated by Bickel (1964), Brown and Hettmansperger
(1987, 1989) and Chakraborty and Chaudhuri (1996, 1997) in the con-
text of multivariate location problems. It will be appropriate to note here
that Bai, Chen, Miao and Rao (1990) proposed to estimate Γ in the linear
model (1) by minimizing the sum Y%=ι \\Yi — ΓX»|| w.r.t. Γ, where for a d-
dimensional vector x = (x±, X2->. • •, Xd), ||x|| = the usual Euclidean norm of
x — (χ2+χ2 + m. .+2:^1/2^ a n ( j s u c j 1 a n estimate of Γ can be viewed as a gen-
eralization of the notion of spatial median [see e.g. Haldane (1948), Brown
(1983)] in linear models. While this leads to estimates that are equivari-
ant under rotation or orthogonal transformation of the response vector,
such estimates still lack equivariance under general affine transformation
of the response. It is known that for multivariate data with correlated
variables, spatial median may have poor statistical efficiency compared to
affine invariant sample mean vector [see Brown (1983), Chaudhuri (1992a),
Chakraborty, Chaudhuri and Oja (1997)]. Further, the lack of scale equiv-
ariance makes spatial median as well as its generalization in linear models
practically useless when different real valued components of the response
vector Y are measured in different scales or when the response variables
have different degrees of statistical variation.

Chakraborty (1996) proposed and studied in detail an affine equivariant
extension of least absolute deviations regression in multi-response linear
model problems using a data driven transformation and retransformation
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approach, which was used earlier by Chakraborty and Chaudhuri (1996,
1997) to construct an affine equivariant version of multivariate median.
Such a transformation and retransformation technique converts nonequiv-
ariant estimates into equivariant ones and thereby improves upon the per-
formance of the estimates as measured by appropriate statistical efficiency
criteria. Our goal in this paper is to use the same transformation and
retransformation strategy for developing affine equivariant rank regression
techniques that can be used in the analysis of data following multivari-
ate linear models. Chakraborty (1996) gave a convenient algorithm (called
TREMMER) for computing the estimate of the parameter matrix Γ in (1)
and amply demonstrated how resampling strategies like the bootstrap can
be invoked to estimate finite sample-variance covariance matrix of such a
parameter estimate. In Section 2 that follows, we will describe how one
can appropriately modify TREMMER to come up with affine equivariant
rank regression procedures for multi-response linear models. Such a mod-
ification inherits the nice statistical properties of TREMMER, and in the
special case of regression based on Wilcoxon's rank scores or equivalently
the linear regression analogs of Hodges-Lehmann type estimates [see e.g.
Chaudhuri (1992b)], this modification takes a simplified and elegant form
that makes the implementation of the methodology as well as investigation
into its statistical properties quite convenient. In Section 3, we will present
some results based on numerical studies that were undertaken to investigate
the performance of the proposed methodology. We will discuss results from
small sample simulation experiments that yield strong evidence for superior
performance of transformation retransformation rank regression estimates
in multi-response linear model problems when compared with traditional
least squares and co-ordinatewise least absolute deviations estimates if the
residuals in the linear model have elliptic non-Gaussian distributions with
heavy tails. We will also report analysis of two real data sets each with
bivariate response in an attempt to demonstrate the implementation of the
methodology in real data and how it outperforms some competing non-
equivariant procedures. Section 4 will conclude the paper with some re-
marks on the issues that have become transparent in course of our present
research, and there we will try to discuss briefly some of the open problems
that require further research.

2 The transformation and retransformation

procedure

Let us now focus our attention on the data points (X^Y^'s, which are
assumed to satisfy the linear model (1). Suppose that n > d + p, and a is
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a subset of size d + p of the set of indices {1,2,..., n}. Following the nota-
tion used by Chakraborty (1996), we will write a = {i\,... ,ip,j\,..., jd}
and denote by W(α) the p x p matrix whose columns are the vectors
Xi 1 5..., Xip and by Z(α) the d x p matrix whose columns are the vectors
Ύiλ,..., Ύ{ . We will assume that W(α) is invertible and form the dxd ma-
trix E(α) that consists of the columns Y^ — Z(α){W(α)}~1XJ1,..., Ύjd —
Z(α){W(α)}~1Xjd. The matrix E(α) too is assumed to be non-singular,
and we define the transformed response vectors as Z\ = {E(α)}~1Y/ for
1 < I < n and I /Ξa. Suppose now that we perform rank regression on each
co-ordinate of Zj separately with X/ as the regressor as has been done in
Davis and McKean (1993), and the resulting estimate of the matrix of coef-
ficient parameters is denoted by An . In other words, An is obtained by
minimizing (w.r.t. Λ) a dispersion function V(A) (say), which is a simple
multivariate extension of JaeckePs dispersion function [see Jaeckel (1972)]
based on residuals and their ranks computed from a linear model. In this
case V(A) is a function of the real valued co-ordinates of the multivariate
residuals Zj — ΛXj with 1 < / < n, I fca and their ranks [see Davis and
McKean (1993)]. Finally, the transformation retransformation estimate of
Γ is obtained by retransforming An by the matrix E(α) as follows

fW = E(α)λW . (2)

In view of the definition of f n , we now have the following result, which
asserts that it is an affine equivariant estimate of Γ. As a matter of fact,
this result is the analog of Chakraborty's (1996) Theorem 2.1 in the context
of rank regression.

R e s u l t 1 Suppose that A is a fixed dxd non-singular matrix. Then the

transformation retransformation estimate computed from the transformed

data points (Xi, AYi), (X2, AY2),..., (Xn, AYn) in the same way as above
(i.e. using the same index set a) will be AΓn . Further, if the response
vector Yi is transformed to Yi — GX; for each i = 1,2,... ,π, where G
is a fixed d x p matrix, the transformation retransformation estimate gets
transformed to f n — G.

Proof: In view of the construction of Z(α), when the Y '̂s are trans-
formed to AY '̂s, Z(α) gets transformed to AZ(α), and consequently the
transformation matrix E(α) is transformed to AE(α). On the other hand,
since the Zj 's remain invariant under non-singular linear transformation
of the Yt's, so does the estimate A n , which is obtained by performing
co-ordinatewise rank regression of the Zj 's on the regressor vectors X/'s.
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Hence, the transformation retransformation estimate will be transformed
to AΓn as it has been claimed in the statement of the result. Next note
that when each of the Y 's is transformed as Y^ — GX;, the matrix Z(α)
becomes Z(α) — GW(α). However, the matrix E(α) remains unaltered
after such a transformation of the response. Since each of the Z, 's gets
transformed as Z\a) — {E(α)}~1GX/'s in this case, the equivariance of co-
ordinatewise rank regression estimate implies that Λn will now become
An — {E(α)}~1G. The proof is now complete in view of the way f n has
been formed by retransforming An into E(α)An α

2.1 Selection of the optimal data driven transformation

Since the estimate f n depends on the choice of the transformation ma-
trix E(α), a question that naturally arises at this point is how to choose
the subset of indices a. This question has been dealt with in other situ-
ations by Chakraborty and Chaudhuri (1996, 1997), Chakraborty (1996)
and Chakraborty, Chaudhuri and Oja (1997), who used transformation and
retransformation techniques in different multivariate estimation problems.
Depending on the nature of the problem, these authors have determined
the form of the optimal transformation E(α) and suggested appropriate
data driven selection procedure for the optimal subset of indices a. All
these procedures for choosing the optimal transformation matrix, however,
are based on the common idea of minimizing the generalized variance (i.e.
the determinant of the dispersion matrix) of the multivariate location or
regression estimate. The motivation for looking at the generalized variance
comes from the fact that it is proportional to the volume of the concen-
tration ellipsoid associated with the sampling distribution of the estimate
which is usually normal for large samples. We will now state a result that
asserts that under suitable regularity conditions Γ n is a n1/2-consistent
and asymptotically normal estimate of the parameter matrix Γ in the linear
model (1).

Result 2 Fix an a. Suppose that the distribution of the (&i,Yi)'s and
the nature of the dispersion function V(A) are such that n1/2-consistency
and asymptotic normality of the co-ordinatewise rank regression estimates
holds. For example the regularity conditions used in Davis and McKean
(1993), who considered co-ordinatewise rank regression will be sufficient
for this purpose. Then conditioned on a and the (X*, Yi) 's with i G α , the
asymptotic distribution of nι/2φn — Γ) is multivariate normal with zero
mean and a variance covariance matrix that depends on the transformation
matrix E(α).
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Proof: Let us fix an a and argue conditionally given the (Xj, Yi)'s with
i G Oί. Note that since An is obtained by performing co-ordinatewise
rank regression of the transformed response vectors Z p ' s on the covari-
ates X/'s, it will be a n1/2-consistent and asymptotically normal estimate
of {E(α)}"1Γ under appropriate regularity conditions as assumed in the
statement of the result. The proof is now complete if we recall that
Tn = E(α)Λn and use the fact that linear transformation preserves
multivariate normality as well as n1/2-consistency. D

However, the conditional asymptotic dispersion matrix of Γn°^ depends
on E(α) in a rather complex way, and it is hardly useful in providing any
insight regarding the optimal choice of a in a general situation. Alterna-
tively, one can try to use resampling techniques (e.g. the bootstrap) to
estimate the sampling variation in Γn , and then select an optimal E(α)
based on this estimate. However, it does not seem to be a feasible approach
in practice in view of the enormous amount of computation that any form
of resampling estimation of the dispersion of f n will require for different
choices of a.

Suppose now that e has an elliptically symmetric distribution with a
density of the form {det(Σ)}~1/2/(eτΣ~1e), where Σ is a d x d positive
definite matrix, and / is a probability density function on the real line. Let
us write {Σ~1/2E(α)}~1 = R(α)J(α), where R(α) is a diagonal matrix with
positive diagonal entries, and J(α) is a matrix whose rows are of unit length,
and define D(α) to be the symmetric d x d matrix whose (z, j)-th element
is sin"1 7y, 7^ being the Euclidean inner product of the z-th and the j-th
row of J(α). Then it was proved by Chakraborty (1996) under suitable
conditions that the asymptotic generalized variance of the transformation
retransformation median regression (i.e. TREMMER) estimate of Γ in the
linear model (1) is minimized by choosing a to minimize the determinant
of the matrix

V(α) = {J(α)}-1{D(α)}{[J(«)]τ}"1 . (3)

Note that such a selection of a does not require any knowledge of the form
of the density /, and there is a nice and intuitively appealing geometric in-
terpretation for such an approach. The determinant of V(α) is minimized
when the columns of Σ~1/2E(α) are orthogonal to one another. Hence,
an alternative way of selecting E(α) to achieve a similar goal will be to
minimize the ratio of the trace and the d-th root of the determinant of
the matrix {E(α)}τΣ~1E(α), which is equivalent to minimizing the ratio
of the arithmetic mean and the geometric mean of the eigenvalues of the
positive definite matrix. In the absence of any other better and practically
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feasible procedure, we intend to use this criterion for choosing the trans-
formation matrix for our multivariate rank regression. In other words, our
recommendation amounts to transforming the response vectors using a new
data driven co-ordinate system determined by the transformation matrix
E(α) such that the co-ordinate system is as orthogonal as possible in the
oί-dimensional vector space, where the inner product and orthogonality are
defined based on the positive definite dispersion matrix Σ of the residual
distribution associated with the linear model (1) [see also Chakraborty and
Chaudhuri (1996, 1997) and Chakraborty, Chaudhuri and Oja (1997)]. Of
course we need an appropriate estimate of Σ in order to implement such
a strategy, and we can get that from the residuals computed at an initial
stage after fitting the linear model to the data by any simple and suitable
method. Note that it is important that such an estimate of Σ be equivariant
under linear transformation of the response vectors.

2.2 Multivariate rank regression using Wilcoxon's score

Let us now consider the dispersion functions associated with well known
Wilcoxon's rank scores. Such dispersion functions can be expressed in the
form

v(A) = E Σ
l<r<s<n ;r,sga

or

2>(Λ) = Σ Σ | ( Z ^ - Z iΩ )) " Λ ( X ' - X *) | ' (5)
l<r<s<n ;r,s^α

where for a d-dimensional vector x = (xi,X2? 5#d)? |x| — the Zi-norm
of x = \xι\ + \x2\ + ... + \xd\- Note that the dispersion in (4) originates
from Wilcoxon's signed rank score used in single sample location problems
while that in (5) is related to the two sample Wilcoxon's rank test. The
second dispersion can also be viewed as a form of Gini's mean difference
of multivariate residuals, and it is meaningful to use this dispersion func-
tion when there is no intercept term present in the linear model (1). On
the other hand the dispersion function in (4) is useful in multivariate lin-
ear models with intercept terms. Readers are referred to Aubuchon and
Hettmansperger (1989) and Chaudhuri (1992b) for a detailed discussion of
these dispersion functions and their use in rank regression in linear models
with univariate response.

The estimates of the coefficient matrix obtained through minimization
of dispersion functions in (4) and (5) can be viewed as natural extensions
of the well-known Hodges-Lehmann estimates from one and two sample
location problems into multivariate linear models. Observe at this point
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that minimization of any of these two dispersions leads to a co-ordinatewise
least absolute deviations problem, and hence the computation of the trans-
formation retransformation estimate f n can be easily handled by some
straight forward modification of the TREMMER algorithm developed by
Chakraborty (1996). One only needs to replace the original data by their
pairwise averages or differences (depending on whether (4) or (5) is used)
before invoking TREMMER. We now state a result that establishes asymp-
totic optimality of our procedure for choosing the transformation matrix
E(α) as described in Section 2.1 when rank regression is performed using
Wilcoxon's score in a multivariate linear model with the residual having
multivariate normal distribution.

Result 3 Suppose that the residuals ê  = Y^ — ΓX; for 1 < ί < n are
i.i.d and have a common d-variate normal distribution with zero mean and
Σ as their common dispersion matrix that does not depend on the regres-
sor (i.e. we have perfect homoscedasticity), and the i.i.d random regressors
Xi 's have a distribution with an associated p x p expected information ma-
trix E^KiX?) = Q that is positive definite ensuring asymptotic normality
of the co-ordinatewise rank regression estimates obtained using the disper-
sion function (4) or (5) [cf. the asymptotic results in Chaudhuri (1992b)].
Then our procedure for choosing the set of indices a and the associated
transformation matrix E(α) described in Section 2.1 yields a transforma-
tion retransformation estimate Tn such that the asymptotic generalized
variance o/n1//2(fn — Γ) tends to its minimum possible value as n tends
to infinity.

Proof: Once again let us fix a and argue conditionally give the (X;, Y;)'s
with i G a. Note that when the dispersion function (5) is used, there
are no intercept terms in the multivariate linear model, and without loss
of generality we can assume in this case that the X '̂s have zero mean.
Under the conditions assumed in the statement of the result, it is easy to
establish a Bahadur type asymptotic linear representation of Tn using the
asymptotic results in Chaudhuri (1992b), and this implies that as n tends
to infinity, the limiting distribution of n1/2(f n

a' -Γ) is multivariate normal
with zero mean and a variance covariance matrix that has the form

Σ1/2{J(α)}-1H(α){[J(α)]Γ}-1Σ1/2®Q-i ? ( 6 )

where ® denotes the usual Kornecker product of matrices. Here J(α) is
the matrix whose rows are obtained by normalizing the rows of the matrix
{Σ~1/2E(α)}-1 as described in Section 2.1, and H(α) is the d x d sym-
metric matrix with (i, j)-th element equal to 2 sin"1 (7^/2), 7^ being the
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Euclidean inner product between the z-th and the j-th row of J(α). It is
the multivariate normality of the residual distribution in the linear model
that enables us to simplify the the form of the asymptotic dispersion ma-
trix in this special case. It is clear from (6) that the asymptotic generalized
variance of the transformation retransformation rank regression estimate
will be minimized if we choose a to minimize det{H(α)}/[det{J(α)}]2, and
this is accomplished when the rows of J(α) or equivalently the columns of
Σ~1/2E(α) are orthogonal to one another. •

3 Numerical results: simulation and data
analysis

In an attempt to investigate the performance of transformation retransfor-
mation rank reregression methodology in finite sample situations, we ran a
simulation study and analyzed a couple of real data sets for which there are
some appropriate multi-response linear models. We compared our approach
with more traditional procedures some of which are not affine equivariant,
and as we will gradually see the results turned out to be quite encouraging
and favorable for our affine equivariant rank regression.

A Simulation Study: We considered a problem with sample size
n = 30, where the data was generated from a multivariate linear model
like (1) with d = p = 2, and the first co-ordinate of X was taken to be the
constant 1.0 while the second co-ordinate was generated from a standard
normal distribution. We chose Γ as the 2 x 2 zero matrix, and for the ran-
dom residual, we used three different elliptically symmetric distributions
i.e. distributions having densities of the form {det(Σ)}~1/2/(eτΣ~1e).
These distributions are biyariate normal, bivariate Laplace [i.e. when
f(eτe) = (2π)~1 exp(VeTe)] and bivariate t with 3 degrees of freedom.
We used the dispersion function (4) for computing the transformation re-
transformation estimate Tn after choosing a using the selection procedure
described in Section 2.1. Let Eo\s and E\ad denote the efficiencies of our esti-
mates compared with the ordinary least squares and co-ordinatewise least
absolute deviations estimates respectively. These efficiencies were com-
puted using the fourth root of the ratio of the generalized variances of
competing estimates [see e.g. Bickel (1964)], and the generalized variances
were estimated using 3000 Monte Carlo replications in each case. Since
both of ordinary least squares estimate and our estimate of Γ are affine
equivariant, Eo\s does not depend on Σ. We observed that for bivariate
normal Soιs — 82%, and for bivariate Laplace Eo\s = 101%. However, for
the t distribution with 3 degrees of freedom, which is a distribution with a
fairly heavy tail, we observed that Eo\s = 150%. Since the co-ordinatewise
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least absolute deviations regression does not lead to an affine equivariant
estimate of Γ, Siad depends on Σ. For our simulation study, we have used
different choices of Σ, and each choice had both diagonal entries equal to
1.0 and both off diagonal entries equal to p. Five different values of p
were used, and they are 0.75, 0.80, 0.85, 0.90 and 0.95. The results are
summarized in the following table.

Table 3.1: Values of Eιad for different
choices of the residual distribution and p.

Residual

Distribution

Bivariate Normal

Bivariate Laplace

Bivariate t with 3 d.f.

0.75

158%

125%

121%

V

0.80

174%

128%

128%

alues of

0.85

185%

144%

141%

P
0.90

207%

159%

158%

0.95

244%

193%
189%

Analysis of Blood Pressure Data: This data was collected by the
Biological Sciences Division of Indian Statistical Institute, Calcutta, and
it consists of systolic and diastolic blood pressures of 40 Marwari females
residing at Burrabazar area of Calcutta and their ages. It is well known
to physiologists that arterial pressure increases with age, and age is con-
sidered to be a factor of prime importance in deciding what should be the
normal arterial pressure of an individual. As one would expect, there is
ample evidence in the data [see e.g. Chakraborty (1996) who analyzed the
same data using TREMMER] for the the presence of high positive corre-
lation between systolic and diastolic pressures, and hence one can argue in
favor of using an affine equivariant procedure, which is expected to be sta-
tistically more efficient for analyzing this data set than a non-equivariant
procedure such as the co-ordinatewise least absolute deviations regression.
We applied our affine equivariant rank regression procedure based on the
dispersion function (4) to this data and obtained the following estimated
linear equations : systolic pressure — 100.64 + 0.8(ape), and diastolic pres-
sure = 74.04 + 0.32(α#e). Following Chakraborty (1996), we estimated the
sampling variations using 2000 bootstrap samples for each of the compet-
ing procedures and observed 66.9% gain in statistical efficiency when our
affine equivariant rank regression was compared with co-ordinatewise least
absolute deviations regression. The coefficients of age in both the equations
here are slightly larger than those obtained by Chakraborty (1996) using
TREMMER, and their standard errors (0.20 and 0.11 for systolic and dias-
tolic pressures respectively) estimated through bootstrap turned out to be
smaller than those for the TREMMER estimates [cf. Chakraborty (1996)].
It will be appropriate to note here that for using TREMMER, Chakraborty
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(1996) reported 14.5% gain in statistical efficiency over non-equivariant co-
ordinatewise least absolute deviations.

Analysis of Demographic Data: This second data set consists of to-
tal fertility rates (TFR), infant mortality rates (IMR) and female literacy
rates (FLR) for the years 1971, 1981 and 1991 for sixteen most populated
states in India. The data is given in a nicely compiled form in Srinivasan
(1995). TFR is defined as the number of children born to a woman in her
entire reproductive span assuming that she experiences the level of age-
specific fertility rates in a given period of time, and IMR is the number
of deaths of infants (i.e. children below age of one year) per thousand
live births during a given period. Socio-demographic studies have strongly
revealed education of women as a major determinant of visible decline in in-
fant mortality and total fertility levels of the population. Our main interest
here is in exploring the nature of dependence of TFR and IMR on FLR as
well as the changes in TFR and IMR over time and their regional variations,
and for this we have used a multivariate analysis of covariance type model
with four regional effect parameters (corresponding to northern, southern,
eastern and western regions of the country) and two covariates, namely
FLR and time. Once again in view of strong correlation between TFR and
IMR [see Chakraborty (1996)], any non-equivariant estimation procedure
is expected to perform poorly in this case. Since here one is interested
in the differences between regional effects, the dispersion function in (5)
is quite appropriate. When we compared our affine equivariant procedure
with non-equivariant co-ordinatewise rank regression based on Wilcoxon's
score using botstrap estimates of sampling variations, we observed about
8% gain in statistical efficiency. As in the preceding example, here too we
used 2000 bootstrap samples for each competing procedure. In the case of
our affine equivariant procedure, time with estimated coefficients -0.4929
and -9.5899 having standard errors 0.1964 and 4.5880 respectively appeared
to be a statistically significant covariate indicating decline in both of TFR
and IMR over time. FLR too turned out to be a statistically significant
covariate with estimated coefficients -0.03775 and -1.3006 having standard
errors 0.01223 and 0.2983 respectively indicating a strong influence of fe-
male education on decreasing TFR and IMR. However, our analysis did not
reveal any statistically significant regional difference in fertility and mor-
tality rates. These findings are in conformity with the results reported in
Chakraborty (1996) who analyzed the same data using TREMMER.

4 Concluding remarks and discussion
An important issue that emerges at this point is that the problem of multi-
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variate rank regression is intrinsically related to the problem of multivariate
quantiles and ranks. Readers are referred to Chaudhuri (1996) and Motto-
nen and Oja (1995) for a detailed review of various notions of multivariate
quantiles and ranks. A particularly interesting alternative to our present
approach of multivariate rank regression will be to use the ranks associated
with spatial or geometric quantiles [see Chaudhuri (1996), Mottonen and
Oja (1995)]. Affine equivariance can still be achieved through data driven
transformation and retransformation as has been done in Chakraborty,
Chaudhuri and Oja (1997), where an equivariant modification of spatial me-
dian and an invariant modification of angle test were proposed and studied
based on the idea of transformation and retransformation. However, such
a geometric concept of quantiles leads to vector valued ranks that are very
different in nature from co-ordinatewise ranks, and one needs to redefine
the multivariate analog of JaeckeΓs dispersion function appropriately using
some suitable notion of score functions defined for vector valued ranks.

So far we are able to prove asymptotic optimality of our procedure for
selecting the subset of indices α and the associated transformation matrix
E(α) only in a very special case, i.e. for dispersions associated with Wilcox-
on's rank scores, and when the residual in the linear model (1) is normally
distributed. In the case of multivariate median (or least absolute devia-
tions) regression, Chakraborty (1996) was able to show that the proposed
data based selection rule for choosing the transformation matrix leads to
an asymptotically optimal solution whenever the residual distribution is
elliptically symmetric. The nice geometric interpretation of this selection
procedure described in Section 2.1 makes us believe that its asymptotic op-
timality holds under much weaker and more general conditions than what
we have assumed in Result 3.

Rank regression in linear models with univariate response generated fas-
cinating research problems and innovative statistical tools for nearly three
decades [see Draper (1988)]. This enriched our theoretical understanding of
linear model analysis and enabled us to invent new methodology for explor-
ing relationships present among different variables in the data. Multivariate
rank regression is likely to lead us to a more fertile ground for methodolog-
ical and theoretical research. As multi-response problems do arise often in
practice, there seems to be a real need for a serious and extensive research
of rank regression to deal with such problems.
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