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1 Introduction
The modelling of the stochastic process followed by the price of an asset
is an important part of financial analysis. An understanding of this pro-
cess is the first step to the pricing of derivative securities and general risk
management. It is therefore important to identify a model for asset price
processes which is consistent with their major empirical properties, such
as heavy tailed return distributions, volatility clustering, long memory and
persistence after volatility shocks. Previous approaches have typically con-
centrated on specific models, e.g. ARCH, and not succeeded so far to jointly
model all of the major empirical properties. To attack this problem system-
atically we first study the marginal distributions of returns and volatility
for market price indexes. Only after that we feel a substantial effort can
be made to identify further evolutionary properties of volatility and asset
price processes.

In this paper we compare various distributions to model the leptokur-
tic marginal distribution of asset returns. The distributions considered
are: the normal (or Gaussian); the stable; the normal-lognormal mixture
of Clark (1973); the generalised hyperbolic which include the Student t,
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the normal-inverse Gaussian mixture of Barndorff-Nielsen (1995), the hy-
perbolic of Eberlein and Keller (1995) and Kύchler et al. (1995) and the
variance-gamma (normal-gamma mixture) of Madan and Seneta (1990).
These distributions are all mixtures of the normal distribution and differ
only by their mixing volatility distributions.

It is crucial for any kind of serious risk analysis and management to
emphasise the importance of correctly modelling the tail probabilities of
returns. This is the reason why we will focus our comparative analysis on
the identification of typical tail properties of index returns. Tests are per-
formed on price indexes to directly determine a best marginal distribution
for returns from the above mentioned alternatives. This distribution indi-
rectly determines a best marginal distribution for the volatility. The best
distribution for the index returns, with respect to the likelihood ratio test,
turns out to be the Student t distribution. This distribution implies an
inverted gamma distribution for the squared volatility. The Anderson and
Darling (1952) test is also used to identify specifically the tail properties
and additionally supports this result.

2 The class of generalised lognormal asset price
models

Consider the class of generalised lognormal models for the asset price pro-
cess S = {S(t), t ^ 0} given by the Ito process with stochastic differential
equation

dS(t) = μ(t) S(t) dt + σ(t) S(t) dW{t), (1)

for 0 ^ to ίζ t < oo. The stochastic process W = {W(t), t ^ 0} repre-
sents the noise process which is assumed to be a standard Wiener process
on a filtered probability space (Ω,^ 7,^ = {Ft}t>o,P) fulfilling the usual
conditions. We also have the drift process μ = {μ(t), t > 0} and the non-
negative volatility process σ = {σ(t), t ^ 0}. These two processes may be
constant, deterministic time-dependent or stochastic. In general we assume
that they are ^-adapted, right-continuous with left hand limits and that a
unique, strong solution for (1) exists. The explicit solution of (1) for the
asset price S has the form

S(t) = S(to) exp { ί\μ{u) - I σ{u)2) du + f σ{u) dW{u)\ , (2)
Uto ^ Jto )

for 0 ^ to ^ t < oo. Throughout this paper we will stay within the class of
generalised lognormal asset price models.

Let us define the returns of the asset price process S. We denote r&(t)
to be the time t (continuously compounded) return of the asset price S for



The marginal distributions of returns and volatility 303

the interval [ί,t + Δ). It is defined as

rA (*) = log S(t + Δ) - log S(t). (3)

When the drift μ and the volatility σ are constant for all times £, the
asset price model, defined by equation (1) or (2), is called the classical
lognormal model. The Gaussian assumption of the theoretical return dis-
tribution of this classical model seriously restricts its shape, especially the
tail thickness. Asset returns are usually observed to have leptokurtic em-
pirical distributions. That is, they have heavier tails and have a more
pronounced peak around the mode than a normal distribution.

We denote the log asset price process by L = {L(i) = logS'(t), t ^ 0}.
The quadratic variation process (L) = {(L)(ί), t ^ 0} is given by (see e.g.
Jacod and Shiryaev, 1987, §4e)

(L)(t)= fσ{ufdu, (4)
Jo

for a generalised lognormal model.
We define the empirical quadratic variation process (L) Δ = {(L)^(t), t ^

0}, based on time steps of length Δ, of the log asset price process L to be

Σ > Δ ( J ' Δ ) 2 , (5)
3=0

where n Δ ^ t < (n + 1) Δ, for some n G N, and ΓΔ( ) are the returns
defined in (3). Note that the empirical quadratic variation process (L) Δ

is an estimate for the true underlying quadratic variation process (L). It
converges (under rather general assumptions) P-a.s. to (L) as Δ —» 0.

The daily empirical quadratic variation processes of the log indexes are
shown in Figure 1. This figure indicates that the quadratic variation pro-
cesses (L) are stochastic non-decreasing processes. Consequently it follows
from (4) that the volatility σ is a stochastic process. One can say it is
the stochastic nature of volatility which makes the distribution of returns
leptokurtic. Below it will be generally shown that the theoretical return dis-
tribution in a generalised lognormal model is leptokurtic when the volatility
σ is stochastic.
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Figure 1: Daily empirical quadratic variation processes for the log market
price indexes.

3 Mixing distributions

Consider the time discretisation

0 = t0 ^ h ^ t2 ^ . . . , (6)

where U = iΔ for all i € N and Δ > 0. Define it as the largest integer i
such that U is less than or equal to £, i.e. it = max{i G N : U ^ £}. We
obtain the important class of discrete time generalised lognormal asset price
models by keeping the drift μ and the volatility σ piece-wise constant over
the discretisation intervals. A discrete time generalised lognormal model's
log asset price process is then given by L A = {^Δ(^) — ̂ Δ(^t)? * ^ 0}>
where

LΔ(t<+i) = LA(U) + (μ(U) - - σ(U)2) Δ + σ(t<) AW(U), (7)

for i G N and where ΔW(U), i = 0,1,2,..., are independent and iden-
tically distributed normal random variables with zero mean and variance
Δ. The stochastic difference equation can be interpreted as that of an Eu-
ler approximation for a certain log asset price process L as defined earlier.
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Note that the discrete time log asset price process LΛ then converges to
its continuous time limit L as the time step size Δ tends to zero (see e.g.
Kloeden and Platen, 1992).

Consider now the random variable X. We denote its distribution func-
tion (d.f.) by Fχ(-), its characteristic function (c.f.) by φχ( ), and its
probability density function (p.d.f.) by fx( ) if it exists. We also de-
note the nth moment of X by mx^n = E(Xn), where E( ) denotes the
expectation operator. It is well known that the mean μx =E(X), vari-
ance σ\ = E((X - μχ)2), skewness βx = E((X - μxf)/σ\ and kurtosis
κ,χ = E((X — μx) )/σx are respectively measures of the location, variabil-
ity, degree of asymmetry and tail thickness/peakness of the distribution of
X. Note that the moments mχ)Tl, n G N, can be calculated by using the
c.f. φχ( ) with the well known formula

mx,n = (-i)nφψ(0), (8)

where φx (-) denotes the nth derivative of the c.f. The mean, variance,
skewness and kurtosis can be calculated from the moments.

The volatility σ is an unobservable quantity. As such, the quantification
of the distribution of volatility can not be directly obtained. However we
can obtain it indirectly via the distribution of returns. Equations (3) and
(7) give the returns for the discrete time generalised lognormal model as

rA(ti) = (μ(U) - \ σ{U)2) Δ + σ(U) ΔW(*0, (9)

for i € N. The return r^U), conditioned on the random variable σ(£i)2, is
a normal distributed random variable with mean (μ(£i) — \ σ(ti)2) Δ and
variance σ(t;)2 Δ. The drift coefficient μ{U) may depend on the random
variable σ{ti)2 so we write the conditional mean as ξ(U,σ(ti)2) = μ(U) —
\ σ(ti)2 to denote this possible dependence.

Let us assume some properties for the conditional mean ζ(U,σ(ti)2) Δ
and the conditional variance σ(U)2Δ of the return r&(U) given in (9):

First we assume that the volatility σ is a stationary process (see e.g.
Feller, 1966, §111.7). Then σ(t) is identically distributed according to the
invariant distribution of σ for any given time t. The stationarity is a rea-
sonable assumption because if we look at the quadratic variation processes
in Figure 1 we notice that the processes are similar over the entire time
period. They could be described as having linear trends interspersed with
strongly increasing periods (very volatile) which slowly revert back towards
another linear trend with the same slope. This indicates that the volatility
is a stationary process.
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We also make the simplifying assumption that the mean has the struc-
ture

ξ(U, σ{U)2) A = (η + ρσ(ti)2) Δ, (10)

for some constants η and ρ.
These two assumptions imply the following relations for the uncondi-

tional distribution of returns ΓΔ(') ^ follows that their d.f. is

F {χ)

where Φ( ) is the standard normal d.f. The corresponding p.d.f. is

(12)
if it exists, and the corresponding c.f. is

φrA(θ)= ί°°expίi(η + ρu)AΘ--uAΘ2\dFσ2(u) (θ G R). (13)

The unconditional distribution is called a mixture distribution and the dis-
tribution of σ2 is called the mixing distribution (see e.g. Feller, 1966, §Π 5).

Feller (1966), §XVΠ.3(i), gives the general representation of the c.f. φσ2( )
for the non-negative random variable σ2. Then the moments m σ 2 n , n G N,
can be calculated by using (8) and this representation of the c.f. φσ2(-). The
mean μσ2, variance σ2

2, skewness βσ2 and kurtosis κσi can consequently
be calculated. It is easily shown from these values that μσ2,σ2

2,/?σ2 > 0
and κσ2 > 3, if σ2 is not deterministic. That is, the random variable σ2 is
positively skewed and leptokurtic.

Let us now compute the mean μΓΔ, variance σ2

Δ, skewness βrA and kur-
tosis κrA for the return ΓΔ( ) as important measures required to understand
the distributional properties of asset prices. Formulae for these measures
are obtained via equations (8) and (13) giving

σ 2

Δ =

3 (μ2

σ2 + σ\2) A2 + 6 ρ2 (μσ2 σ ^ + βσ* σ^2) A 3 + g4 κσ2 σ^ A 4

It now easily follows that if σ2 is stochastic, i.e. σ2

2 > 0, then κrA > 3. We
also get that sign(/3rΔ) = sign(ρ), by using (14) and the above fact that σ2
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is positively skewed and leptokurtic, i.e. βσ2 > 0, κσi > 3. The returns
ΓΛ( ) are therefore leptokurtic and skewed in the direction of the sign of ρ.
The above relations show that the stochastic nature of volatility implies a
leptokurtic distribution for the returns.

We state that in our analysis of price indexes in Section 5 the empirical
return distributions are fairly symmetrical. Consequently to simplify the
analysis, we assume that the distribution of asset returns is symmetric.
This means we explicitly assume that ρ = 0 from this point onward.

4 Marginal distributions of asset returns

As already mentioned we focus our analysis on the marginal distribution
of asset returns. The marginal distributions for the returns in the models
which we examine in this section are mixtures of the normal distribution.
They differ by their mixing distribution σ2. As discussed above, this implies
a leptokurtic distribution for the returns if σ2 is random. The models can
be characterised by either its mixing distribution for σ2 or equivalently by
its mixture distribution for ΓΔ, since each are related by equations (11),
(12) and (13).

Below we briefly characterise the different models by only giving the
probability density function /rΔ( ) or the characteristic function </vΔ( ) for
the marginal distribution of the returns ΓΔ( ) A more detailed treatment
can be found in Hurst, Platen and Rachev (1996).

It must be emphasised that we do not intend to similarly model the asset
price process as having independent increments as the following models
do. The i.i.d. modelling assumption is inconsistent with the well known
properties of volatility clustering, long-memory and persistence for the asset
prices. We will interpret the result more correctly as an identification of
the marginal distribution for asset returns.

4.1 The Mandelbrot and Fama logstable model

Mandelbrot (1963, 1967) and Fama (1963, 1965) proposed returns to be
distributed with an α-stable distribution. This occurs when the stationary
distribution of σ2 is a maximally skewed α/2-stable distribution with a G
(0,2) (see e.g. Mandelbrot and Taylor, 1967). The c.f. of the returns r Δ ( )
is

φrA(θ) = exp{iηAΘ- cαΔ \θ\a} (θ G R). (15)

The parameter a is called the index of stability and is a shape parameter for
the distribution, the smaller α, the larger the tail thickness. This model also
implies infinite variance and infinite kurtosis for the return distribution.
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4.2 The Clark model

Clark (1973) proposed the change in the asset price process to be dis-
tributed with a normal-lognormal mixture distribution. Prices have to be
positive and represent growth processes therefore we are interested in the
change in the log asset price process, i.e. returns. We modify Clark's model
here and propose the returns to be distributed with a normal-lognormal
mixture distribution. In this modified version of the Clark model the sta-
tionary distribution of σ2 is a lognormal distribution. The p.d.f. of the
returns ΓΔ( ) is

i0

(16)
The parameter φ is a shape parameter for the distribution. The return
distribution for this model hats kurtosis κrA = 3exp(</?2).

4.3 The log symmetric generalised hyperbolic model

Various authors (e.g. Praetz, 1972; Blattberg and Gonedes, 1974; Madan
and Seneta, 1990; Barndorff-Nielsen 1995; Eberlein and Keller 1995; Kύchler
et al., 1995) have proposed returns to be distributed within the class of
the generalised hyperbolic distributions. We consider the more restrictive
symmetric generalised hyperbolic distributions for the return distribution.
These distributions result when the stationary distribution of σ2 is a gen-
eralised inverse Gaussian distribution. The p.d.f. of the returns ΓA( ) is

where K\( ) is the modified Bessel function of the third kind with index

λ , λ G R a n d α , ί ) 0. In addition α φ 0 if λ ^ 0 and δ φ 0 if λ < 0.

The parameters λ and ά = αδ are invariant shape parameters. The return

distribution for this model has kurtosis κvΔ

 = 3 i ^ ( ^ ) ^ ( ^ ) / ^ ( ^ )
In the following we briefly consider special parameterisations of this

model which have previously been considered by other authors.
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4.4 The log Student t model

Praetz (1972) and Blattberg and Gonedes (1974) proposed that the returns
should be distributed with a Student t distribution with degrees of freedom
v > 0. This occurs when the shape parameters λ = — ̂  v < 0 and a — 0,
i.e. a = 0, and the parameter δ = Cy/v. The p.d.f. of the returns r Δ ( ) is

<-*>• («)

The degrees of freedom v is the shape parameter for the distribution. The
return distribution for this model has kurtosis κrA = 3 (v — 2)/(z/ — 4), for
v > 4, and is infinite otherwise.

4.5 The Barndorff-Nielsen log normal\\inverse Gaussian
model

Barndorff-Nielsen (1995) proposed returns to be distributed with a normal-
inverse Gaussian mixture distribution. This occurs when the shape param-
eter λ = — \. The p.d.f. of the returns ΓΔ( ) is

α: exp{α}

The parameter ά is the shape parameter for the distribution. The return
distribution for this model has kurtosis κrA = 3 (1 + 1/ά).

4.6 The log hyperbolic model

Eberlein and Keller (1995) and Kύchler et al. (1995) proposed returns to
be distributed with a hyperbolic distribution. This occurs when the shape
parameter λ = 1. The p.d.f. of the returns ΓΔ( ) is

The parameter α is the shape parameter for the distribution. The return
distribution for this model has kurtosis κrA = 3Kι(a) Ks(ά)/K2(a) .
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4.7 The Madan and Seneta log variance gamma model

Madan and Seneta (1990) proposed returns to be distributed with a normal-
gamma mixture distribution. This occurs when the shape parameters λ > 0
and a = 0, i.e. δ = 0. The p.d.f. of the returns ΓΔ( ) is

frA(x) =
cVΔτrΓ(λ)2λ-1

The parameter λ is the shape parameter for the distribution. The return
distribution for this model has kurtosis κrA = 3 (1 + 1/λ).

5 Analysis of major world market indexes

The empirical analysis will be performed on market indexes from the United
States of America, Japan, Germany, Switzerland and Australia. The Aus-
tralian index is calculated by Datastream International and the other in-
dexes are calculated by Morgan Stanley Capital International. The data
for these indexes are daily data for the 15 years from the beginning of 1982
to the end of 1996, except for 20 years of Australian index data which start
from the beginning of 1977. We note that all of these indexes include the
stock market crash of October 1987.

In Table 1 we display the results of our analysis. Under the heading
of Empirical Model we show the total number of daily returns n and the
sample measure of kurtosis κrA. Also included in this table is the sample
measure of kurtosis K* corresponding to the data with the largest absolute
return removed.

The two sample measures of kurtosis, κrA and κ£Δ, indicate that the
index returns are highly leptokurtic and hence are very heavy tailed. In
fact they are so large that higher moments (including the fourth moment)
may be unbounded for the index returns, i.e. be infinite. In this case the
sample measure of kurtosis would be unstable. This is what we observe
by removing one extreme observation from the sample, the sample kurtosis
changes significantly for each index. We also observe this property by a
plot of the sample measure of kurtosis against the sample size which is
not shown here. It is therefore important in our analysis to concentrate
on the entire distribution and not just on a single statistic (in particular
the possibly unbounded sample kurtosis) to identify a good or best model,
or more precisely a best marginal distribution. We will therefore base our
final judgement on the likelihood ratio test.
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It can be shown that all of the models in Section 4 include the classical
lognormal model as a specific or limiting case. Consequently we can test
if each model is significantly better than the classical lognormal model
by using the likelihood ratio test (see e.g. Rao, 1973, §6e.2). Define the
likelihood ratio

Λ = ^lognormal ^

^other

where £ιognormal i s the likelihood value of the classical lognormal model
and £other i s the likelihood value of the other model we are testing. The
asymptotic distribution of -21ogΛ is chisquare with degrees of freedom
equal to the difference in the number of parameters between the two models.
Large values of -21ogΛ indicate that the model under consideration is
significantly better (explains more) than the classical lognormal model. We
choose the model with the significantly x largest value of —2 log Λ to be the
best model. Intuitively, this is the model which has the largest probability
for the returns and therefore is adding the most information to the classical
lognormal model with the minimum number of parameters.

Another way of comparing the models, especially the tail properties, is
to statistically determine how close the empirical distribution function and
the model's distribution function are for the returns. We use the Anderson
and Darling (1952) test here. This test increases the power of the more
commonly used Kolmogorov test in the tails of the distribution by using
the properly weighted test statistic given by

- iftw-f-wi (23)
€R V-RnW (1 - FmM)

where Fe(-) is the empirical distribution function and Fm( ) is the model's
distribution function. A good (bad) fit is indicated by a small (large)
difference between the two distribution functions and hence a small (large)
value of the test statistic AD.

The parameters for each model of Section 4 are estimated by the max-
imum likelihood method. For each model we display in Table 1 the esti-
mated shape parameter(s), the corresponding kurtosis κrA, the likelihood
ratio test value —21ogΛ and the Anderson-Darling test statistic AD.

For all of the models the likelihood ratio test values —2 log Λ are ex-
tremely large indicating that all of the models from Section 4 are signif-
icantly better than the classical lognormal model. In Table 1 we have
highlighted the most significant likelihood ratio value — 21ogΛ for each in-

lfΓhe log symmetric generalised hyperbolic model has an extra parameter than all of
the other models and so it has to be accounted for correctly.
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dex. It is clear that the log Student t model is the best model for all five
indexes.

Table 1: Results for the quantification of the marginal distributions of
returns and volatility.

Model

Empirical

Normal

Stable

Clark

Symmetric
Generalised
Hyperbolic

Student t

Normal
Inverse

Gaussian

Hyperbolic

Variance
Gamma

Statistic
n

κrΔ

« r Δ

AD
a

-21ogΛ
AD

Ψ

-21ogΛ
AD

λ
a.

-21ogΛ
AD

V

-21ogΛ
AD

a.

KrA

-2 log Λ
AD

ά

KrA

-21ogΛ
AD

λ
KrA

-21ogΛ
AD

Country
Australia

5052
125.7994
9.4216

3
2.67e+81

1.8055
oo

1433.665
0.045991

0.8452
6.1291

1416.0134
43.745
-2.2721

2.6803e-06
14.0143

1449.143
0.37820
4.5441
14.0268

1449.143
0.37838
0.97355
6.0815

1388.7137
7808.0

0.72732
5.1335

1343.293
6.54e+06

1.481
5.0256

1322.8124
3.15e+07

Germany
3761

16.7455
11.1454

3
1.47e+14

1.7237
oo

828.7447
0.061149
0.9182
6.9712

806.4511
0.29045
-1.9253

9.3886e-07
263.349

836.0898
0.057845

3.8506
oo

836.0898
0.057845

0.80127
6.7441

800.6066
0.71372
0.57797
5.3104

755.1277
8.5788
1.3375
5.243

739.5928
11.613

Japan
3723

21.4201
11.1512

3
4.34e+19

1.6099
oo

1008.4832
0.057997

1.0643
9.3127

1034.6007
0.22173
-1.4109
0.20115
19.1107

1048.1408
0.054036
3.0687

oo
1047.256
0.030761

0.52894
8.6717

1033.4658
0.62053
0.25477
5.7425

970.3204
26.189
1.0212
5.9376

965.7311
19.632

Switzerland
3761

26.037
17.5189

3
3.88e+18

1.6931
oo

1132.1436
0.060315

0.9833
7.889

1101.4388
0.35477
-1.753

1.7939e-06
6581.6199
1138.6009
0.081052

3.5061
oo

1138.6009
0.081066

0.6519
7.602

1092.0354
1.0496

0.42248
5.5127

1023.5112
31.885 _j
1.1912
5.5185

1007.2743
36.099

USA

3803
93.5112
11.3116

3
1.45e+59

1.6878
oo

1180.4462
0.056682

1.0004
8.1616

1229.0101
3.5355
-1.7799

5.8455e-07
6135.9287
1231.9909
0.12035
3.5598

oo
1231.9909

0.12073
0.6359
7.7178

1209.8897
105.02

0.28722
5.6981

1173.6493
88645
1.1225
5.6726

1165.7439
1.00e+05

Mixed results are obtained when we use the Anderson and Darling test.
Smaller AD values indicate a better fit. There is a mixture between the log
Student t model and the log stable model as to which model is the best.
We note that the October 1987 crash return is having a great influence on
the test statistic and therefore seems to bias towards heavy tailed distribu-
tions. We consider this test only as an additional check for identifying the
appropriate tail properties. From our point of view the likelihood ratio test
provides the most objective basis for a comparison between the marginal
return distributions.
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Based on the above results we conclude that the three parameter Student
t distribution is the best marginal distribution for index returns. It is
closely followed by the four parameter symmetric generalised hyperbolic
distribution, which for all but the Japanese index turns out to be exactly
the Student t distribution. The stable, Clark and normal\\inverse Gaussian
distributions can be described as distributions which do not explain the tail
properties accurately enough. The stable distribution overestimates the tail
thickness whereas the Clark and normal\\inverse Gaussian distributions
both underestimate it. The hyperbolic and variance gamma distributions
are poor and dramatically underestimate the tail properties.

Some readers may argue that for each index the large negative return
caused by the stock market crash of October 1987 is an outlier and is
therefore influencing our results. That is, in favour of a model with very
heavy tails opposed to one with less heavy tails. We would like to point
out that from the paper on extreme value theory for asset price returns by
Longin (1996) the stock market crash of October 1987 is dismissed as an
outlier, i.e. it is consistent with the rest of the data. For principle reasons
we do not like to exclude the extreme events such as stock market crashes
from our samples because it is this feature (namely tail heaviness) we are
explicitly emphasising to model in a consistent way. However to provide
a view on the robustness of our results we removed the large negative
return caused by the stock market crash of October 1987 and repeated our
study. As to be expected by removing extreme events, the distributions
with thinner tails improve whereas the stable distribution, which has the
heaviest tails, gets worse (the results can be obtained from the authors).
The Student t distribution is still the best distribution from the alternatives
considered.

6 Conclusion
The Student t distribution has been shown above to be the best marginal
distribution for index returns, with respect to the likelihood ratio test. It
implies an inverted gamma distribution for the marginal distribution of the
squared volatility σ2. This distributional property can now be exploited
to identify possible dynamics of the volatility process σ and hence the
evolution of the asset price process.
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