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Abstract: For model selection the Bayes factor is not well defined when
using default priors since they are typically improper. To overcome this
problem two methods have recently been proposed. These methods, in-
trinsic and fractional, are studied here as methods to producing proper
prior distributions for model selection from the improper conventional
priors for estimation. For nested models, fractional priors are here de-
fined and a comparison with intrinsic priors introduced by Berger and
Pericchi is carried out. Robustness of the Bayes factor as the prior varies
over the classes of intrinsic and fractional priors, is studied. Some illus-
trative examples are provided.
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1 Introduction

Suppose that two models M\ and M<ι are proposed to describe the data
z = (xι:x2y..^xn) Under model Mi the data are distributed as fi(z\θi),
and the prior distribution for θ{ is πι{θi), i — 1,2. The Bayesian way to
compare the two models consists in computing the posterior odds

Pr(M 2 |z) , Λ

P Γ ( M I | Z ) 2 U ;

Thus, the Bayes factor B2i(z) encapsulates all what the data have to say
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about such a comparison. This Bayes factor is given by

To subjectively elicit the priors 7Γi(0i), i = 1,2, is most cases a very
difficult task. A way to alleviate this task is to elicit instead of a single
prior for each model, a class of prior distributions Γ = {τri(0i),π2(02)} that
maintains the features of the priors on which we are confident. Hence, the
Bayes factors as the prior ranges over Γ takes now values in the range

(inf £21(2), sup B2i(z)).
Γ r

This range is generally too large and it typically gives infr #21(2) = 0, so
that there are priors in Γ favouring Mi and also prior favouring M2. Hence,
it does not allow to decide which of the model is supported by the data.

Another way to deal with the problem of model selection is to set as
7Ti(θi) the conventional prior for estimation of 0̂ , say 7rf (0 )̂, which typically
is improper, that is the integral / θ. π^θ^dθi diverges. This means that no
normalization of π^(θi) is possible so that it is defined up to an arbitrary
multiplicative constant. This implies that B2i(z) is defined up to a ratio
of unspecified constants.

There are in the literature several ways either to specify the constants
or to remove them from the analysis, see Akaike (1973), Schwarz (1978),
Spiegelhalter and Smith (1982), OΉagan (1995), Berger and Pericchi (1995,
1996), among others. For a recent review, see Kass and Raftery (1995).

In this paper we focus on intrinsic and fractional methodologies as meth-
ods to producing proper prior distributions for model comparison. This is
motivated by the fact that while there are methods to produce prior for
estimation that work reasonably well, there is a lack of such a methods for
model selection.

Let us briefly summarize the intrinsic and fractional Bayes factors. The
intrinsic Bαyes factor (IBF) was proposed by Berger and Pericchi (1995,
1996). This is a partial Bayes factor based on a minimum training sample,
say #(/), which is a minimal subsample of the sample z such that 0 <
Jθi /«(x(0l^)πfJ{βi)dθi < 00, i = 1,2. This part of the sample is devoted
to convert Trf (0$) into 7rf(0i| #(/)), which is now proper, and the rest of the
data is devoted to construct the intrinsic Bayes factor for model comparison,
using the πfί(θi\x(ί)) as priors. Thus the partial Bayes factor is defined as
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where B^{z) is the Bayes factor for the improper priors π^(ft), i = 1,2,
and sample z. Note that -B^(#(-(/)|a;(Z))) does not depend on the arbitrary
constant involved in the improper priors π f ^ ) , i = 1,2. To avoid the de-
pendence of the partial Bayes factor on the particular x(Z), they introduced
an average on the set of all training samples. Thus, the arithmetic intrinsic
Bayes factor is defined as

(1)
1=1

where L is the number of training sample contained in z.
The fractional method, proposed by OΉagan, considers the fractional

Bayes factor (FBF) which, as the author motivates, is defined by anal-
ogy with the partial Bayes factor to avoid the arbitrariness of choosing a
particular training sample. The FBF is defined as

where 6 is a constant that depends on the sample size n. Notice that B\λ(z)
does not depend on the arbitrary constants involved in the improper priors.

Both, the IBF and the FBF, contain i?2i(z) as a common factor. The
other factors appearing in the right hand side of (1) and (2) can be con-
sidered as the correction term of B^(z) to avoid the dependence of the
unspecified constants. These correction terms are different. Furthermore,
while the IBF correction term is completely specified, the FBF correction
term depends on b that has to be assessed. We will go back on this topic
in Subsection 2.4.

A crucial property of the intrinsic method is that it is capable to gen-
erating proper priors. These priors are derived by imposing that the IBF
is asymptotically equivalent to an actual Bayes factor for the so-called in-
trinsic priors (see Berger and Pericchi, 1996, for the definition of intrinsic
priors and Moreno, Bertolino and Racugno, 1996, for a characterization).
In some sense this guarantee that the IBF is a truly Bayes factor.

The question is if something similar can be said on the FBF. In Subsec-
tion 2.2 we produce a functional equation to derive fractional priors that
enjoy the same spirit of the intrinsic priors. The solution of this equation is
also discussed. Computation of the Bayes factor for intrinsic priors entails
a robustness issue since they are not unique, see Subsection 2.1. It will
be also shown that the solution to the fractional equation is not unique
so that a similar robustness issue appears here. Robustness is studied in
Subsection 2.3. In Section 3 some illustrative examples are given. Section
4 contains some conclusions.
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2 The intrinsic and fractional priors for nested
models

Suppose that the two sampling models under comparison {/i(#|0i),0i £
θi} , {/2( |̂̂ 2),^2 £ Θ2} are nested. This means that the following condi-
tions are satisfied,

(i) θ i C θ 2 ,
(ii)f2(x\θ2) = fl(x\θl)Jθvθ2 = θ1.

Let π f (0i), i — 1,2, the improper priors chosen.

2.1 The intrinsic priors

The intrinsic priors are shown to be, see Moreno, Bertolino and Racugno
(1996). any pair (πi(0i),π2(02)) such that,

(a) 7Γi(0i) is any prior in the class

/ T(02) 7ri(V>i(02))d02 = 1}

where T(θ2) = - ^ ^ - ^ ) | f a S g ( x ( 0 ) and Vi(02) is the limit point of

the MLE θ\(z) for parameter θi in Mi when sampling from Mi at point

02-

(7^ For each τri(0i) G Γi, ^{β'l) is given by

For studying robustness of the Bayes factor with respect to intrinsic
priors it is convenient to express Γi as

Γi = {τri(^i) : / τχ{βχ)άβχ = 1, / V{θx) τr1(θ1)dθ1 = 1},
Jθl Jθl

where V(θ{) = T[θλ) + { / β . ^ ^ T ί ^ ) ^ } ^ ^ ^ ) , Θ 2(^) = {θ2 € ( θ 2 -
θi) : /0i(02) = 01}? the ^l-coset of θ\ in Θ2 — θ i , and θ^ is the ^i-image
of Θ2-Θ1.

2.2 The fractional priors

Let us first precisely state what we mean by fractional priors.

Definition 1 For the sampling models {fi(x\θi), i — 1,2} the proper priors
^1(01)^2(02) a>re called fractional priors if its Bayes factor and the FBF
for Trf (0i), i = 1,2, are asymptotically equivalent for some sequence {bn}.
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The following condition is necessary in order to propose the fractional
equation from which the fractional priors are derived.

Assumption (A) The nested models {/ί(x|0i), π f ^ ) , i = 1,2} satisfy
Assumption (A) if for some sequence {bn} the limit in probability [PΘ2] of
the correction term of the FBF is a degenerated random variable. In other
words, under Assumption (A) there exists a function F^2(02), which could
be a constant, such that

For simplicity in notation the dependence of F12

2(θ2) on the sequence {bn}
is not made explicitly.

Theorem 1 Under Assumption (A), the fractional priors ( τri(#i), ^2(^2))
are the solutions to the functional equation

l2 {θ2) ~

Proof: If we expand π^vJ\ around the MLE ΘΛz), the Bayes factor for the

fractional priors τri(#i), ^2(̂ 2)? can be approximated as

B =

Equating the limit in probability [PΘ2] of the fractional Bayes factor given
in (2) with the limit in probability [Pg2] of the above expression, we obtain

where the left hand side follows from Assumption (A). Notice that we do
not need to take limit in probability under model Mi since it is nested in
M2. This gives (3) and proves the assertion. •

We remark that the fractional priors does not depends on the arbitrary
constants involved in the improper priors. They cancel out in expression
(3).
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Corollary 1 Fractional priors are any pair (πi(0i), ^2(^2)), where τri(0i)
is any member of the class

Γ2 = {πi(βi) : / πi(0i)d0i = 1, / S(θ2)π1(φ1(θ2))dθ2 = 1},
Jθi Je2

with

and for each 7Γi(#i) € Γ2 ,

π

Proof: Equation (3) can be written as

where πi(0i) have to be a probability distribution such that ^2(^2) be also
a probability distribution. This proves Corollary 1. •

It is convenient to rewrite class Γ2 as

Γ2 = {τri(0i) : / τr1(θ1)dθ1 = 1, [ H{θ1)π1{θι)dθ1 = 1},
Jθί Jθl

1()1 , [
Jθί Jθl

where

2.3 Robustness of the Bayes factor for intrinsic and
fractional priors

From Subsection 2.1 it follows that the Bayes factor for the intrinsic priors

(τri(0i),π2(02))is

2l[Z) /θl/i( |̂

which is written only in term of τri(0i).
It is easily shown that B2\(z), can be expressed as

JθlW(z;θι)π1(θ1)dθ1

21[Z) Jθlfι(z\θ1)πι(θ1)dθ1

where τri(0i) G Γi and

θλ) = f2(z\θi)T(θί) + { / f2(z\θ2)T(θ2)dθ2}leι(θ1).
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On the other hand, from Corollary 1 it follows that the Bayes factor for
fractional priors B2i(z) can be written only in term of πi(#i) £ Γ2 as

It is straightforward to show that this Bayes factor associated to frac-
tional priors can be written as

~ JθlG(z;θ1)π1(θ1)dθ1
21[Z) fM*\

where

G{z;θτ) = f2(z\θi)S(θ1) + { I Mz\θ2)S(θ2)dθ2) l θ. ( β l)(<Ί)
(yθ2(0i) J

Global robustness of the Bayes factors £21(2) a n d B2i(z) a s π i ranges
over Γi and Γ2 respectively, can be established by computing the ranges
(infπ i 6 Γi β2i(z), sup π i € Γ l B2i(z)), (infπiGr2 B2i(z), supπ i G Γ 2 B2i(z)). This
involve a moment problem for which Theorem 2 summarizes the solution.

Theorem 2 The infimum of the fractional Bayes factor as the priors range
over the class of priors Γ2, say λ = inf B^xiz), is the unique solution in

- πiGΓ2

λ to the equation

sup inf [G(z; θλ) - λji(*|0i) + d(l - i/(^i))] = 0.
d R 6 > G θ

The sup is obtained by interchanging in the above expression sup with inf. A
similar statement can be given for the Bayes factor for the intrinsic priors.

Proof: The proof follows by using the linearization algorithm, see for
instance Lavine, Wasserman and Wolpert (1993), and the so-called Gen-
eralized Moment Theory, Kemperman (1987), Salinetti (1994) and Liseo,
Moreno and Salinetti (1996).

For data 2, robustness of a Bayes factor B2\{z) as the priors range over
a given class Γ, is strictly achieved if either supπ € Γ B2\ (z) < 1 favouring
Mi, or infπer-B2i(2) > *> i n w ^i c h case M2 is favoured. With obvious
adaptations of the suggestion by Jeffreys (see Kass and Raftery, 1995) we
would take the following interpretation:

if 1 < mϊπeΓl B2i(z) < \/ϊδ, the evidence against Mi is small,
if \/Ϊ0 < infπ€ri B2i(z) < 10, the evidence against Mi is substantial,
if 10 < infπiGΓi B2i(z) < 100, the evidence against Mi is strong and
if 100 < infπ i€ri B2i(z), the evidence against Mi is decisive.
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2.4 The role of the sequence {bn} in the fractional priors

An important difference between the intrinsic priors and the fractional pri-
ors is that while the former are derived automatically from the specification
of the models {fi(x\θi),π^(θi),i = 1,2}, the latter needs in addition to as-
sess the sequence {bn}. In fact, for producing fractional priors we already
have a restriction on this sequence since Assumption (A) has to be satis-
fied. Nevertheless, this does not guarantee the uniqueness of the sequence,
so that an additional convention has to be imposed. Let us illustrate the
assertion with the following simple example.

Example 1 Consider the nested models

M\ : fι(x\θι) = iV(x|0i,l), τri(#i) = l{o}(#i),

M2 : f2{x\θ2) = N(x\θ2,l), π?(θ2) oc 1 Λ (θ2),

that is, we are testing that the mean of a normal distributions is 0 versus
it is different from 0. Notice that the prior for the first model is proper and
the prior for the second is the conventional uniform improper prior.

The intrinsic priors for this models can be shown to be the unique pair

On the other hand the fractional priors are derived as follows. For a

given sequence {bn}, we have

FM2(Θ ) _ I i

F l 2 {θ2) ~

where x = ̂  Y^xi. The sequences {bn} proposed by O Ήagan (1995) are

bn = — , rriQ = 1,2,..., n - 1,
n

i _

n n '
// logn

The sequences {bn},{bn} do not satisfy Assumption (A), so that they do
not produce fractional priors. Therefore, we are left with sequences of the
form {bn = ̂ , mo = 1,2, ...,n — 1}, for which we obtain

Flψ(θ2) = ̂ 5 exp{-mof} = N(Θ2\O, -L).
V2π 2, mo
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Thus, the fractional priors are

) = W(02|O,—), m0 = 1 , . . ,n- l .
rriQ

Note that π2(02) ^s n o t unique but depends on TΠQ. The convention we will
take is to fix mo as the minimal training sample size (Berger and Mortera,
1995). In this case mo = 1. For this assessment the fractional prior for M2

is the density JV(02|O,1).

3 Examples
Let us illustrate the behaviour of the Bayes factor for intrinsic and fractional
priors for two standard problems. The first is one sided testing on the mean
of a normal distribution and the second is a two sided testing.

Example 2 One sided testing. Let X be a random variable N{x\θ, 1)
distributed. Suppose that we are interested in testing H\ : θ > 0 versus
H2:θ<0.

A formulation of this testing problem in a nested context would be to
compare the two models

Mi : Λ(z|0i) = JV(:c|0i,l), π f ^ i ) oc l[0,oo)^i),

M2 : f2(x\θ2) = N(x\θ2,l), i$(β2) oc l(_oo,oo)(^),

where the priors are the standard improper prior for location parameter,
it is easy to see that ^1(^2) = #21 [0,00) ($2)-

The class of intrinsic priors is

Γx = {7Γ! : / Φί-^TΓiMdfli = 1 - - p , 0 < fc < -v^},

where k is the value of τri(0i) at the discontinuity point θ\ = 0 (see Moreno,
Bertolino and Racugno, 1996) and Φ(0i) is the standard cumulative distri-
bution function at point θ\. Thus, for a given sample (x,n) and πi(0i) G Γ,
the Bayes factor for Mi against M\ can be shown to be

kN(x,n)

)

where N(x,n) = J^,exp{- n ( g ~ 0 2 ) 2 }Φ(^)dθ 2 . In Moreno, Bertolino and
Racugno (1966) it was shown that svpiri&ΓlB2i(x,n) is infinity for any
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sample point. Since for x > 0 we have that inf π i €n B2\(x >rί) is less than 1
we conclude that the Bayes factor is not robust with respect to the intrinsic
priors.

A limiting procedure was In Moreno, Bertolino and Racugno (1966)
introduced to overcome the lack of robustness. This procedure is based on
the fact that when the prior for the simple model M\ is proper, then the
intrinsic prior for the complex model always exists and it is unique.

The idea is to take the restriction of ^\ {θ\) on an increasing sequence
{Cn} of subsets of θ i such that JCn Έ^{θ\)dβ\ < oo and limn_>oo Cn = θi-
Then we construct the associated sequence of intrinsic priors for M2 and
we take the limit of the corresponding sequence of Bayes factors. Under
rather general conditions the limit was proved to be independent on the
particular sequence {Cn} we have chosen.

Applying this procedure to our example the limiting Bayes factor turns
out to be

' ; Φ(^v^) "
On the other hand, the fractional priors for this problems are the fol-

lowing. For sequences {bn} of the form b'n = ^~^, and \)'n = ^ p ,

= l[0,oo)(#2),

so that

where τri(0i) is any probability density on [0,oo). Therefore, the Bayes
factor for any data z and any fractional prior turns out to be

B21(z) = 1.

Therefore, the above sequences {δ^}, { b'ή} produce fractional priors
that gives a non sensible Bayes factor.

If we choose bn = -^ with mo = 1, the minimal training sample size,
the class of fractional priors turns out to be

7Γ2(02) = - j L l ^ o ) ^ )
y ΔTϊ

where πi is any prior in the class

Γ 2 =
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k being the value of πi(0i) at the discontinuity point θ\ = 0. The Bayes
factor for TΓI G Γ2 is given as

It can be seen that B2i(x,n) is not robust as the prior ranges over class
Γ2. To overcome this lack of robustness we can apply the same limiting
procedure considered for the Bayes factor for intrinsic priors. A difficulty
we find here is that it is not necessarily true that for a proper prior for the
simple model and improper for the complex, the corresponding fractional
prior for the complex model is proper. Indeed, if π\(θ\) is a proper prior
for Mi and πjffa) the improper prior for M2, the corresponding fractional
prior for M2 is given as

which is not necessarily a probability density.
Fortunately, if in this example we take as πi(0i) = £z^l(α,6)(0i)> the re-

striction of πf (0i) to the interval (α, 6), and bn = ^ then the corresponding
fractional prior for model M2 is

d b " θ 2 ) ~φ(α"
which is a probability density for any values of a and b. The Bayes factor
for this fractional priors is

£ - β2) - Φ(α

The limit when a —* 0 and 6 —• 00 results

B2i(x,n) = lim B\{ \z) =

which is very close to the limiting Bayes factor for intrinsic priors.

We have already said that the intrinsic methodology always generates
a class of proper priors distributions (intrinsic priors) for model selection
when the models are nested. The fractional methodology, however, not
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necessarily generates proper priors. The following example illustrates this
assertion.

Example 3 Two sided testing. Suppose we have to choose between the
following two nested models,

Mi : SMΘi) = N(x\0,σ*), πf (0χ) oc i - l ( 0 ) O θ ) ( σ i ) ,

: f2(x\θ2) = N(x\μ,σ%), π?(θ2) oc — lβx(o,oo)

The parameter spaces are respectively Θi = 0 x R+ and Θ2 = R x R+

and the improper priors are given by the Jeffreys rule. It is easy to see that

jj
For the data z = (xi, ^27 •••?%n) 2ind a given sequence {bn}, some algebra

shows that

FM2(Θ , _ l iF12 (02) - J

= lim [Pθ2\
s2 \ n l

where s2 — ^ Σ ϊ ί ^ * ~ x ) 2 a n d x — n Σ ? ^ F° r sequences of the form {bn},
{6^}, Assumption (A) is satisfied, but i 7 ^ 2 ^ ) = 0 and consequently no
proper prior is fractional.

For sequences of the form {bn = 2^1, mo = 1,2,..., n — 1},

and thus the class of fractional priors is (πi(0i), 7Γ2(#2))7 where

and πχ(0i) is any prior in the class

Γ 2 = {πi(0i) : /
Jo

= 1, Γπ1(σ1)dσ1^r Γ\sinΨ)^~2dψ = 1}
Jo v2π 7o



Bayes factors for intrinsic and fractional priors in nested models 269

It is easy to see that this class is empty for any mo > 1. In particular
for mo = 2, the minimal training sample size for this problem, we have

roo ΛOO i

Γ2 - {πi(0i) : / πi(σi)d7i = 1, / π1(σ1)dσ1 = -7=},
JO JO Λ/7Γ

that is clearly empty.
Therefore, the sequences {bn} suggested in the literature of fractional

methodology do not generate proper prior distributions for this two sided
testing problem.

However, the class of intrinsic priors is

— π1(θ1)dθ1 = 2(>/π- 1)},

that is not empty.

4 Conclusions
In this paper we have considered the intrinsic prior distributions (Berger
and Pericchi, 1995 and 1996), and introduced the notion of fractional priors.
This permits to focus the intrinsic and fractional methodologies as tools
for generating proper prior distributions for model comparison from the
conventional improper priors for estimation. The considered models have
assumed to be nested and the main conclusions are:

The intrinsic priors always exist and form a class given by generalized
moment constraints. The Bayes factor for intrinsic priors is not necessarily
robust, but the limit intrinsic procedure (Moreno, Bertolino and Racugno,
1996) solves this lack of robustness.

The fractional methodology, however, not always generates proper pri-
ors (fractional priors). When fractional priors there exist, we have found
that the sequence {bn = ^ , n > 1} with mo equal to the minimal train-
ing sample size, is the appropriate selection among those recommended by
OΉagan (1995). The associated Bayes factor is then very close to the Bayes
factor for intrinsic priors. Furthermore, calculations are quite simple.

Extension of this theory to non-nested models is an interesting topic
that deserves more research. It is a work in progress that will be formalized
elsewhere.
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