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Abstract

Starting from the uniqueness question for mixtures of distributions
this review centers around the question under which formally weaker
assumptions one can prove the existence of SPLIFs, in other words per-
fect statistics and tests. We mention a couple of positive and negative
results which complement the basic contribution of David Blackwell in
1980. Typically the answers depend on the choice of the set theoretic
axioms and on the particular concepts of measurability.

The following pages describe some of my personal experiences and mo-
tivations connected to the subject of David BlackwelΓs 1980 note 'There
are no Borel SPLIFs' [2]. I hope to show how this two page paper with
a mysterious title (SPLIF stands for 'strong probability limit identification
function') leads us directly to the foundations of the probabilistic formalism.

The measure theoretic language of probability provided by S. Ulam and
N. Kolmogorov is used by many without much attention. We all use English
without being experts in grammar. But for every language there always are
and always should be those who study meticulously the rules and the scope
of what could be expressed using the framework given by these rules. In
the case of the measure theoretic language this is part of what I always was
interested in. BlackwelΓs paper touches in an extremely elegant way the
bounds of this framework.

Given this interest, why study measures on a space of measures? Of
course a statistician trained in using Kolmogorov's framework first thinks
(with or without some distrust) of Thomas Bayes' dictum By chance I mean
the same as probability ([1], p.376), when he refers to the problem of finding
'the chance that a probability lies between two given bounds'. For me the
motivation came from a slightly different angle, namely from the theorem of
de Finetti or rather from the effort to understand this and similar extremal
integral representation results from a more abstract point of view.

Let ( θ , T) be a parameter set with a σ-field T, let {p#}ΰ£e be a family of
probability measures on the measurable space (Ω, B) such that ΰ ι—> P#(B)
is measurable for every B € B. For the sake of simplicity of the exposition
we shall make the regularity assumption that (Θ,T) and (Ω, B) are Borel
subsets of Polish spaces with the induced Borel structure.
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The mixtures

Pλ= ίwλ(dί) (1)
./θ

where λ varies over all probability measures on θ form a convex set H.
Under the above assumption every extreme point of H is of the form p#.
This follows e.g. from prop. 1 a) in the survey [22]. Conversely in most
concrete cases no p$ is a mixture of the others and thus

ex H = {pt}teΘ. (2)

(An interesting exception is given by the mixtures of Weibull distributions:

A Weibull distribution with shape parameter p is a mixture of Weibull dis-

tributions with shape parameter q as long as p < g, cf. [10], p. 480.) Under

the condition (2) the mixing equation (1) is a Choquet type representation,

i.e. the representation of a general element of H as a mixture of the extremal

elements.

Naturally we ask the question: Is the representation (1) unique? In

general the answer is negative. Examples of nonuniqueness are given by

the set of one-dimensional centered distributions or more generally sets of

martingale distributions. As a trivial special case consider p\ = |#_2 +

|ίi,P2 = §«-i + |«2,P3 = Ϊ ( « - I + «i),ί>4 = \{δ-2 + δ2). Then ± ( P l +p2) =

3P3 + 3P4-
Clearly the uniqueness means that the map λ ι—• p\ induces an affine

isomorphism of the space Prob(Θ) of probability measures on θ onto if, or
equivalently that the cone R + i ϊ is isomorphic to the cone M+(Θ) of positive
bounded measures on θ . How can such an isomorphism arise? Looking
around I realized that a really remarkable situation turns out to be quite
frequent: Some probabilistic limit theorem gives a function φ : Ω —> θ such
that

p*{ω : φ(ω) = ΰ} = 1 (3)

for every ΰ e θ . Then the unique representing measure of an element q of
H is given by A = q o φ"1. These functions φ are precisely the SPLIFs, or
perfect statistics.

In de Finetti's case one has the strong law of large numbers, or the
decreasing martingale theorem, in more general ergodic decompositions one
has Birkhoff 's ergodic theorem, in the case of Gibbs measures the decreasing
martingale theorem which corresponds to the thermodynamic limit. Dynkin
[6] gave a systematic study of such situations. In his language the SPLIF
is given by a Ή-sufficient' statistic. An interesting case in which the repre-
sentation (1) is unique but a function ψ with (3) does not necessarily exist
arises in point process theory: p$ is the law of the Poisson process given
by the intensity measures ΰ. The mixtures correspond to Cox or compound
Poisson processes (cf. Krickeberg [12]).
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So we are (as I was) led to the question: What else is needed besides
uniqueness in (1) in order to ensure the existence of a SPLIF? The direction
of our search leads also to the concept of a PLIF, a 'probability limit iden-
tification function'. For the motivation let us start with an application of a
SPLIF.

A remarkably general application of the existence of a SPLIF is given
by one of the early successes of martingale theory: Doob's [5] consistency
result for the posterior distributions: Let the σ—field B be generated by the
union sub-σ—fields Bn. Let λ be a prior and suppose that there is a λ—a.s.
B—measurable probability identifying function, i.e. a Borel map φ : Ω —> Θ
such that

λ{tf e θ : (3) holds} = 1. (4)

Then the posterior probabilities λn(T\Bn) converge to lr($) P#—a.s. for
λ—a.s. ΰ G θ and every measurable set Γ C θ. Since the topology on θ
has a countable base one gets

\{ΰ : p#{ω : λn(α;) —> ε* weakly} = 1} = 1 (5)

where ε# is the point mass in ΰ.
The intriguing fact is that for this consistency argument of Doob the

probability identification (3) needs to work only for all ϋ outside a λ—nullset!
Thus the function φ may be allowed to depend on λ. The existence of such a φ
for each λ follows already from the existence of a PLIF, i.e. from asymptotic
consistency in probability: Let d denote the metric on θ. Suppose that
there is a PLIF, i.e. there is a sequence (φn) of Bn—measurable function
φn : Ω —• θ such that for every ε > 0

J i π ^ M " : d{ψn{ω\ΰ) > ε} = 0 (6)

for all ϋ. Then given any prior λ on θ it is easy to extract a subsequence
such that

\{ϋ :pΰ{ω : d{φnk{ω),ϋ) —> 0} = 1} = 1

which implies the existence of a ψ which satisfies (4).
But as we mentioned in the known concrete situations one gets even

more: a SPLIF which does not involve any prior. Let us summarize:

Theorem 1 Let ϋ »-• p# be a transition kernel Each of the following state-

ments implies the next:

(a) There is a Borel SPLIF, i.e. a Borel function ψ which satisfies (3) for

allύeθ.

(β) There is a Borel PLIF, i.e. there is a sequence (ψn) which satisfies (6)

for allΰ eθ.

(7) For every prior λ there is a Borel function φ which satisfies (3) for

λ-almost all ϋ G θ .
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We are led to the

Question 1: Is (α) implied by (β) or even by (7) ?

In order to understand the question better let us look at condition (7) a
little more closely. It can be reformulated in the following alternative way
which led us in [14] to say that the family {p#} is Orthogonality preserving',
whereas a kernel with (α) was called 'completely orthogonal'.

(7J_) For two orthogonal priors λo -L λi the mixtures pχ0 and p\λ are
orthogonal as well.

Another way to look at this is from the point of view of vector lattices:
(7J_) says that the mixing map λ H+ p\ is not only injective but it is also a
lattice homomorphism from ΛΊ+(Θ) into ,M+(Ω) where we recall that the
lattice operations in the space of positive bounded measures can be defined
via the Radon-Nikodym theorem

dmin(μ,v) . / dμ dv
= mm fdμ + v ^dμ + v dμ + v

and similarly for the max.
Thus the property (7) gives both from the Bayesian point of view (con-

sistency of posterior distributions) and from the point of view of the vector
lattice structure of the mixtures a quite natural way of the identifiability

condition. The attractive feature of the condition (7) resp. (7J_) is that
there are no limit theorems visible. But still there is the connection to
consistency.

Here is a more precise reformulation of the consistency aspect of condition
(7). We mentioned that (7) is implied by the existence of a sequence (φn)
which is consistent in probability in the sense of (6). There is an interesting
partial converse. David Preiss had the idea to use the concept of filters of
countable type which I believe is due to Grimeisen [9] and Katetov [11].
Simply put, this class of filters can be characterized by being the smallest
class of filters such that the liminf of a sequence of liminf -s along filters of
countable type is again a liminf along a filter of countable type. Convergence
along such filters shares with convergence of sequences many properties like
the dominated convergence theorem. In [14] (Theorem 4.1) it was shown
that (7) is equivalent to

(7c) There is a family (φi)ieΊS of Borel maps from Ω to Θ and a filter T
of countable type on IN such that for every ΰ 6 Θ

T

Note the fact that in (7C) no prior on θ is involved!



SPLIFs 395

So the assumption (7) is fairly close to the existence of PLIFs; the differ-
ence being that in (7C) we take limits over a filter of countable type rather
than the usual limit of a sequence (which is the limit over the filter of cofinite
sets in IN). Now let us try to reshape the condition (α), i.e. the existence
of SPLIFs. A natural observation is that (a) is equivalent to the following
condition (as),

(as) J /θo,θ i are two disjoint measurable subsets of θ then there are
disjoint measurable subsets Bo,B\ of Ω such that p^(Bi) = 1 whenever
ΰi eθi andie {0,1}.

In (as) the two sets Hi = {pχ : X e Prob(θi)} for i = 0,1 are closed
under mixtures and every element in Ho is orthogonal to every element of H\
under assumption (as). Thus (7) =Φ> (a) would hold provided the following
question had a positive answer.

Question 2: Let Ho, Hi C Prob(Ω,B) be closed under mixtures and
Borel sets for the topology of convergence in law. Suppose that every element
of Ho is orthogonal to every element of Hi. Do there exist disjoint sets
Bo, Bι e B such that every element of Hi is concentrated on Bi for i = 0,1?

The following nice positive result was discovered independently by many

authors: (e.g. Goullet de Rugy [7], Graf-Magerl [8], Ornstein-Weiss [16], and

[14]).

Theorem 2 If, in question 2, the sets Hi are compact in the topology of
convergence in law then the answer is "yes".

The proof of Graf-Magerl uses Choquet capacities, the proof in [14] mim-
icked a classical statistical minimax argument and gave even a quantitative
version of the result. This gives a positive answer to question 1 under the
additional assumption that the family {p#} is σ-compact in the topology of
convergence in law.

Also, using the technique of filters of countable type we gave a positive
answer to question 2 if one of the sets Hi is a singleton. This method implies
that under assumption (7) the family has the following property (δ) which
is the measurably parametrized version of a concept introduced by Dorothy
Maharam-Stone [13] under the name 'uniform orthogonality'.

(δ) There is a product measurable set B C Ω x θ such that for every

ϋ € θ the section B$ C Ω satisfies p#(B#) = 1 and p#f(B#) = 0 for all

In 'statistical terms' this means that for every simple null-hypothesis
there is a test of power 1. If θ is the set of all lines in the plane Ω and each
p$ is a normal law concentrated on ΰ then {p#} satisfies (δ) but not (7).
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Coming back to question 2, another straightforward application of the
same method yields a result of G. Mokobodzki [19]. It assumes the existence
of a medial limit m : [0, l ] κ -> [0,1], i.e. a universally measurable map m
such that liminfi^i < m(z) < limsup^i for all z = (zi) G [0,1]^ which is
measure affine: m(J zdμ) = J m(z)dμ for every Borel probability measure
on [0,1]1*. It is known that medial limits exist under the continuum hypoth-
esis and even under the weaker 'Martin's axiom'. Under the assumption of
a medial limit Mokobodzki proved that question 2 has a positive answer if
the sets H{ are analytic and the B{ are allowed to be universally measur-
able. Similarly under this assumption property (7) implies the existence of
a universally measurable SPLIF. This contains the older result of J. Stepan
[20].

But is all this set theory necessary? Perhaps condition (7) implies the
existence of a Borel SPLIF after all? We are asking whether something can
be proven within the standard framework of probability (Borel functions and
no special axioms). The turning point was given by the following counterex-
ample of David Blackwell [2]. The proof was a beautiful application of Baire
category. The main idea had various applications and interpretations (cf.
[4], [3]). A subset of a topological space has the property of Baire, if there is
an open set U C Ω such that BAU is of first category.

Theorem 3 (Blackwell) Let Ω = {0,1}W and consider for i = 0,1 the set

Hi = {pe Prob(Ω) : p{ωk = 1} fcZΓ^ <}•

Let B C Ω such that p(B) = i for all p € Hi for i = 0,1. Then B cannot
have the property of Baire. In particular B is not Borel

The σ-algebra of sets with the property of Baire is very large. In fact
S. Shelah [17], improving a famous result of R. Solovay [18], proved that it
is consistent with Zermelo-Fraenkel set theory (of course without the axiom
of choice) that every subset of a Polish space has the property of Baire!
As was remarked already by Solovay in such a world many surprising things
happen, like that the Banach space L1(μ) is reflexive for every finite measure
μ. Combining BlackwelΓs theorem with Mokobodzki's result we can add that
no medial limits exist there.

Thus the answer to question 2 was negative. In an obvious sense question
2 is the analogue of question 1 for tests. This left the question 1, i.e. the case
of perfect statistics still open. But David Preiss who had found an alterna-
tive proof of the Borel part of BlackwelΓs theorem improved his technique
with the help of a very clever application of the (hard) measurable selection
theorem for Borel sets with compact sections to prove the existence of a
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counterexample to question 1. When I talked to David Blackwell about this
he stressed that if an example exists it should be possible to have an explicit
description. This remark kept working in me and finally Dan Mauldin and
I [15] managed to find a surprisingly simple strategy to directly construct
for Θ = [0,1] uncountably many nonisomorphic families with property with
a PLIF but without a SPLIF, by modifying the classical Bernoulli family
on {0,1}N. On the other hand in [14] it was shown that every two families
of diffuse measures with the same parameter set which allow a SPLIF can
be transformed into each other by a Borel isomorphism of the observation
spaces.

Let us come to an end asking two somewhat technical questions which are
left open by the above discussion, and mentioning one final positive result:

Question 3: Can one prove in Zermelo-Fraenkel set theory with the
axiom of choice that the existence of a PLIF implies the existence of a uni-
versally measurable SPLIF?

Question 4: Does (7) imply (β)? Equivalently, does the existence of
a net of countable type of Borel functions which is consistent in probability
imply the existence of a PLIF ?

I guess the answer to the Question 4 is no. Finally, Lutz Weis [21] gave
a mild justification of the intuition behind question 1 with the following

Theorem 4 (Weis) The existence of a SPLIF is equivalent to the following
finitely additive version of property (j±):

(a±) For any two orthogonal finitely additive priors λo J- λi on (Θ,T)
the mixtures pχ0 and p\x are orthogonal as well.

Writing this review I experience once more the fascination by these ques-
tions which are simply put, relate easily to the most formal aspects of math-
ematics and at the same time help to clarify the way how to speak about
statistical concepts. In the mean time I think it would be interesting to un-
derstand more clearly how these different versions of a 'perfect' experiment
could be approximated by finite-dimensional or even finite experiments. I
believe in particular that a Shannon theoretic approach will be helpful in
this endeavour.

Acknowledgement I am grateful to Dan Mauldin who read the first
draft of this paper and made some useful suggestions.
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