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Abstract

We discuss von Mises' notion of a random sequence in the context
of his approach to probability theory. We claim that the acceptance
of Kolmogorov's rival axiomatisation was due to a different intuition
about probability getting the upper hand, as illustrated by the notion
of a martingale. We also discuss the connection between randomness
and the axiom of choice.

to David Blackwell

1. Introduction. In 1937, the Universite de Geneve organized a confer-
ence on the theory of probability, part of which was devoted to foundational
problems (the proceedings of this part have been published as [9]). The focal
point of the discussion was von Mises' axiomatisation of probability theory
[21], and especially its relation to the newly published axiomatisation by Kol-
mogorov. In 1919 Richard von Mises (1883-1957) had published an (in fact
the first) axiomatisation of probability theory, which was based on a par-
ticular type of disorderly sequences, so called Kollektiυs. The two features
characterizing Kollektivs are, on the one hand, existence of limiting relative
frequencies within the sequence (global regularity) and, on the other hand,
invariance of these limiting relative frequencies under the operation of "ad-
missible place selection" (local irregularity). An admissible place selection is
a procedure for selecting a subsequence of a given sequence x in such a way
that the decision to select a term xn does not depend on the value of xn .

After several years of vigorous debate, which concerned not only von
Mises' attempted characterisation of a class of random phenomena, but also
his views on the interpretation of probability, it became clear that most prob-
abilists were critical of von Mises' axiomatisation and preferred the simple
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set of axioms given in Kolmogorov's Grundbegriffe der Wαhrscheinlichkeit-
srechnung [14] of 1933. The defeat of von Mises' theory was sealed at the
conference in Geneva, where Frechet gave a detailed account of all the objec-
tions that had been brought against von Mises' approach. While this history
may now seem old hat, we contend that the discussion itself is still of inter-
est, for the following reasons: a) the demise of von Mises7 theory seems due
to a different intuition about probability getting the upper hand, and b) the
notion of a Kollektiv remains mathematically fruitful.

Of course, the usual picture is that von Mises' theory is inconsistent, too
weak and in general misguided, so that the transition to Kolmogorov's ax-
iomatisation was in fact the most rational course of events. We believe that
none of the usual objections stand up to scrutiny, and that there is actually
still something to be learned from von Mises' rigorous discussion of founda-
tions. This will be illustrated below by a comparison of von Mises' views
with those of Sklar's "Physics and Chance" [31], a thoughtful and scholarly
treatise on the foundations of statistical mechanics.

More importantly, the years 1900-1940 represent a very interesting pe-
riod in the history of probability, starting with Hubert's injunction (in his 6th

problem) to axiomatise probability and ending with the acceptance of Kol-
mogorov's axiomatisation. To modern eyes, Kolmogorov's axioms look very
simple, and one may well wonder why it took such a long time for probability
theory to mature. One reason appears to be that probability was considered
to be a branch of mathematical physics (this is how Hubert presented it),
so it was not immediately apparent which part of the real world should be
incorporated in the axioms. Here, von Mises and Kolmogorov chose dif-
ferent options. Another reason is that attempts to articulate axioms were
very much guided by widely divergent intuitions about probability and the
foundations of mathematics in general. This will be illustrated below using
von Mises and Prechet as protagonists. It will be seen that games played a
prominent role here.

As a preliminary example of probability's movement towards articula-
tion, let us consider Borel's paper "Les probabilites denombrables et leurs
applications arithmetiques" of 1909 (reprinted as [1]). When he introduces
the considerations which lead up to the strong law of normal numbers, he
states [1,194-5]

Nous nous proposons d'etudier la probabilite pour qu'une fraction deci-
male appartienne a un ensemble donne en supposant que

1. Les chiffres decimaux sont independants;

Chacun d'eux a une probabilite - (dans
prendre chacune de ces valeurs possibles: 0,1,2,3,..., q — 1.

II n'est pas besoin d'insister sur le charactere partiellement arbitraire de

2. Chacun d'eux a une probabilite - (dans le cas de la base q) de
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ces deux hypotheses; la premiere, en particulier, est necessairement in-
exacte, si Ton considere comme on est toujours force de le fαire dans la
pratique, un nombre decimal defini par une lot, quelle que soit d'ailleurs
la nature de cette loi. D peut neanmoins etre interessant d'etudier les
consequences de cette hypothese, aίin que precisement de se rendre
compte de la mesure dans laquelle les choses se passent comme si cette
hypothese est verifiee.

Borel felt that he was developing a theory different from measure the-
ory to deal with probability. It is clear from the above passage that Borel
considers the 'practical' continuum to consist of lawlike reals only; hence the
practical continuum is countable and has measure zero with respect to any
absolutely continuous measure. Borel wanted to circumvent this problem. In
the introduction to [1] he explicitly states that 'denombrable' refers to the
cardinality of the sample space, and not to the σ-additivity of the measure.
This was universally misunderstood by authors (such as Frechet [7]) who
view Borel as a predecessor of the measure theoretic approach to probability.

Now the consequence of BoreFs two hypotheses, the strong law, was by
no means considered to be self-evident; in fact one expected the opposite
result. Here is Hausdorff's comment [10,420]

Dieser Satz ist merkwurdig. Auf der einen Seite erscheint er als plau-
sibele Ubertragung des "Gesetzes der grofien Zahlen" ins Unendliche;
andererseits ist doch die Existenz eines Limes fur eine Zahlenfolge, noch
dazu eine vorgeschriebene Limes, ein sehr spezieller Fall, den man a pri-
ori fur sehr unwahrscheinlich halten sollte.

And in 1923 Steinhaus still called the strong law of normal numbers le

paradoxe de Borel [32,286]. Evidently, the strong law was considered to be

paradoxical because a regularity such as the existence of limiting relative

frequencies was felt to be incompatible with chance.

These brief indications should suffice to convince the reader that the mat-

uration of probabilistic notions did not come overnight and that probability

was so much intertwined with other concepts that a 'pure' axiomatisation

was long in coming.

2. The frequency interpretation and the laws of large numbers.
Von Mises was an ardent advocate of the frequency interpretation of prob-
ability (cf. [24]) and took this as the basis of his axiomatisation. Since
this interpretation, and especially its relation to the laws of large numbers,
is often misunderstood (cf. for example Sklar's book on the foundations of
statistical mechanics [31,97]; but also Feller's famous treatise [6,204]), it is
worthwhile to explain it briefly here.
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The fundamental primitive in von Mises' axiomatisation is the Kollektiv, a
mathematical abstraction representing an infinite series of independent trials.
Probability itself is a defined notion: the probability of an attribute in a
Kollektiv is the limiting relative frequency of that attribute in the Kollektiv;
in von Mises' words: "Erst das Kollektiv, dann die Wahrscheinlichkeit". This
may seem rather trivial, but it is not.

1. Formally, it means that probability is not a primitive, as it is in
Kolmogorov's Grundbegriffe [14]. This has led critics (such as Feller in his
talk at the Geneva conference [4]; see also Frechet [7]) to argue that von Mises7

conception of a mathematical theory confuses empirical and mathematical
considerations. Clearly however, the choice of primitive terms is free as long
as the result is a rigorous system. Kolmogorov was well aware of this [14,2].

2. Von Mises' definition is not the only one which establishes some con-
nection between probability and relative frequency. We shall use the term
strict frequentism for any interpretation of probability which explicitly defines
probability in terms of relative frequency. Von Mises also thinks that there
is more to probability than the definition :

Die Wahrscheinlichkeit, Sechs zu zeigen, ist eine physikαlische Eigen-
schαft eines Wϋrfels, von derselben Art, wie sein Gewicht, seine Warme-
durchlassigkeit, seine elektrische Leitfahigkeit usw. [24,16]

but this aspect of probability does not figure in the definition. In particular
it does not make sense to speak about probabilities of singular events, such
as 'the outcome of this toss is heads'. This has consequences for the role
of the laws of large numbers. An influential interpretation of probability
superficially related to strict frequentism, the propensity interpretation, holds
that probability should primarily be thought of as a physical characteristic.
Now von Mises could concede this much but, contra von Mises, the propensity
interpretation claims to be able to derive the frequency interpretation from
the strong law of large numbers together with an auxiliary hypothesis. (Some
use the weak law for this purpose; see the quotation from Frechet [7] given
in section 5.) In other words, propensity theorists claim that it is possible to
derive statements on relative frequencies from premisses which are (almost)
probability-free. Typically one argues as follows.

Suppose we have a coin; after a thorough examination of its physical
characteristics (weight, center of mass etc.) we conclude that the probabil-
ity, 05 a physical characteristic or propensity, of coming up heads will be p.
The strong law of large numbers is then invoked to conclude that the set of
outcome sequences which show limiting relative frequency of heads equal to p
has measure one (w.r.t. the product measure determined by (1 — p,p)). Now
the auxiliary hypothesis comes in. All we need to assume is that zero prob-
ability (or zero measure) means, in the case of random events, a probability
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which may be neglected as if it were an impossibility (quoted from Popper
[30,380]).

Von Mises (cf. [24]) declines any use of the laws of large numbers in
the way indicated above. He rightly remarks that this use amounts to an
adoption of the frequency interpretation for certain special values of the
probabilities, namely those near to 0 and 1 (or equal to 0 or 1 if you use
the strong law), and asks: Why not adopt the frequency interpretation from
the start, for all values of the probability distribution? The obvious answer
is that the above procedure explains (or at least pretends to) the frequency
interpretation. As Popper puts it:

Thus, there is no question of the frequency interpretation being inad-
equate. It has merely become unnecessary: we can now derive con-
sequences concerning frequency limits even if we do not assume that
probability means a frequency limit; and we thus make it possible to at-
tach to "probability" a wider and vaguer meaning, without threatening
the bridge on which we can move from probability statements on the
one side to frequency statements which can be subjected to statistical
tests on the other (Popper [30, 381]).

So what is the role of the laws of large numbers in strict frequentism?
Here, von Mises [24] adopts Kolmogorov's point of view (cf. the latter's [13])
that the laws of large numbers are actually statements about fluctuations of
averages in finite sequences. These laws are derivable in probability theory
because Kollektivs are invariant under admissible place selections, not the
other way around. (For a detailed discussion of these derivations, cf. van
Lambalgen [16]).

3. The proposed reduction of the frequency interpretation of probability
to the laws of large numbers has its exact analogue in the use of ergodic
theory to explain the equality of phase averages (with respect to standard
volume measure) and time averages in equilibrium statistical mechanics. Mo-
tivated by his strict frequentism, von Mises declined any such use of ergodic
theory (see the last chapter of [22]), so in this context it may be worthwhile
to compare the two approaches. The traditional argument runs as follows.
Prove that the system at hand is ergodic (with respect to volume measure).
It stands to reason that phase averages have to be computed with respect
to some equilibrium measure. Assume that any reasonable equilibrium dis-
tribution is absolutely continuous with respect to volume measure. By the
ergodic theorem, it then follows that the equilibrium distribution is volume
measure. Also, the ergodic theorem gives us the equality of phase averages
and time averages for a set of initial states with volume measure one. If we
now assume that the anomalous trajectories do not occur, we are done. A
salient feature of the argument is that the premisses do not refer to empir-
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ically determined probabilities, whereas the conclusion does (in the form of
time averages). Clearly there are problems with the proposed reduction; to
mention but two, extensively discussed in Sklar [31]: what is the relation of
the actual initial microstate and the distribution over microstates? why can
we safely assume that (some) sets of volume measure zero have probability
zero, or perhaps cannot even occur?

Von Mises, on the other hand, adopts a fully probabilistic approach, with-
out reference to the underlying dynamics. He dispenses with microstates but
uses coarse graining only. The data consist of two kinds of probabilities: the
probability for the system to be in a certain cell, and the probability for the
transition from one cell to another. He then assumes, as a plausible gener-
alization from experience, that this set-up determines an irreducible Markov
shift and proceeds to prove (a weak form of) the ergodic theorem for this
situation. Note that here there is no pretense at all to reduce probabilistic
behaviour to the dynamics of the system: the probabilistic data are taken
from experience, not justified a priori by an appeal to ergodicity. (Von Mises
also had a physical reason for this: quantum mechanics tells us that the
assumption of an underlying deterministic dynamics is false.)

4. To appreciate the strictness with which von Mises himself applied his
doctrine, it is instructive to consider the case of attributes of probability
zero ([24,38]). If the sample space is uncountable, then probability zero
cannot mean impossibility; but in the case of a finite sample space probability
zero is generally equated to impossibility. Not so for von Mises. When
our Kollektiv is infinite, as the precise version of the explicit definition of
probability requires, then probability zero of an attribute is compatible with
the attribute occurring infinitely often.

3. Axiomatising Kollektivs. Von Mises' formal set-up is as follows
([21,57]). Let M (for "Merkmalraum") be a sample space, i.e. the set of
possible outcomes of some experiment. The doctrine of strict frequentism
says that probabilities P(A) for A C M must be interpreted as the rela-
tive frequency of A in some Kollektiv. In our mathematical description the
probability P{A) will be identified with the limiting relative frequency of the
occurrence of A in some infinite Kollektiv xeMω.

Definition 3.1. A sequence xGMw is called a Kollektiv if

(i) For all ACM, l i m ^ ^ £ Σk<n ^A^k) exists; call this limit P(A).

(ii) Let A,B C M be non-empty and disjoint; and suppose that A\JB occurs
infinitely often in x. Derive from x a new sequence x1, also in Mω, by
deleting all terms xn which do not belong to either A or B. Now let Φ
be an admissible place selection, i.e. a selection of a subsequence Φx'
from x' which proceeds as follows:
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"Aus der unendliche Folge [x1 wird] eine unendliche Teilfolge
dαdurch αusgewdhlt, dαβ ύber die Indizes der αuszuwάhlenden
Elemente ohne Benύtzung der Merkmαlunterschiede verfύgt."

Then

k<n

and

P'(B) := lim -

exist and P\A)P{B) = Pf(B)P(A).

A few remarks on the above definition are in order.

1. The quantifier "for all A C M" should not be taken too seriously. In
the Wahrscheinlichkeitsrechnung [22,17] von Mises remarks that all one
needs to assume is that (i) and (ii) hold for "simply definable" sets. For
definiteness, we may substitute "Peano-Jordan measurable" for "simply
definable". Note that we cannot take A to range over Borel sets; for one
thing because {xn \ n G ω} is countable, hence (in reasonable spaces)
Borel. We shall come back to this point in section 5.

2. Of course the enigmatic condition (ii) will take pride of place among
our considerations. In the relevant literature the first part (replacing
i by x', obtained from x by deleting terms not in A U B) is usually
omitted. For the paradigmatic case of coin tossing, the sample space
M equals 2 = {0,1} and condition (ii) reduces to: if Φ is an admissible
place selection, l i m ^ ^ £ Σk<n(®x')k = ^({1})

The more elaborate condition is necessary in order to ensure the validity
of the rule for conditional probabilities: P(A \ B)P(B) = P(AUB). It
is interesting that the validity of this rule has to be built in blatantly
into the axioms, thus emphasizing its empirical origin. (Wald [35, 41-2]
claims that, also in the general case, condition (ii) can be reduced as
for Kollektivs in 2ω\ but his proof uses evidently non-admissible place
selections.)

3.1. Games and place selections. Admissible place selections may
be viewed as gambling strategies with fixed stakes: if n is chosen, that means
that a bet is placed on the outcome of the nth trial; otherwise, the nth trial
is skipped. Von Mises called condition (ii) the Regellosigkeitsαxiom or the
Prinzip vom αusgeschlossenen Spielsystem. Apparently, von Mises thinks
that a gambling strategy gaining unlimited amounts of money can operate
only by selecting a subsequence of trials in which relative frequencies are
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different. It was shown by Ville [34] that this idea is mistaken: there exist
gambling strategies, namely martingales, which cannot always be represented
as place selections. We shall come back to this point in section 5.

In the examples below we consider the simplest kind of game, cointossing;

in other words, Kollektivs x in 2ω.

(a) Choose n if n is prime. (This strategy caused Doob to remark that
its only advantage consists in having increasing leisure to think about
probability theory in between bets.)

(b) Choose n if the n — 9th,..., n — 1th terms of x are all equal to 1. (The
strategy of a gambler who believes in "maturity of chances".)

(c) Now take a second coin, supposed to be independent of the first is so
far as that is possible (no strings connecting the two coins, no magneti-
sation etc.). Choose n if the outcome of the nth toss with the second
coin is 1.

If one thinks of successive tosses of the coin as being independent, then
condition (ii) is intuitively satisfied in all three cases, although in (c) a heavy
burden is put upon the double meaning of the word "independent". We
shall call selections of type (a) and (b) lαwlike (since they are given by some
prescription) and those of type (c) random. Note that the treatment of
independence in von Mises' theory differs from the standard one: he tries to
capture the independence of successive tosses directly, without invoking the
product rule.

At this point a natural question may arise: why do we need Kollektivs
at all? Why isn't it sufficient to use the distribution (as in effect happens in
Kolmogorov's theory) instead of the unwieldy formalism of Kollektivs? The
answer is that Kollektivs are a necessary consequence of the frequency inter-
pretation, in the sense that if one interprets probability as limiting relative
frequency, then infinite series of outcomes will exhibit Kollektiv-like prop-
erties. Therefore, if one wants to axiomatise the frequency interpretation,
these properties have to be built in. That infinite series of outcomes satisfy
Kollektiv-like properties is not because of the laws of large numbers, but for
the following reason.

Consider first the case where we toss two coints, supposedly independent,
simultaneously. The two coins are represented by Kollektivs x and y. We
expect that the distribution in (< rrn,yn > ) n is given by the product rule.
Now the limiting relative frequency of observing < 1,1 > equals the limiting
relative frequency of 1 in y times the limiting relative frequency of 1 in the
subsequence of x determined by yn = 1. Hence we obtain the expected
answer if the place selection in example (c) is admissible.
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A slightly more complicated example is the following. We want to know
the probability that successive tosses of a coin yield 1. This is calculated as
follows: take a Kollektiv x corresponding to the coin; by admissible place
selection (of type (a)) form Kollektivs (x2n-i)n and (#2n)n5 we may now
apply the preceding argument if we can prove that the Kollektivs (x2n-i)n
and (#2n)n are independent, i.e. that (< X2n-ι,x2n >)n is a Kollektiv with
respect to the product distribution. In order to show this, we have to use
the fact that the place selection determined by the prescription 'choose xk if
k is even and xk_x = Γ is admissible. This is a place selection of type (b).

In this way a Kollektiv x 6 2ω determines a distribution on the set of finite
binary words. Kollektivs invariant under place selections of type (a) and (b)
so that they determine a distribution on the set of finite binary words have
been studied under the name of 'Nachwirkungsfreie Folgen' (Popper [30]) or
'Bernoulli sequences'. Of course, if the probability equals 1/2, these are just
normal numbers.

4. Inconsistency? Von Mises himself was aware that Kollektivs can-
not be explicitly constructed, so that the consistency of the theory can be
established only indirectly. Indeed (arguing informally), suppose that x is a
Kollektiv given by an explicit function n —> xn. Then this function can be
used to define an admissible place selection selecting a subsequence of x in
which the distribution is different from that in x. Von Mises comments

dafi man die "Existenz" von Kollektivs nicht durch eine analytische
Konstruktion nachweisen kann, so wie man etwa die Existenz stetiger,
nirgends differentierbarer Funktionen nachweist. Wir mϋssen uns mit
der abstrakten logischen Existenz begnϋgen, die allein darin liegt, daβ
sich mit den definierten Begriffe widerspruchsfrei operieren lafit [21,60].

In other words, Kollektivs are new mathematical objects, not construct-
ible from previously defined objects. Hence in one place [22,15] (see also
[24,112]) von Mises compares Kollektivs to Brouwer's free choice sequences
[2], one extreme example of which is the sequence of outcomes produced by
successive casts of a die. In another place he contrasts his approach with that
of Borel, in a way which makes clear that Kollektivs are not to be thought
of as numbers, i.e. known objects:

... die von Borel u.a. untersuchten Pragen (z.B. iiber das Auftreten

einzelner Ziffern in den unendlichen Dezimalbrϋchen der irrationalen

Zahlen), wo das Erfϋlltsein oder Nicht-Erfϋlltsein der Fordering II [i.e.

3.1.(ii)] ohne Bedeutung ist [21,65].

Von Mises' argument that Kollektivs cannot be explicitly constructed,

was often turned against him, as an argument showing that Kollektivs do
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not exist. Here is Kamke's version, in a report to the Deutsche Mathematiker
Verein [12,23]: suppose that x G 2ω is a Kollektiv which induces a distribution
P with 0 < P({1}) < 1. Consider the set of strictly increasing sequences of
(positive) integers. This set can be formed independently of x; but among
its elements we find the strictly increasing infinite sequence {n \ xn = 1},
and this sequence defines an admissible place selection which selects the
subsequence 11111... from x. Hence x is not a Kollektiv after all. (Frechet
reiterated this objection in his [7], while referring to von Mises' stubbornness
in refusing to accept it.)

Clearly, this argument is very insensitive to von Mises' intentions, and
he had no trouble dismissing it: the set {n | xn = 1} does not define an ad-
missible place selection since it uses Merkmαlunterschiede in a most extreme
manner. The real problem is, rather, to understand why the argument was
considered to be convincing at all. The first obvious reason is that von Mises
could not come up with an unassailable consistency proof. A second, less
obvious, reason may be that von Mises and his adversaries had very differ-
ent views on the foundations of mathematics; as his reference to Brouwer
shows, he was willing to admit objects into mathematics about which we
have incomplete information only, whereas for instance Kamke (the author
of a textbook on set theory!) stood firmly in the classical, Platonist, tra-
dition. Here we shall not deal with attempts to make von Mises' definition
precise in terms of classical concepts, except to note the following points.

Efforts were first directed toward defining a class H of place selections
for which it could be shown that the set of Kollektivs invariant under that
class is non-empty. To this end (and considering the simplest case) place
selections were conceived of as functions Φ : 2ω —> 2ω, generated by some
r : 2<ω —> {0,1} (here, 2<w is the set of finite binary sequences) in the obvious
way: interpret ιτ(x(n)) = 1' as 'select x n +i ' It can be shown that (the
inverses of) Φ's thus defined preserve null sets (with respect to any product
measure), hence as long as 7ί is countable there will always be Kollektivs
invariant with respect to 7ί. Two choices of 7ί imposed themselves: take H
to be the set of place selections determined by recursive φ (Church [3]), or
use the so-called Bernoulli selections, which are determined by φw satisfying
Φw(u) = 1 iff w is a final segment of u. The Bernoulli sequences are precisely
the sequences invariant under Bernoulli selections.

Second, once one has a set of Kollektivs invariant under some ?i, one
can ask whether it is perhaps also invariant under place selections not in H.
A very interesting example in this area is Kamae's work on place selection
by means of entropy zero sequences (Kamae [11]). Entropy zero sequences
are deterministic in the following weak sense: as n grows, given x(n), we
can predict ever longer segments x(n + m). Such deterministic sequences
can for example be obtained from irrational rotations of the circle (so-called
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Sturmian trajectories). Kamae showed that if a; is a Bernoulli sequence and
y is deterministic, then the subsequence of x determined by: choose xn if
yn = 1, is again a Bernoulli sequence.

Unfortunately we have to forego any discussion of Kolmogorov complex-
ity, where random sequences are defined as those sequences which do not
have 'easily describable' regularities. We refer the reader to Li and Vitanyi
[20] for historical and technical details.

In the remaining few paragraphs of this section, we sketch an approach
to randomness which tries to stay closer to von Mises' in that it is axiomatic,
introduces objects about which we have incomplete information, and takes
the notion of admissibility as a starting point.

If one carefully looks at von Mises' Regellosigkeitsαxiom, what seems to
be fundamental is the notion of independence: whether a trial should be
included in the subsequence should be independent of the outcome of that
trial. In section 3 it was shown that there exists a close connection between
independence of successive outcomes on the one hand, and independence
of two sequences of outcomes on the other. It therefore seems promising
to take independence between sequences of outcomes as a primitive of the
axiomatisation. This choice can also be motivated in a different way. We
have seen that recursive sequences or entropy zero sequences can define ad-
missible place selections. What seems essential here is that these sequences
have low information content, so that α fortiori they have little information
about the Kollektiv. This suggests taking as primitive the relation "y has
no information about x". The formal properties of this relation are much
the same as those of independence (cf. van Lambalgen [17]); in fact they
satisfy most axioms of matroid theory, i.e. the theory of linear or algebraic
independence. For example, for all proposed definitions it can be shown
(with some effort) that they satisfy the Steinitz exchange property: if x is
independent of {y, zu . . . , zn} and y is independent of {zXj..., zn}, then y is
independent of {x, zλ,..., zn}. Hence we axiomatise randomness by means
of matroid theory and some additional properties. For reasons of space, here
we shall give an informal description only; for details we refer the reader to
van Lambalgen [18], [19].

First some notation. If z is an infinite binary sequence, let [z] denote the
set {x I x differs from z on at most a finite initial segment }. Let zΌ denote
the sequence of even coordinates of z, and let z1 denote the sequence of odd
coordinates of z. Using this notation, we may now extrapolate some of von
Mises' ideas on independence as follows:

(a) if z is random sequence, so are z° and z1

(b) since we think of the successive choices (or coin tosses) generating z as

independent, it follows that z° and z1 are independent of each other
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(c) conversely, if x and y are independent randomly generated sequences,
and if z is such that z° = x and z1 = y, then z is itself random.

Independent' is used as an intuitive concept here, but (a-c) have some

simple consequences which can be stated without using the concept of inde-

pendence. For example, suppose z is randomly generated; if x is such that

x° = z1, x1 = z°, then by (c), x is also random.
The second ingredient of the axiomatisation refers back to Brouwer's the-

ory of free choice sequences [2]. Fundamental to this theory is the following
observation (in this form due to Troelstra [33]): if we randomly or freely gen-
erate an infinite sequence α, then at any stage we know only a finite initial
segment of that sequence. This principle is called the Axiom of Open Data.
Formulated in this manner, Open Data contradicts classical logic, but it can
be given a form in which it does not, if we restrict the class of properties
to which it applies. Suppose A is a property which is insensitive to initial
segments in the following sense: if A(β) is true and 7 differs from β only
in a finite initial segment, then ^(7) is also true. Call such a property A
asymptotic (clearly A defines a tailset). Then we may paraphrase Open Data
as follows: if A is an asymptotic property and A holds for some randomly
generated α, then A holds for all randomly generated a. (If A were false
for some randomly generated /?, then A would make distinctions among ran-
domly generated sequences; but the only way to make distinctions is on the
basis of finite initial segments, which A cannot do because it is asymptotic.)
Clearly, this reformulation of Open Data is an abstract version of the 0-1
law.

It is shown in van Lambalgen [19] (using forcing) that the axioms for
independence together with the 0-1 law are consistent with Zermelo-Fraenkel
set theory (plus the axiom of dependent choices), thus showing that von
Mises' intuition did not deceive him. However, somewhat surprisingly they
do contradict the axiom of choice.

Intuitively, one may argue as follows. Let C be the collection of pairs
{{[z°], [z1]} I z randomly chosen}. We show that it is impossible to choose
an element from each pair of C. Working toward a contradiction, suppose that
g is a function which picks one element from each pair in C. For definiteness,
let us suppose that there is a random z such that <j{[z°], [z1]} = [z0]. Now the
property "g{[z°], [z1]} = [z0]" is asymptotic in z, so by the 0-1 law it follows
that for all randomly chosen rr, 5{[#°], [x1]} = [x°] Consider a very special
x, namely a sequence which is defined by x2n = <z2n+i, #2n+i = £ 2 n . The
sequence x is just as random as z (by (c) above), and we have [z°] = [x1] and
[z1] = [x°], hence g{[z% [z1]} = g{[x°], [x1]} also equals [z1], a contradiction.
(The formal version of the argument takes account of the fact that z° and z1

should be independent given g.)

Philosophically this seems interesting, because it shows that a funda-
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mental probabilistic notion, at least when taken to the limit, fits somewhat
uneasily in the standard mathematical framework.

5. The Geneva conference: Frόchet's objections. As mentioned
in section 1, during the Geneva conference on probability the prevailing atti-
tude towards von Mises' ideas was critical. A fairly complete list of objections
was drawn up in Frechet's survey lecture on the foundations of probability
[9,23-55]. Von Mises himself was absent, but his rebuttals of the objections
were published in the proceedings [25]. To no avail: the same objections
were reiterated in Frechet's [8]; and, for that matter, ever since. Frechet's
criticism has more or less become the standard wisdom on the subject and
for this reason we shall present it in some detail. Our conclusion will be that
most of the objections, those based on Ville's famous construction included,
are unfounded.

5.1. Frechet's philosophical position. As stated in section 1, we
shall adopt as working hypothesis that the lack of mutual comprehension
between von Mises and his critics is due to widely differing views on the
foundations of mathematics as well as on the foundations of probability. In
particular, we shall assume that Frechet is an adherent of the propensity
interpretation. This hypothesis will explain at least in part why Frechet
thought that Ville's theorem dealt such a devastating blow to von Mises'
program. We compile some passages from Frechet [7,45-7] to show that he
indeed subscribes to the propensity interpretation.

[...] "la probability d'un phenomene est une propriete de ce pheno-
mene qui se manifeste a travers sa frequence et que nous mesurons au
moyen de cette frequence".

Voici done comment nous voyons repartis les differents roles dans
la theorie des probabilites. Apres avoir constate comme un fait pra-
tique, que la frequence d'un evenement fortuit dans un grand nombre
d'epreuves se comporte comme la mesure d'une constante physique
attachee a cet evenement dans une certaine categorie d'epreuves, con-
stante qu'on peut appeler probabilite on en deduit, par des raison-
nements dont la rigueur n'est pas absolue, les lois des probabilites to-
tales et composees et on verifie pratiquement ces lois. La possibility
de cette verification enleve toute importance au peu de rigueur des
raisonnements qui ont permis d'induire ces lois. Ici s'arrete la synthese
inductive.

On fait corresponds maintenant a ces realites (toutes entachees
d'erreurs experimentales), un modele abstrait, celui qui est decrit dans
Γensemble des axiomes, lesquels ne donnent pas - contrairement a ceux
de M. de Mises - une definition constructive de la probabilite, mais une
definition descriptive. [...]
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Sur Γensemble d'axiomes est batie la theorie deductive ou mathema-
tique des probabilities. Enfin la valeur du choix de cet ensemble est
soumise au contrόle des faits, non par la verification directe, mais par
celle des consequences qui en ont ete deduites dans la theorie deductive.
La verification la plus immediate se presentera en general de la faςon
suivante: on adopte comme mesures experimentales de certaines proba-
bilites p,p',... les frequences /,/',..., correspondantes dans les groupes
d'epreuves nombreuses. Certains theoremes de la theorie deductive
etablissent les expressions de certaines autres probabilites, P,P' , . . . ,
en fonction de p, p',.... Ayant calcule P,P',... au moyen de ces ex-
pressions oύ Γon a remplace approximativement p,p',... par /,/',.••
la verification consistera a s'assurer que les valeurs approchees ainsi
obtenus pour P,P',... sont aussi approchees des frequences F,F',...
qui sont les mesures experimentales directes de P, P',

On peut d'ailleurs reduire beaucoup les difficultes pratiques de ces
verifications. Si Γon appelle Pn la probabilite pour que la frequence
dans n epreuves d'un evenement de probabilite p, difϊere de p de plus de
ε, alors d'apres le theoreme de Bernoulli, Pn converge vers zero avec K
Si done on se contente de verifier experimentalement qu'un evenement
de probabilite assez petite est pratiquement tres rare et meme qu'un
evenement de probabilite extremement petite est pratiquement impos-
sible, le theoreme de Bernoulli se traduit pratiquement ainsi: quel que
soit le nombre ε > 0, la frequence dans n epreuves pourra pratique-
ment etre consideree comme differant de la probabilite correspondante,
de moins de ε, si le nombre des experiences est assez grand. Autrement
dit, il est inutile d'operer, pour toutes les valeurs de la probabilite p, la
verification qu'on se proposait. On peut se contenter de la faire quand
p est petit. Or cela est beaucoup plus facile; il n'est pas necessaire de
faire de longs releves.

Except for the use of the weak law of large numbers where Popper uses the
strong law, Frechet Js version of the propensity interpretation follows the lines
laid out in 2 (although Frechet seems to be much less aware of his assumptions
than e.g. Popper!). It is evident from [7] and [8] that Frechet considers
the propensity interpretation to be much simpler than the strict frequency
interpretation. Superficially, this is indeed so: much of what von Mises
struggled to formulate precisely is relegated here to the "synthese inductive",
where "e'est l'intuition qui domine et cherche a degager comme elle peut,
Γessentiel de la complexite des choses" [7,45]. In particular, as we have
seen, the rules of probability do not have to be rigorously derived from the
interpretation, in contrast with von Mises' approach. Similarly, Frechet can
do without limiting relative frequencies and Kollektivs. We need not reiterate
our views here.
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5.2. Weakness of Kollektivs: Ville's construction. Frechet's in-
terpretation of probability lies at the root of what he considers to be the
most forceful objection against von Mises. To understand this objection, we
have to state the law of the iterated logarithm.

Law of the iterated logarithm (LIL) Let pe (0,1). 'Almost all' refers
to the product measure (1 — p,p)ω.

(a) Forα>l,fora.a.ze2u'3fcVn > k\^j<n

xj-nP\«x[2p(l-p)nlog\ogri\i

(b) For α< 1, for a.a. xG2ωVfcΞn> k[£j<n Xj -np> α[2p(l-p)nlog logn]i]
and

for a.a. x G 2ωVk3n > k[np-Σj<n

 xj > α [ 2 P ( l -p)n l o S l o S n]* ]

Part (b) in particular shows that the quantities Σ J < n Xj—np and np—ΣJ<n Xj
exhibit fairly large oscillations. This observation provides the starting point
for Ville's construction [34,55-69], which proceeds in two stages (actually, our
presentation is slightly anachronistic, since Ville uses Levy's Law, a precursor
of the law of the iterated logarithm, instead of the latter).

1. Given any countable set 7ί of place selections Φ : 2ω —• 2W, Ville is able
to construct a sequence x G 2ω with the following properties:

(i) l im n_ o o ^ Σk<n χk — \ s^d x is invariant under place selections from

n
(ii) for all except finitely many n, Σk<nXk ^ §

Part (ii) means that the relative frequency of 1 approaches its limit from
above, a property which is atypical in view of the law of the iterated loga-
rithm. Ville's construction is algebraic, but it can be given a measure theo-
retic form as follows (cf. van Lambalgen [15]). Let μ be a product measure
of the form Y[n(l —PniPn) s u c h that pn converges to | . Then for any such μ,
μ{x I lin^^oo ^ Σjb<n χk = \ a n d x is invariant under place selections from
H} = 1, but for (pn) converging sufficiently slowly, μ{x \ x satisfies LIL} = 0.

2. In the second stage of the construction, Ville temporarily adopts von
Mises' viewpoint and interprets probability measures on 2ω as in effect being
induced by Kollektivs ξ G (2ω)ω. Hence if λ is Lebesgue measure (i.e. the
product measure generated by the uniform distribution on {0,1}) on 2ω,
λA = 1 must mean

J2u
k<n

So far we have considered only Kollektivs in 2ω\ in particular, we have not

defined what place selections Φ : (2")" -> (2")" are. Fortunately, we need
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not do so here, since we may, for the sake of argument, assume that Ville
has done so in a satisfactory manner (for those interested in the details, see
[34,63-67]). Then Ville shows the following, using 1. :
For any countable set H of place selections Φ : (2")" -> (2ω)ω, there exists
ξe(2ω)ω such that

(iii) ξ induces λ and is invariant under place selections from Ίi

(iv)

Remark. The reader may well wonder what "induces" in (iii) means in view
of (iv), since we defined uξ induces P " to mean:

for 'all' B C 2", P(B) = lim ± £ lB(ξk)

but since P(A) = 0 (by (iv)), the induced measure P cannot be equal to λ as
claimed by (iii). Therefore (iii) should be understood as follows. A σ-additive
measure on 2ω is determined completely by its values on the cylinders [w],
for finite binary words w, and we do have for the ξ constructed by Ville:

k<n

It can then be shown that also XA = lim^oo £ Σfc<n 1A(£*) f° r Peano-
Jordan measurable A, i.e. for A such that the boundary of A is a nullset.
Clearly, LIL, being first category, is not Peano-Jordan measurable. Ville's
construction is thus a very interesting case of the phenomenon that limiting
relative frequency is not a σ-additive measure; since if the induced P were
σ-additive, it would coincide with λ.

Again, this construction can be given a measure theoretic form: choose
a product measure μ whose marginals converge sufficiently slowly to | , put
μn = μT~~n (where T is the leftshift) and let v be the product measure
μx x μ2 x μ3 x .. ..Then for i/-a.a. ξe(2ω)ω (iii) and (iv) hold.

Prom 1. and 2., Prechet and Ville derived the following three objections
to von Mises' theory.

(a) (Prom 2.) The theory of von Mises is weaker than that of Kolmogorov,
since it does not allow the derivation of the law of the iterated loga-
rithm.

(b) (Prom 1.) Kollektivs do not necessarily satisfy all asymptotic properties
proved by measure theoretic methods and since the type of behaviour
exemplified by (ii) will not occur in practice (when tossing a fair coin),
Kollektivs are not satisfactory models of random phenomena.
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(c) (From 1.) Von Mises' formalisation of gambling strategies as place
selections is defective, since one may devise a strategy (a martingale)
which makes unlimited amounts of money of a sequence of the type
constructed in 1., whereas ipso facto (by (i)), there is no place selection
which does this.

Von Mises reacted to these objections with a cavalier dismissal: "J'ac-
cepte ce theoreme mais je n'y vois pas une objection" [25,66]. In fact, von
Mises to some extent anticipated Ville's construction in his discussion of the
meaning of probability zero [24,38]. As we have seen, von Mises thought that
an event having zero probability might occur infinitely often in a Kollektiv.
But in this case, the limiting relative frequency is necessarily approached uni-
laterally, as for the sequence constructed by Ville. We now discuss objections
(a), (b) and (c).

Objection (a) is easiest to dispose of; in fact we have done so already
in section 2, when we discussed the meaning of the strong limit laws in von
Mises' theory. Stage 2 of Ville's construction shows that, although the ver-
sion of the law of the iterated logarithm for finite sequences is derivable in
von Mises' theory (which implies that it can be interpreted via relative fre-
quency), the version for infinite sequences is not so derivable. This means
that the theorem does not have a frequency interpretation (in the space of
infinite binary sequences). To be more precise: von Mises distinguishes be-
tween measure theoretic and probabilistic derivations. LIL, as a statement
about infinite sequences of trials, is not (probabilistically) derivable using
operations such as place selections, although it is of course measure theoret-
ically derivable using properties of the infinite product measure (essentially
the Borel-Cantelli lemmas). Von Mises' rules are set up so that they preserve
the frequency interpretation; this no longer holds for the limiting operations
of measure theory.

Far from being a drawback of the theory, this seems to be a very interest-
ing subtlety, which illuminates the status of the law of the iterated logarithm
and which nicely illustrates Kolmogorov's note of caution when introducing
σ-additivity:

Wenn man die Mengen (Ereignisse) A aus ί [which in this case is the
algebra generated by the cylinders [w]] als reelle und (vielleicht nur
annaherungsweise) beobachtbare Ereignisse deuten kann, so folgt da-
raus natϋrlich nicht, dafi die Mengen des erweiterten Kδrpers B{8) [the
σ-algebra generated by 5] eine solche Deutung als reelle beobachtbare
Erscheinungen vernϋnftiger Weise gestatten. Es kann also vorkommen,
dafi das Wahrscheinlichkeitsfeld (S,P) als ein (vielleicht idealisiertes)
Bild reeller zufalliger Erscheinungen betrachtet werden kann, wahrend
das erweiterte Wahrscheinlichkeitsfeld (#(£), P) eine reine mathema-
tische Konstruktion ist [14,16].
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Objection (b) consists of two parts:

(bx) Kollektivs are not satisfactory models of random phenomena, since a
unilateral approach of the limit will not occur in practice;

(b2) Kollektivs apparently do not necessarily satisfy all asymptotic laws
derived by measure theoretic methods; it is an arbitrary decision to
demand the satisfaction of one asymptotic law, viz. the strong law
of large numbers at the expense of another, the law of the iterated
logarithm.

These objections make sense only from the point of view of the propen-
sity interpretation. "In practice" we see only finite sequences. Kollektivs
were so designed as to be able to account for all statistical properties of fi-
nite sequences and they do so perfectly. To that end, a certain amount of
idealisation, in particular the consideration of infinite sequences turned out
to be convenient. But the consideration of infinite sequences was not an end
in itself and von Mises certainly had no intention to model infinite random
"phenomena".

The only criterion for accepting or rejecting properties of infinite Kollek-
tivs was their use in solving the finitary problems of probability theory and
for that purpose, assuming invariance under place selections suffices. Objec-
tion (b2) claims that in fact there does exist another criterion: satisfaction
of asymptotic laws derived by measure theoretic methods. But we have seen
that, according to von Mises, limiting relative frequencies in Kollektivs do
not owe their existence to the law of large numbers. Neither are they invari-
ant under admissible place selections because place selections are measure
preserving transformations. Similarly, the fact that the law of the iterated
logarithm has been derived (for infinite sequences) does not in itself entail
that Kollektivs should satisfy it.

On the propensity interpretation, objection (b2) of course makes sense.
Formally, here one may view the relation between probabilistic statements
and experience as follows: if a strong law of large numbers has been derived,
a typical outcome sequence should satisfy it. Clearly, however, to turn this
into a definition of typicality requires a non-arbitrary choice of a set of strong
laws, a difficult task.

Lastly, we come to objection (c): von Mises' formalisation of gambling
strategies (as place selections) is not the most general possible, since one
can construct a strategy (a martingale) which may win unlimited amounts of
money on the type of sequence constructed in 1.. For the present discussion,
a martingale is given by a function V : 2<w —• i2+ , where V(w) denotes the
capital which the gambler, having played according to the strategy, possesses
after w has occurred, and such that V(w) equals the expected capital after
move \w\ + 1. Ville exhibits a martingale V such that for the sequence x
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constructed in 1., limsupn_^oo V{x{n)) = oo; but, since x is a Kollektiv,
no gambling strategy in the sense of von Mises can win unlimited amounts
of money on x. The interesting point about this objection is not that it
undermines von Mises' approach; after all, it was not his purpose to formalise
the concept of an infinite sequence for which no successful gambling strategy
exists. What is really interesting is the following. The only reference to
martingales that I could find in von Mises' published works expresses his
incomprehension:

Jusqu'ici je n'ai pu encore saisir Γidee essentielle qui serait a la base
de la notion de "martingale" et de toute la theorie de M. Ville. Mais
je ne doute point que, une fois son livre paru, on s'apercevra a quel
point il aurait reussi a concilier les fondements classiques du calcul des
probabilites avec la notion moderne du collectif [25,67].

We believe that von Mises was actually forced to not understand mar-
tingales by his interpretation of probability. Martingales were introduced to
capture the notion of fairness of a game: a game is fair if, for each n, the
expected capital after the n + 1th trial is equal to the capital after the nth

trial. But taking expectations requires some probability measure; and which
probability measure should one consider? The intuitive idea behind fairness
seems to be that it makes sense to speak of "probability of heads at the
nth toss". This notion of fairness is clear on the propensity interpretation.
Adopting the standpoint of strict frequentism, one might be inclined to say
that the pay-offs for a game on x should be determined by the limiting rel-
ative frequencies in x. Ville's example shows that if gambling house adopts
this pay-off policy, it may loose money. Although this policy is alright for
games with fixed stakes (i.e. place selections), it is not applicable to games
with variable stakes. Hence the gambling house must have knowledge of the
probabilities of individual coordinates.

But, as we have seen, from the point of view of strict frequentism one may
speak of probabilities at specific coordinates only with reference to Kollektivs
ξe(2ω)ω. In particular, one must consider infinitely many (infinite) runs of
the mechanism that produces the Kollektivs (with which the game has to be
played) and then count the limiting relative frequencies in each coordinate]
and these probabilities must determine the pay-offs. Now with this definition,
a martingale with respect to the uniform distribution would no longer be
considered fair for a game played with Kollektivs of Ville's type: if each ξk

is of this type, then the probability of 1 at the nth coordinate will be larger
than | .

In conclusion, we may say that Ville's argument is not relevant for the
question how to define Kollektivs, but rather for the examination of the
probabilistic assumptions that go into the intuitive notion of a fair game.
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For games with variable stakes, fairness seems to involve a reference to prob-
abilities at some specified coordinate. An adherent of the propensity inter-
pretation will have no difficulty recognizing such probabilities, but the strict
frequentist can only introduce them using a Kollektiv of Kollektivs. If for
some reason or other his data consist in only one Kollektiv x e 2ω, in other
words, if his data consist only in a distribution over {0,1}, he cannot decide
whether some proposed game is in fact fair. To some, the strict frequentist
conception of fairness may seem artificial; but this seeming unnaturalness
serves to confirm the impression that the instinctively adopted interpreta-
tion of probability is the propensity interpretation.
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