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Abstract

The basic theory of point processes, including the theory of marked Poisson
processes, is developed here under the sole assumption that the mean mea-
sure of the process is sigma finite. No other measure theoretic assumption is
made. No topological structure is imposed on the state space of the process.

To David Blackwell,
who with his characteristically concise sentences taught me, among other

things, how to write a mathematics paper, how to look at mathematics, how
to welcome responsibility and how to face one's more mature years, this
paper is affectionately dedicated. [H.G.T.]

1. Introduction. The natural mathematical framework for the theory of
point processes, or, more generally, for the theory of random measures, is
one in which only measure theoretic considerations play a role. Some of the
existing theory of point processes, however, seems to depend on a combi-
nation of both measure theoretic and topological conditions. The objective
of this paper is to introduce a mathematical setting for the theory of point
processes in which no topology is needed on the state space of the process.
Some of the most basic aspects of the theory, including the theory of marked
Poisson processes, can in fact be developed in this more general and natural
setting without any additional effort. References for the usual theory include
Kallenberg (1983) and Resnick (1987), both of whom utilize to some extent
a metric space structure on the state space when proving theorems like the
ones below. Kingman (1993) develops the theory of Poisson processes, in-
cluding the theory of marked Poisson processes, in a setting very much like
ours, but with additional conditions imposed on both the state space sigma
algebra and the mean measure.
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2. Point Processes. Suppose E is a non-empty set and E is a sigma
algebra of subsets of E. A point measure ω over the measurable space
(E,S) is a measure determined by a finite or denumerable sequence {xn} of
not necessarily distinct points in E such that, for every F G £, ω(F) is the
number of points of the sequence that belong to F. Let M denote a non-
empty set of point measures over £, and let ΛΊ be the σ-algebra of subsets
of M defined by

M = σ{{ω G M : ω(F) <k}:FeS,0<k< oo}.

Let T be the set of extended real valued non-negative measurable functions
with domain E. For arbitrary / G T and ω G M denote

where {xn} is a sequence determining (or determined by) ω. Note that for
each / E T the mapping ω H-» </,α;> is ΛΊ-measurable.

Associated with a probability measure P on the space (M, Λ"ί) is its mean
measure μp defined by

μP(F) = / ω(F)P(dω)
JE

for F G 6. The mean measure will be seen to play an important role in
the development below. In fact, the usual topological requirement of σ-
compactness of the state space will be seen to be replaced by the requirement
of the σ-finiteness of the mean measure of the point process.

Definition. A probability measure P on (M, M) is said to be a point
process over (E, ε) if its mean measure μp is σ-finite.

Sometimes we shall just say that (M, M, P) is a point process when P is
a point process over (£?,£).

Note that this definition is not equivalent to the definition of a point pro-
cess as a stochastic process {N(A), A G £} defined on some probability space
(Ω,*A,P), where for every ω G Ω, N( )(ω) is a non-negative integer-valued
measure over ε. This is because this alternate definition does not imply the
σ-finiteness of the mean measure of the process N. For example, let K be any
non-negative integer valued random variable having infinite expectation and
let e be any fixed point in E. The stochastic process {K(ω)δe(A),A G £}
clearly satisfies this alternate definition, but fails to have a σ-finite mean
measure.

In this section the Laplace functional P of a point process (M, Λ4, P) will
be defined, and we shall prove that P uniquely determines P.

We recall two definitions and some useful results connected with them.
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Definition. A subset X of £ is called a π-system if X is closed under
intersections.

Definition. A subset J of 6 is called a λ-system if <7 satisfies:

(1) Eej,
(2) if A, £ G *7 and A C B then £ \ A G J , and
(3) if An E j a n d An C An+i forπ = l,2,... then \J™=1 An e J.

Dynkin's Theorem. IfV is a π-system, if C is a λ-system, and iΐV C C,
then σ{V} C C.

Corollary to Dynkin's Theorem, If V is a π-system, if P and Q are
probability measures over σ{V), and if P(A) = Q(A) for all A G V, then
P = Q over σ{V}.

Proofs of the preceding two results can be found in Billingsley (1986).

Lemma 1. Let (M,M,P) be a point process, and suppose that I C £
satisfies

(1) X is a π-system,
(2) σ{I} = S, and
(3) there exists a sequence {En} in I such that En C En+ι, μp(En) < oo

for n = 1,2,..., and U£°= 1£n = E.

Let M = σ{{ω G M : ω(I) < k},I G J,fc > 0}, and let (M,M,T) and
(M,JJ,P) be the unique completions of (M,M,P) and (M,N,P\tf) re-
spectively Then M = ΛΓ.

Proof. It is immediate from the definitions that λί C M, and so ΛΓ C M.
We shall prove M C 77. Denote

£ n = {F G 5 : {ω G M : ω(F Π £ n ) < ^} 6 ΛΓ for all A; > 0}.

We prove a sequence of claims.

Claim 1: For all n, X C Qn

Proof: Let H G J . By hypothesis, £7n G J, and J is a π-system. Hence
HΓ)EneX. By the definition of Λf, {ω G M : ω(H Π En) < k} e λί Cλί
for all fc > 0. Hence by the definition of Qn, H G Qn, which proves Claim 1.

Claim 2: E G £ n for all n.
Proof: Since JSn C E, we have {ω G M : ω(£? Π jBn) < A;} = {ω G M :
ω(En) < k}. By hypothesis, En G J , and by the definition of λί, {ω G M :
ω ( # n ) < jfc} G ΛΓ C λί for all )b > 0. Hence by the definition of Qn, E G Qn,
which proves Claim 2.

Claim 3: Let Mx = {α; G M : α ί^n) < oo, for all n}. Then Mi e λί and
P ( M i ) = 1.
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Proof: By hypothesis, En G I for all π. Thus for each n we have (by the
definition of λί) that {ω G M : ω(En) < k} G ΛΛ Since Λ/* is a σ-algebra,
we have

oo

\J{ωeM: ω(En) < k} = {ω G M : ω(£n) < 00} G ΛΛ

For the same reason

{ω G M : ω(En) < 00} = {ω : ω ( £ n ) < 00 for all n} G ΛΛ
n = l

Hence Mi G .ΛΛ In order to prove P(Mχ) = 1, we use the hypothesis
βp(En) < 00 for all n and the fact that μp(En) = JMω(En)P(dω) to
obtain P({ω G M : ω(En) < 00}) = 1. Hence P(Mι) = 1, which proves
Claim 3.

Claim 4: For every n, £ n is closed under proper differences.
Proof: Let Fι and F2 be members of </n, and such that Fι C F2. We wish
to prove that F2 \Fλ G ̂ n , i.e., that {ω G M : α;((F2 \i^i) ΠJ5n) <k} e77
for all A; > 0. For all ω G M,

α;(F2 Π £ n ) = ω((F2 \ Fi) Π £;n) + α;(Fχ Π £?n).

Note that for all ω G Mi, we may write

ω((F2 \ Fi) Π En) = ω(F2 Π En) - ω(F1 Π CΛ),

since all three terms are finite by the definition of Mi. Since {ω G M :
ω(Fi ΠEn) <k} G ΛΓ for < = 1,2, and since by Claim 3, Mx G ΛΓ, it follows
that Mi Π {ω G M : ω(F2 \ Fλ) < k} G ΛΓ, for all Jk > 0. Since P(Mi) = 1
by Claim 3, it follows that (M \ M x) Π {α; G M : ω(F2 Π Fx) < Λ} G Λ7\ since
this is a subset of M \ Mx G ΛΓ and P ( M \ Mλ) = 0. Hence

{ ω E M : ω((F2 \ Fx) Π En) < k} G ΛΓ

for all k > 0. Therefore, F2 \ Fx G Qn, proving Claim 4.

Claim 5: If Ak G ̂ n , and if Ak C A^+i for k = 1,2,..., then U^l x A* G

n

Proof: By the definition of Qn, since Ak € Gn, then A* G S and {α; G M :
u;(j4fc Π En) < r} eλΓ for all r > 0. Hence the function ω H-> ω{Ak Π £?n)
is ΛΓ-measurable. Since each ω G M is a measure, and since Ak C Afc+i for
each k, it follows that α^A* ΠEn) t w((Uj°= 1Aj)ni;n) as A; -• 00. Now, the
monotone limit of a sequence of ΛΓ-measurable functions is ΛΓ-measurable,
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so{ωeM : ω((U^=1Ak) ΠEn)<r} e/7 for all r > 0. Since U^=1Ak G £,
it follows that U^L^k G Gn, which proves Claim 5.

We now prove the lemma. By Claims 2, 4, and 5, Qn is a λ-system. By
Claim 1, 1 C Gn, and by Dynkin's theorem, σ{I} C Gn> By hypothesis,
σ{J} = £, so 5 C ί/n. But also Qn C £. Hence Gn = £. This implies that
for every F e 6, {ω e M : ω(F Π En) < k} elϊ for all k > 0. Let F G £
be fixed, and define fn : M -+ {0,1,2,..., oo} by fn(ω) = ω ( F Π £ n ) . Thus
fn is ΛΓ-measurable. Since En C ί? n +i for all n and since each ω G M is
a measure, it follows that fn(ω) T /(ω) as n -> oo for all α; G Af, where
/(α;) = ω(F Π ( U ~ = 1 ^ n ) ) = ω ( F Π E) = ω{F). Hence / is ΛΓ-measurable
for every F G £. This means {α; G M : ω(F) < ik} G ΛΓ. Thus σ{{α; G M :
α^(F) < k},F G £,A; > 0} C 71, and Λ4 C Λ/". Prom this it follows that

Me77. D

Theorem 1. Let (M,M,P) be a point process over (E,S), and suppose
1 C 6 satisfies

(1) 1 is a π-system,
(2) σ{J} = ε, and
(3) there exists a sequence {En} C X such that En C En+ι, μp(En) < oo

for all n, and U^=1En = E.

Let Q be a probability measure over (M, M) which satisGes

k

j=1{ω G M : ω{Iά) < nό}) = Q(n£= 1{α; ^ M : ω{Iά) < nά})

for every k > 1 and every 7χ,..., Ik in I and n\ > 0,..., nk > 0. Then
P = Q over M.

Proof. Let us define

J = {Πk

j=1{ω G M : ω(Iό) < nά} : Iά G J , n^ > 0,1 < j < k, k > 1}.

Clearly, J is a π-system. Let M = σ{J}. Now since P and Q are probability
measures over (M,Λί) by hypothesis, by the Corollary to Dynkin's theorem
their restrictions to Λί are probability measures over (M,Λf), so P(F) =
Q(F) for all F G λί. Hence P = Q over ΛΓ, and since by Lemma 1, ΛΓ = ]M,
it follows that P = Q over ~M. Since Λί C Λί, then P = Q over Λί. D

If ( M , Λ ί , P ) is a point process, we define its Laplace functional P :
T -• [0,1] by P(f) = / M e ~ < / ' ω > P(dα ) for all / G ̂ . We now show that if
two point processes have the same Laplace functional, they are identical.

Theorem 2. Let (M, Λί, P ) and (M, Λί, Q) be point processes and suppose

P(f) = g ( / ) for every / G ̂ . Then P = Q over Λί.

Proo/. Let 1 = {F e ε : μp(F) < oo and βQ(F) < oo}. Since both P
and Q are point processes, μp and μg are σ-finite. Thus with little ef-
fort one can show that there exists a sequence {En} in ε such that En C
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En+i, U ^ L i ^ n = ^> μp(En) < oo, and μQ(En) < oo, for all n. Thus
{En} C J . Clearly, X is a π-system. Also, σ{l} = E. (Take any F G £.
Then F = U^=1(F Π En). But F Π En G I for each n since μP(F Π
En)μQ(F Π E n ) < μP(En)μQ(En) < oo for all n, so F G σ{J}.) Now
let Fij..., Fk be any finite collection of elements of X, and let / G ^* be
defined by f(x) = Σ j = i ^JIFJ(X) for λ^ > 0, 1 < j < k. For every α; G M,

= JE f(x)ω(dx) = X)2

fc

=1 Xiω(Fi). By hypothesis, P ( / ) = Q(f), so

JM JM

Since μp(Fi)μQ(Fi) < oo, 1 < i < fc, it follows that the random variables
ω ι-> ω(F{) are finite a.e. [P] and [Q], Hence by the uniqueness of Laplace
transforms over Rfc

ji{α; e M . ω ^ ) < n, }) = Q(n}=1{ω € M : α;^) < nά})

for all A; > 1 and F\,..., Fk in J . Now apply Theorem 1 to conclude that
P = Q over M. D

3. Poisson Random Measures. Let 1?, E, M, Λ4, and .T7 be as above.
Each F e E determines an extended-valued random variable JΓF(O ) = ω(F)
for all ω G M. Thus the set {-X> : F G £} is a set of measurable functions
over

Definition. A point process (M, ΛΊ, P) is called a Poisson random mea-
sure with mean measure μp if

(1) for every k > 2, and for arbitrary disjoint sets F i , . . . ,Ffc in £, the
random variables X^, . . . , Xpk are independent, and

(2) the distribution of Xp is Poisson with expectation μp(F) for all
FeE.

In exactly the same way as for a topological state space E one obtains
that if (M, Λί, P) is a Poisson random measure, then its Laplace functional
P(/) is

= exp{-

for / G ,F. This is proved in Resnick (1987), as is the following converse: If
φ : T -* [0,1] is a function defined by

for some σ-finite measure μ over (E^E), then there exists a set of point
measures M over (ϋ?,£) and a probability measure P over (M,M) such
that (M, Λ^jP) is a Poisson random measure with mean measure μp = μ.
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The converse above was obtained by the following construction in two
cases.
Case I: 0 < μ(E) < oo. Standard methods establish the existence of a
probability space (Ω,,4,Π) for which the following are true. There is a
Poisson distributed (μ(E)) random variable Y defined over it; independent of
Y there is then defined a sequence of independent and identically distributed
random elements {Xj} taking values in E such that for each F G S, Π({α; G
Ω : Xι{ω) G F}) = μ(F)/μ(E). Now for each w e ί i , define

3=1

The set Ω is thus a set M of point measures, with M C A. The probability
Π becomes the Poisson random measure P with mean measure μ.
Case II : μ(E) = oo. Write £ a s a disjoint union E = \J^LλEn where each
En G ε and 0 < μ(En) < oo. For each En let Sn = {FΠEn : F G £} and let
μn be a measure defined over (En,£n) by μn(FΓ)En) = μ(FΠEn). For each
{En,εn,μn), define as in Case I above (Ωn> Aι,Π n ), Yn, and {Xnj, j > 1}.
Then over the product measure space (Ω, A, Π) = fl^L^n, An, Πn), define
for each ω = (ωuω2,...) G ΠΓ=i Ω n and each F G 5, α (F) = ΣΓ=i ^n(^Π
^n) = Σ^=iΣj=i^n, J€Fn£:n][yn>i]M Thus Ω becomes a set of point
measures. Denoting this set by M, letting M be as previously defined, and
letting P be the restriction of Π to .M, (M,Λ1,P) is a Poisson random
measure with Laplace functional φ(-) and mean measure μ. A proof of all
this with no topological assumptions on E is the same as that proved by
Resnick, with topological assumptions.

What is of interest to us here is a representation theorem for the point
process. Kallenberg (1983) proved that any point process over (£7,£), where
E has suitable topological structure, can be represented as

K

ω(F) =

for all ω G Ω for some fixed denumerable sequence of random elements Xj
taking values in E, and where K is a non-negative, integer-valued random
variable. The method of proof used by Kallenberg depended heavily on the
topological structure of E.

What we do here is make the following representation: Let (M, Λl, Q) be
a Poisson random measure with mean measure μ over (i?,£), and represent
this random measure as the stochastic process {XF, F £ £}, where as
above, Xp(ω) = ω(F) for all F e ί . Then there exists a Poisson random
measure {N(A), A e 8} defined over some probability space (Ω,Λ.,P) with
mean measure μ such that the joint distributions of {XF ' F G €} and
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{N(A) : A £ £} are the same, and there exists a denumerable sequence of
random elements {Xn} defined over Ω and taking values in 22, and a random
variable Y taking values in {0,1,2,..., oo} such that

Y

N(A)(ω) = Σ/[xn€Λ][y>i]M
n = l

for all ω G Ω. Another way of stating this is as follows.

Theorem 3. For every σ-ήnite measure μ over (E, £), there is a Poisson ran-
dom measure (M, Λ4, P) with mean measure μ, and a denumerable sequence
of random elements {Xn} taking values in E denned over M, and there exists
a random variable Y defined over M, taking values in {0,1,2,..., oo} such
that

Y

n=l

for all FeS.

Proof. In case 0 < μ(E) < oo, the proof is exactly the same as in Resnick.
But suppose μ{E) = oo. Since μ is σ-finite, there exists a denumerable
sequence {En} of disjoint members of S such that E = U^L^n and 0 <
μ(En) < oo for alln. Let (Ω,.4,Π), {En}, {{Xnj}}> and {Yn} be as outlined
above, so that {-X>> F e 6} as defined by

n=ln=l

for all F G S is the desired Poisson random measure. We shall construct
{Xn} and prove that Xp = Σ^Li I[xneF] f°r all F G S. In the construction
above, all of the random elements in {{Yn, Xni,Xn2, ...},n = l,2,...} are,
by construction, independent. One consequence of the independence of the
y's is that Σ™=1 Yn = oo a.e. This follows from the fact that 1 - e~x >
(x Λ l)/e for x > 0 and the computation, using the fact that the y's are

only finitely many of {μ(En)} are larger than 1, this last sum is comparable
to Σ^Li M^n) = oo, while if infinitely many of {μ(En)} are greater than
1 this last sum is infinite too. Thus [Yn > 1 infinitely often] is an event
of probability 1, by the Borel-Cantelli Lemma. In the remainder of this
discussion we shall assume that the associated set of zero probability has
been discarded. Now, define non-negative integer-valued random variables
{rn} and {mn} as follows:

t-i

rn = max{t: y^ Yj < n)
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and

We observe t h a t 1 < mn(ω) < n for all ω € Ω. Define Xn = ^ r n ) m n , i.e.,

for every ω e ft, Xn(ω) = ^Γ n(α;),mn(α;)(ω), and observe t h a t X n as defined

is measurable. Our object now is to prove t h a t

n=l n=lj=l

This will give the desired representation of the theorem with Y = oo. In
order to show this, we make some preliminary observations about rn. Prom
the definition of rn it follows that for any j > 1, [rn = j] Π [Yj? = 0] = 0.
Also,

Γ i-i i ]
[r„ = j) Π [Yj > 1 ] = 1 + Σ « < » < Σ y ' n K ^ X1

L J=l i=l J

These facts suggest t h a t when computing the left hand sum above, the in-

tegers should be partit ioned into bins consisting of the integers between 1

and Yi, between Yί + 1 and Y\ + Y2, . . . . Of course there will be no bin

corresponding to any Yj which is 0. Since Σ ^ L i Y^ = 00 it follows t h a t

each positive integer will fall into exactly one of the bins. The details of the

computat ion are as follows.

n = l j=l1=1

Σί = 1 n
Σ J[*r,,«I€flJ[r,=i] I I[YJ>1]

I[Yj>l]

where the last equality follows from the definition of raj. This completes the
proof of the theorem. D

4. The Marking Theorem. The development of point processes over a
state space that has no topology and the representation theorem for Poisson



74 Finkelstein, Tucker, and Veeh

random measures over the same kind of state space given above lead to an
approach to a proof of the Marking Theorem. This extends and in a sense
completes the development provided by Resnick. There is much structure
to this theorem, so it is necessary to isolate the hypotheses.

The Marking Theorem Conditions. Let (£q,£i) and (#2,£2) ^ e

measurable spaces, and let (Ω,*4, P) be a probability space. Let {Xn}
{Jn} be two denumerable sequences of random elements defined over Ω, and
taking values in Eι and E2 respectively. Let H be a non-negative extended
integer-valued random variable which is possibly infinite with positive prob-
ability. Assume that the stochastic process {iV(F), F G £1} defined by
N(F) = Σ n = 1 J[xn€F] is a Poisson random measure with σ-finite mean
measure μ. Further assume that H and the sequences {Xn} and {Jn} are
related by

P([Ji G F]\{Xn}, {Jα : α φ i},H) =* K(XUF)

for all F e 82 and all i > 1, where K : Eι x £ 2 -* [0,1] is a function
satisfying

(1) K(-,F) is £i-measurable for all F G £ 2 , and
(2) K(x, •) is a probability measure over 82 for every x G Ei

Six lemmas provide the background for our proof of the Marking Theorem.
Lemma 1 is a general result about conditioning; Lemmas 2 through 6 are
based on hypotheses which include the Marking Theorem Conditions.

Lemma 1. Let Ai, Λ2, and A3 be sub-sigma algebras of A in (Ω,*A,P),

and suppose that P ( A | ^ 2 , ^ 3 ) a = P(A\A2) for all A G Λι. Then

forallD eσ{Ai,A2}.

Proof. Let A\ G A\ and A2 G A2 be arbitrary. Then by hypothesis and by
properties of conditional expectation,

^ IA2P(A1\A2)

For arbitrary F G σ{A2,A3} and D G σ{Ai,A2}, let us define φ(F,D) =
JF P(D\A2, A3) dP and ψ(F, D) = JF P(D\A2) dP. We obtain by the iden-
tity above that φ(F, Aλ Π A2) = ψ(F, Ax Π A2). Thus, φ(F, •) = φ(F, •) over
a π-system that generates σ{Ai,A2}- Hence we may apply the corollary to
Dynkin's theorem to obtain φ(F,D) = ψ(F,D) for any F G σ{A2^A3} and
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all D G σ{AuA2} Hence for all F G σ{A2,Az} and all D G σ{AuA2}
it follows that JF P(D\A2, A3) dP = JF P(D\A2) dP. Since both integrands
are σ {<A25w43}-measurable, the uniqueness of the Radon-Nikodym derivative
implies that P(D\A2, A3) a= P(D\A2). •

Lemma 2 Under the conditions of the Marking Theorem, iff : EχxE2 h->
[0,1] is 81 x E2-measurable, then

:n = l,2,...},H)a* f f(Xuy)K(Xudy)
JE2

Proof. From the identity

P([Ji e F]\{Xn}, {Jα:αϊ i},H) =' K(Xi9F)

for all F € S2 and all i, we obtain, upon taking conditional expectations of
both sides, given Xi, that

E2

for all i.

Hence for all % and for all F € 62,

P([Ji e F ] | { X n } , { J α : α φ <}, JET) =' P([Ji G

Let ,Λi = σ{Ji}, Λ = σ{Xi} and A3 = σ{{Xn : n φ i},{Jα : α φ i},H}.
Then the last identity above becomes

P([Ji € F]\A2,A3) a= P([Ji G F]\A2).

Applying Lemma 1 yields P(D\A2,Aa) =' P ( D | Λ ) for all D G σ { ^ i , ^ 2 } .
Now f(X{, J%) is measurable with respect to σ{Ai,A2} and is non-negative.
Hence f(Xi,Ji) is an everywhere monotone limit of a sequence of non-
negative linear combinations of indicators of events in σ{Ai,A2}j call it
{ y r } , where Yr = Σ]=ιCrjlGrj

 a n d Grj G σ{A\^A2}. Thus by the condi-
tional form of the monotone convergence theorem

E(f(Xi,Ji)\{Xn},H)=E(lim Yr\{Xn},H)
r—^00

a^ lim E(Yr\{Xn},H)
r—^oo

a=s lim

r 2 r

r—K
3=1
r 2 r

a=* lim
r—^oo

3=1

= f f(Xi9y)K(Xi9dy)
JEo
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where the last equality holds since for each ω, K(Xi(ω),-) is a probability
measure. D

Lemma 3. Under the conditions of the Marking Theorem,

P([Ji e F)\XUH) a=8 P([Ji e F]\{Xn},H) ^ K(XUF)

for alii and all F e £ 2

Proof. Take the conditional expectation of both sides of

P([Ji e F]\{Xn}, {Jα:αφ %}9H) = ' K(Xi9F)

with respect to σ{{Xn},H} to obtain

P([J{

 &^

Then take the conditional expectation of both sides of this resulting equation,
given σ{X{,H}, to obtain

^ F ) . D

Lemma 4. Under the conditions of the Marking Theorem, the random
elements J i , J 2 , . . . are conditionally independent given σ{{Xn}, H}, i.e.,

k k

6 Fd]\{Xn},B) ^

for all k > 1 and arbitrary F i , . . . , Fk in 82-

Proof. We use induction on k. The result is trivial for k = 1. Suppose it is
true for some k > 1. Then

{Jα:αφk + 1},H)\{Xn),H)

eFk+1]\{Xn},{Jα :αφk + l}

^ p ( [ j f c + 1 e

fc+1

3=1

by use of the Marking Theorem Conditions, Lemma 3, and the induction
hypothesis. D
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Lemma 5. Under the conditions of the Marking Theorem,

k k

P(f)[J> 6 Fό]\{Xn},H) ^' llPdJj e Fά]\Xά,H)

for all k > 1, Fu...,Fk G £ 2.

Proof. This follows from Lemmas 3 and 4. D

Lemma 6. Let g : EχxE2 —> [0,1] be S\ x E2-measurable and assume that
the conditions of the Marking Theorem hold. Then, for 1 < r < oo,

E(f[g(Xi,Ji)\{Xn},H)'* f[E(g(Xi,Ji)\{Xn}iB).
1=1 t = l

Proo/. Assume first that r < oo. Let A; G fi, £* € 2̂? for 1 < < < T Then
by Lemma 4,

For 1 < t < r let Q e Si x S2, and let 2) G σ{{Xn},iϊ}. Then define

p(C1,...,Cr,D)= ί f[E(I[lXiM£Ci]\{XnhH)dP.
j D i = l

and

For fixed A2,...,Ar in f i, B2,...,Br in £2, and Z? G σ{{Xn}, # } , let C, =
^ x Bj, 2 < j <r. Then by the identity obtained above,Ψ(CΊ,..., C r, D) =
p(Ci,..., C r, D) for all d of the form d = Aλ x J5i, where Λi G £̂ i and
A2 € S2. Since Φ and p are measures in Cι e Si x E2, and since for all fixed
A2,..., Ar, B2,... ,Br,D they are equal over the π-system {A\ x B\ : A\ G
5i, JBi G ̂ 2)5 it follows from the corollary to Dynkin's Theorem that
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for all C\ G £1 x £2. For i = 2, . . . , r , treating each C* in turn as we
treated C\ above, we obtain the equality of Φ and p for all C{ G £1 x £2,
1 < ΐ < r. Since this last equation holds for all D G σ{{Xn}, if}, and since
both integrands in the definitions of Φ and p above are measureable with
respect to σ{{Xn},H}, it follows that both integrands are equal a.s., i.e.,

r r

EiU.hxuWec^XnhH) a=s l[E(IKXitji)eCi]\{Xn},H)
i=l i = l

ϊoτ Ci E 8ι x 62, 1 < i < r. Now 5 can be written as the monotone limit of
a sequence of non-negative functions {gn} defined over #1 x E2 of the form

gn = 22j=iαnjlcnj where each Cnj G E\ x £2- By linearity and this last
identity it follows that

for each m. Each side is non-decreasing in m a.s., and bounded above by 1,
so by the conditional form of the Lebesgue monotone convergence theorem
we have

Ji)\{Xn},H) a=^
1=1 t = l

Thus the lemma is true for finite values of r. In case r = 00, we note that
the right hand side of the above equation is a.s. non-increasing and bounded
below by 0, so the limit as r | 00 exists a.s. Applying the conditional form
of the Lebesgue dominated convergence theorem to the left hand side of the
above, we obtain the lemma in this case. D

Remark. In the above lemma, if gι : E\ x E2 —» [0,1] is £χ x £2-measurable
for 1 < i < r, then

for 1 < r < 00.

The Marking Theorem. Under the conditions of the Marking Theorem
the stochastic process {N*(A), A G £1 x £2}, denned by

3=1
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is a Poisson random measure with mean measure μ* denned by

μ*(A)= [ K(x,Ax)μ(dx).

Proof. We first note that for H as defined, 1 = Y^JL0I[H=J) + I[H=OO] Next,
for any nonnegative ί\ x ^-measurable function / defined over E\ x E2,
compute the Laplace functional N*(f) of N*( ) as follows:

N*(f) = E(e-N*W)

H

= E(exp{-Σf(Xj,Jj)})
3=1

00 H{
fc=0

Now by the conditional form of the Lebesgue monotone convergence theorem,
Lemma 6, and Lemma 2,

jΓl[H=k]E(ίle-ί(Xj'Ji)\{Xn},H) \
k=0 j=l )

I[H=oo]E{l[e M " 3)\{Xn),H)

0=1

3=1

+ TP ) T I I TΓ /~—f(Xi,Ji)\f V \ iτ\

ϋ, < ifif=ooi I I *Me '^ J' j y | ( A n ) , i 2 )
3=1

Now let us define

E I Jμr-oo] Π j ^
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for alia; G Eλ. Then

N*v)=E I f; /[*=*] π °(χj)+^=oc] π θ(χi) \
[fc=0 J=1 i=l J

Since 0 < θ(x) < 1 for all x G J?i,logβ(rr) is well defined, and thus

- ί (-\ogθ(x))N(dx)})

= N(-log(θ( ))).

But by hypothesis N is a Poisson random measure with mean measure μ,
and so

= exp j - ί (1 - e"(-lo«'(

= exp{- / ( 1 -

Since N*(f) is nonnegative and finite, we may apply the Pubini theorem, as
stated in the appendix, to obtain

/
EXXE2

where /x*(C) = JEχ (jCχ K(x,dyj) μ(dx) for all C G £i x ί 2 and where

Cx = {ί/ € ^2 "- (̂ 5 2/) € C}. By the representation of the Laplace functional
of a Poisson random measure, we have shown that N* is such a process. D

5. Appendix. The computation above made use of the following somewhat
unconventional form of Fubini's Theorem. The necessary result is stated
precisely here. A proof of this result can be constructed by using Dynkin's
Theorem in a manner similar to the way in which Dynkin's Theorem was
used to prove other results earlier.
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Fubini's Theorem. Let {Eι^T\), and ( ϋ ^ , ^ ) be measurable spaces, let
T\ x T<ι denote the σ-algebra generated by {A x B : A G T\, B 6 T2}, and
let μ denote a σ-ήnite measure on {E\,!Fι). Let K : E\Y.T2 —> [0,1] satisfy:

(1) for every x £ Eι, the set function K(x, •) is a probability measure
over T2, and

(2) for every F G F2, the function K( ,F) is Fι-measurable.

For each C G T\ x F2, let Cx = {y G E2 : (x, y) G C}. Then

(1) iί(x,Λx) is Fι-measurable, and
(2) μ+ as de&ned by μ*(C) = JE K(x, Cx)μ(dx) is a measure over T\ x

(3) If / : -Bi x E2 —• R1 is ^1 x .TV^easurabJe, and if/ satisfies the

condition j E χ (/^ |/(x,2/)|Ji(j:,di/)) μ(<te) < cχ>, then

/ (f f(x,y)K(x,dy))μ(dx)= [ fdμ..
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