
Statistics, Probability and Game Theory
IMS Lecture Notes - Monograph Series (1996) Volume 30

HAMILTONIAN CYCLE PROBLEM AND SINGULARLY
PERTURBED MARKOV DECISION PROCESS1

JERZY A. FILAR AND KE LIU 2

University of South Australia

Abstract

In 1962 Blackwell derived the partial Laurent's series expansion
of the discounted reward Markov decision process. In this paper we
establish a connection between BlackwelΓs expansion and a famous
problem in combinatorial optimization and operations research known
as the Hamiltonian cycle problem. Our results are obtained via an
embedding of this combinatorial optimization problem in a suitably
perturbed Markov decision process. It follows that all Hamiltonian
cycles of a directed graph are the minimizers of a simple function of
the first two coefficients of BlackwelΓs expansion.

1 Introduction

In 1962, in a fundamental paper, Blackwell [1] introduced or formalized
many of the techniques that have become building blocks for the subject
of Markov decision processes (MDP's for short). Among various interesting
results contained in that paper was the partial Laurent's series expansion of
the discounted reward. This was later completed by Miller and Veinott [17]
and Veinott [18] and has led to many further developments.

In this paper we establish a connection between BlackwelΓs expansion
and a famous problem in combinatorial optimization and operations research
known as the Hamiltonian Cycle Problem (HCP for short). Our results are
obtained via an embedding of this combinatorial optimization problem in
a suitably perturbed MDP. To the extent that our perturbation alters the
ergodic structure of the underlying Markov chains it is, indeed, a singular
perturbation in the sense of Abbad and Filar [12]. The result presented here
can be viewed as continuation of the approaches introduced in Filar and
Krass [8] and Chen and Filar [13]. The main difference is that in [8] and [13]
the properties of only the first term of BlackwelΓs expansion are utilized,
whereas in the present paper both the first and second terms are used to
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derive a novel characterization of a Hamiltonian cycle (HC, for short) an
arbitrary directed graph.

The paper is organized as follows: In the second section, we give prelim-
inaries, notations and some results from [8] and [13]. In the third section,
we give a statement of our main result and the idea behind its proof. In the
fourth section, we give the details of the proof. In the Appendix we illustrate
the main line of argument with a numerical example.

2 Preliminaries, Notation and Review

We shall now consider the Hamiltonian cycle problem. It would be imprac-
tical to supply a complete bibliography of works on this problem, instead we
refer the reader to the book of Papadimitriou and Steiglitz [16].

In graph theoretic terms, the problem is to find a simple cycle of N arcs,
that is, a Hamiltonian cycle in a directed graph G with N nodes and with
arcs (i, j), or determine that none exist.

Consider a moving object tracing out a directed path on the graph G
with its movement "controlled" by a function / mapping the nodes N into
the arcs A. This function induces a "zero-one" N x N Markov matrix P(f)
whose positive entries correspond to the arcs "selected" by / at the respec-
tive nodes. Suppose further, that this motion continues forever, and we
regard P(f) as a Markov Chain, and consider its "stationary distribution",
contained in its limit Cesαro-sum mαtrioc:

P*(f) = lim - 1 - £ P\f), where P°(/) = IN. (1)
i -»oo 1 t l t = 0

In [8] and [13] the relationship between the ergodic class/transient state
structures of such Markov Chains, and the possible cycles in the graph were
studied.

In order to make the above statements precise we now formally in-
troduce a finite state/action MDP as a four-tuple Γ = {S,A,r,p} where
S = {1,2, , N} is the set of states, A = UA(i) with A{i) = {1,2, - , mi)
denoting the set of actions available in state i for each % G 5, r = {r(ΐ, ά)\a G
A(i),i G S} denotes the set of possible (immediate) rewards and p =
{p(j\i,a) \a € A(i), i , j G S} is the set of (one-step) transition probabilities.
A stationary policy π in Γ is a set of N probability vectors π(i) = (π(ΐ, 1),
τr(ΐ, 2), , τr(z, raj)), where τr(i, k) denotes the probability of choosing action
k in state i whenever i is visited. We denote the set of all stationary policies
by C(S). A deterministic policy f is simply a stationary policy such that a
single action is selected with probability 1 in every state; and write f(i) = k
for i G S. We denote the set of all deterministic policies by C(D) and its
cardinality m := Π ϋ i m ί
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2.1 Embedding of a Directed Graph in an MDP

Now consider a directed weighted graph G with the vertex set V= {1, , JV},
the arc set A and with weights cy associated with the arcs (i, j). Let G\ C
G be a directed subgraph of G with the same vertex set F, the arc set
A\ = {(ij) I for every i G V, there is only one j e V such that (i,j) G
.A} and with weights cy when (i,j) G Λi That means for any directed
subgraph G\ only one arc emanates from each vertex of G\. The first MDP
which we shall associate with G will be the process Γ = {S,A,r,p}, 5 =
{1,2, ••-,#}= the set of vertices of G, A(i) = {j G 5 | (i,j) G Λ} for
each i G 5 and A = ( J ^ A(i), r = {r(i,j) = — cy | jf G A(i),i G 5}, and
p = {p(i I i,α) I α € A(i),i,j G 5} with p(j | i,α) = ίαj, the Kronecker
delta. Also, we assume that 1 is the initial state. We shall say that a
deterministic policy / in Γ is a HC in G if the subgraph G\ with the set
of arcs {(1, /(I)), (2, /(2)), ••-,(#, /(#))} is a Hamiltonian cycle in G. If
the subgraph Gi contains cycles of length less than JV, we say that / has
sub-cycle in G. If the subgraph G\ contains a cycle of length fc, we say that
/ has a fc—sub-cycle.

The above can be illustrated on a completed graph (without self-loops) on
four nodes. For instance a policy / such that /(I) = 2, /(2) = 1, /(3) = 4
and /(4) = 3 induces a subgraph Gf = {(1,2), (2,1), (3,4), (4,3)} which
contains two 2-sub-cycles. Observe that / also induces a Markov chain with
the probability transition matrix

0 1 0 0

PW= 0 0 0 1
0 0 1 0

which has two ergodic classes corresponding to the sub-cycles of G/.
Move generally, any stationary policy TΓ G C(S) induces a probability

transition matrix

where for all i, j G S

αeA(i)

If, for every π G C(S), the Markov chain given by P(π) contains only a
single ergodic class (plus, a possibly empty, set of transient states), then
the MDP Γ is called unichαin. For a variety of technical reasons unichain
MDP's are simpler to analyze. We have seen from the above example that
the direct embedding of G in Γ induces a multichain ergodic structure. This
and some other, technical difficulties would vanish if Γ were a unichain MDP.
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In view of the above in [8] and [13] the law of motion of Γ was perturbed to
p(e) := {p(j I i,α)(e) \ (i,αj) G S x A(i) x S} where for any e G (0,1) we
define

*><*)(*) =

1 if i = 1 and α = j ,
0 if i = 1 and α φ j ,
1 if i > 1 and α = j = 1,
e if i > 1, α ^ j , and j = 1,
1 — € if i > 1, α = j , and j > 1,
0 if i > 1, α ^ j , and j > 1.

(2)

Note that 1 denotes the "home" node. For each pair of nodes ΐ, j ( not
equal to 1) corresponding to a (deterministic) arc (i, j), our perturbation
replaces that arc by a pair of "stochastic arcs " (i, 1) and (i,j) (see Figure 1)
with

1 - e

Figure 1: Perturbation of deterministic action

weights e and 1 — € respectively (e G (0,1)). This stochastic perturbation has
the interpretation that a decision to move along arc (i , j) results in movement
along (i, j ) only with probability of (1 — e), and with probability e it results
in a return to the home node 1.

Note also that the e-perturbed process Γ(e) = {5, AJr^p(e)} clearly
"tends" to Γ as € —> 0. This process has the following properties, that
can be found in [8].

Lemma 2.1 (i) The MDP Γ(e) is unichαin.
(ii) Consider the Markov Chain induced by a stationary policy π in Γ(e) and
let Si C S be the ergodic class in that chain. Then 1 G Si.

We shall now derive a useful partition of the class C(D) of deterministic
policies that is based on the graphs they "trace out" in G. In particular,
note that with each / G C{D) we can associate a subgraph Gf of G defined
by

&τc{i,j)eGf
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We shall also denote a simple cycle of length m and beginning at 1 by a
set of arcs

cm = = 1 ) } ; m = 2,3, , TV (3)

Of course, cι

N is a HC. If Gj contains a cycle c^ we write Gj D c^. Let
C\n := {/ € C(D)\Gf D c^}, namely, the set of deterministic policies that
trace out a simple cycle of length m, beginning at 1, for each m = 2 ,3 , . . . , N.
Of course, Cjy is the set of policies that correspond to HC's and any single
Cm can be empty, depending on the structure of the original graph G. Thus
a typical policy / G C\ traces out a graph Gj in G that might look as
follows:

Figure 2: A cycle in C\

where the dots indicate the "immaterial" remainder of Gj that corresponds
to states that are transient in P(/) , as a result of the perturbation.

The partition of the deterministic policies that seems to be most relevant
for our purposes is

N

= \\JCi \(JB, (4)
Lm=2

where B contains3 all the deterministic policies that are not in any of the
Cm's. Note that a typical policy f in B traces out a graph G/ in G that
might look as follows:

Figure 3: For the / in the B

where the dots again denote the immaterial part of G/. However, it is im-
portant to note that for any e > 0, the states 1, i2 , . . . , ύ- i are not transient
in Γ(6).

3 It will soon be seen that the policies in B are in a certain sense "bad" or, more
precisely, difficult to analyze thereby motivating the symbol B.
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For any policy π G C(£), initial distribution α, j G S and α G
define

Γ N

xjaf. 00 := y ^ Y Σ Σ «(0ft(ft = j , ilt = α I 5o = s)- (5)

Further, let x(π) denote the limit point of the vectors {xr(7r) | T =
0,1,2, •}, where xτ(τr) is an m-dimensional vector with entries given by (5).
The entries Xjα{^) of x(π) can be interpreted as the long-run expected state-
action frequencies induced by π. Similarly, the long-run expected frequencies
of visits to any state j G S under π are given by

a€A(j)

We shall denote by X the set of all frequency vectors x(τr) and refer to
it as the frequency space. Also we consider the map T : π —• x(π) is defined
by:

Xia(π) = Pl(i)v{i, o), a G A(i), i G 5. (7)

In the above, p%{i) is the i-th entry of the unique invariant probability vec-
tor (stationary distribution vector) of P(π). The transformation T has been
studied by a number of authors (e.g. Derman [6], Denardo [2], Kallen-
berg [15]).

We define,

(8)
i=2

where m = 2,3, , N. The following lemmata can be found in [13] and [8].

Lemma 2.2 Let e G (0,1),/ G C(D) and x(/) be its long-run frequency
vector. The frequency of visits to state 1 is given by

iGλD/™ (9)

Lemma 2.3 Suppose G has a HC. Let f be a deterministic policy in Γ(e)
(and thereby also in Γ) which is a HC in G, and assume that i is the k-th
node of this HC (starting at 1). Now, if x(/) = f (f), then

ίwW ' if * > 1 and o = /(»),
if k = 1 and a = f(i), (10)

0, otherwise.
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Now, consider a linear function on the frequency space X defined by

If follows from Lemma 2.2 and Lemma 2.3 (also see Chen and Filar [13])
that Z(x(/)) can take only N possible values as / ranges over C(D). In
particular, if / G C]y, then it is a HC and

AT-dN(e)

Unfortunately, a HC does not minimize /(x(/)) over C(D) because if g G B
then

Z(x(5)) = - I - < - L , < - I - (12)
1 + e dw(e) dm{e)

for all e G (0,1) and m = 2,3, , N - 1.
In the search for a HC it would be useful to have a function that achieves

its minimum at any HC, that is, whenever / G C\f.
We shall derive such a function with the help of the BlackwelΓs expansion

of the main part of the discounted payoff criterion, namely [/ — βP(f)]"1^
where β G (0,1). In particular, Blackwell [1] has shown that

^ 0(1 - β), (13)

where P*(f) is as in (1), 0(1 — β) tends to zero as fast as (1 — β) when
β -> 1" and

V(f) = [I- P(f) + P^/)]"1 - P*(/).

Arguably, in deriving (11) and (12) with the help of (7) we used only the
first term of (13). In the main result proved in sequel we show that by using
both the first and second terms of (13) we can construct a simple functional
that is minimized (over C(D)) only by a Hamiltonian cycle, provided that
the perturbation parameter e is sufficiently small.

3 Main Results

As the discussion in Section 2 indicates, if we use x\ as the criterion, a HC
(if any) lies on the second lowest level of Z(x) (see (12)). Does there exist
a simple function such that a HC (if any) lies on the lowest level of that
function?
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Consider a new function L(x(/),y(/)) (L(f) for short) defined on C(D)
by:

where x(/) € X(e) and y(/) is:

= Σ

and where r(/) is the vector (1,0, , 0)Γ . Of course, yι(f) is the first entry
of vector y(/), and the matrix [I - P(f,e) + P*(f,e)] is known to be an
invertible matrix (see Blackwell [1]). Note that P(f), P*(f), x(/) and y(/)
all depend on e, but for notational simplicity this dependence is suppressed
except in Corollary 3.1 and Lemma 3.6. Of course, xi(f) is also the expected
long-run average reward, starting in state 1, under policy /.

Prom the observation of some numerical examples, we have conjectured
that the following is a theorem.

Theorem 3.1 Let f* € C(D) be a HC. Then for e nonnegatiυe and suffi-
ciently small

(16)

(17)

where [H] 1(1,1) is the (l,l)-entry of the inverse of matrix [H], and the
dependence on e is suppressed. Π

In order to prove the above theorem, we shall need a number of properties
of the objective function L(f) over the partition of C(D) given in (4). These
will be stated in sequel as lemmata and corollaries with proofs of the most
technical ones postponed till Section 4.

Lemma 3.1 For the subgraph induced by f = (2,3,
P(f) is defined by:

,JV, 1), the matrix

0 1 0 0
e 0 1-e 0
e 0 0 1-e
e 0 0 0

0

0

0

0

0

0

0

e 0
1 0

0

0

0
0

0 1-e
0 0

(18)
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and

L(f) = ̂  + 0(e). (19)

Corollary 3.1 For any EC f, we have:

^ + O(e). (20)

Proof. Suppose / = (ii,t2j " J*W) * s a HC with the transition matrix
P(f). We can reorder the states as / ' = (2,3,4,--- ,iV, 1) with the tran-
sition matrix P(f') by elementary column and row transformations of the
transition matrix P(/), so that the entry (1,1) has never been changed and
the column and row elementary transformations only change a row's and/or
column's positions in the matrix. That is

P(f) = QιQ2 Q

= QP{f)Q-\ (21)

where Qi is the row elementary transformation matrix i = 1,2, ,n, Q =

Q1Q2 "Qn and Q" 1 = Q"1 Q^Qϊ1- In the same case, when e > 0,

)Q-\ (22)

By (1) we have:

1 00

t—u

= QP*(f,e)Q-\ (23)

Because Γ(e) is unichain, P*(/ ;,e) and P*(/, e) are matrices with identical

rows, we have:

= P'UΛQn' Q^Qϊ1- (24)

By (22) and ( 23), we have:

[I - P(f, e) + P*(/', e)] = [I- QP(f, e)Q~1 + QP*(f, e)Q~ι], (25)
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and then,

[/ - P(/, e) + P*(f, e)] = Q-1 [/ - P(f, e) + P*(/', e)]Q. (26)

Hence,

[I - P(f, e) + P*(f, e)]"1 = Q-ι[I - P(f, e) + P*(f, e ^ Q . (27)

Since Q and Q~ι do not change the first entry of the matrix we have that:
L(f') = L(f). D

Lemma 3.2 For the subgraph induced by f = (2,3, , i, 1, •), the matrix
P(f) is of the form

• \ A °
• [ B C \ <

where the t x i submatrix A has the form:

Γ 0 1 0 ••• 0 0
e 0 1 - e ••• 0 0
e 0 0 ••• 0 0

(28)

A =

Then we have:

e 0 0 ••• 0 1 - e

1 0 0 ••• 0 0

L(f) = ^ + O(e).

(29)

(30)

Proof. Similar to the proofs of Lemmata 3.6 and 3.1 that is supplied in
Section 4. D

Corollary 3.2 For any subgraph induced by f which has an i-sub-cycle c]
(see (3)), equation (30) holds.

Proof: Similar to the proof of Corollary 3.1. •

Lemma 3.3 (i) If f e C(D) induces the Markov matrix P(f) of the form

" 0
e
e

e

e
e

1
0
0
0

0
1 - e

0
1 - e

0
0

0
0

0
0

1 - e •••
0

0
0

0
0
0
0

0
0

0
0
0
0

1 - e
0

(31)
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then the stationary probability distribution is:

ί-!_ J - i z i <* - *)2 ... (1-«)*-'x

where

i=0

(ΐt,) // £Λe Markov matrix P(/, e) ώ o/ the form

' 0
e
e

e
e

1
0
0

0
0

0
l - e

0

0
0

0 •••
0

l - e •••

0
0

I

0
0
0

0
l - e

... o

... o

... o

... o

... o

0
0
0

l - e
0

then its stationary probability distribution is:

, e e e(l-e) e(l - eγ~3

Ί + e ' l + e' 1 + e ' 1 + e

N-i

(32)

(33)

(34)

(35)

Lemma 3.4 (i) For the subgraph induced by f = (2,3, , N, 2), the matrix

P{f) is defined by (SI), and

L(f) = 1 + O(e). (36)

(ii) For the subgraph induced by f = (2,3, ,JV,i), the matrix P(f) is

defined by (34), and

L(f) = 1 + 0{e).

Lemma 3.5 For the subgraph induced by f = (2,3, , N - 1,2, k), where

k can be any number from 1 to N — 1, then we have:

= 1 + O(e). (37)

Proof. Similar to the proof of part (ii) of Lemma 3.4.
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Lemma 3.6 For any subgraph induced by f € B, we have:

(38)

Proof-. Without loss of generality suppose / = (2,3, , i, i+1 , j , i, •)
(we can change the order except for state 1), where 2 <i < j < N. Ifj = N
and i = 2, by the Lemmata 3.3 and 3.4, the result holds. If j = N and
i > 2, by the part (ii) of Lemma 3.4, the lemma is true. If j < iV, then
f(J) = i < 3 < N. So the states j + 1, j + 2, , N are transient states in
the Markov chain induced by the transition matrix P( / , e). By the theory
of Markov chains(see Chung [7]) the matrix P*(/, e) will be of the form:

where A'vsajxj matrix. So the invertible matrix H = I — P(f, e) + P*(f, e)
has the form:

H =

where A' is a j x j matrix and C" is a (N - j) x (N - j) matrix. Note that

(39)

(40)

(41)

(42)
L " *(N-j)X(N-j) J

And hence, H~x has the form:

(43)

Because we are only interested in the (1, l)-entry of H~ι it is enough to
consider the submatrix A! and its inverse matrix A1"1. Because the matrix
A' is induced only by the restricted policy /' = (2,3, , j , i) (to the first j
states and j < iV), the result now follows just as in Lemma 3.5. •

Proof of Theorem 3.1:
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By Lemma 3.1 and Corollary 3.1, for any / that is an HC we have:
L(f) = ^ ^ + O(e). By Lemma 3.6, if we consider a subgraph for j G B ,
then we have: L(f) = 4 ^ + 0(e) < 1 + 0(e) = L(g), when e is small
enough. Now let us investigate the cases of Lemma 3.2 and Corollary 3.2
which correspond to any / G C^ for m < N. It is easy to check that the
function w(i) = ^ί with positive integer variable is decreasing as i increases.
That means:

N + l N 3

2N < 2(N-1) < " ' < 4"

Hence, Theorem 3.1 holds for e sufficiently small. Prom the proofs presented
in Section 4 it is easy to see that the results are also true when e = 0. •

4 The Remainder of the Proofs

Proof of Lemma 3.1: By Lemma 2.3, the stationary distribution of tran-

sition probability matrix P(f), p(/), is:

= ( ^ + O(β), 1 + O(e), • • •, 1 + O(eή (44)

where djsr is defined by (8). By Blackwell [1],

= (xux2, ,xN)

= (1,1,.,!,)
djy' d]y' ' djsί'

( 4 5 )

and y(/) = (2/1? 2/2?" >2/ΛΓ) is the unique solution in the following system

P*(f)y(f) = 0 (46)

and

r(/) + P(/)y(/) = x(/) + y(/) (47)

Prom (47) we can get

- P(fMf) = r(/) - χ(/) (48)
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Because r(/) = (1,0, • ,0) τ with the help of (44) and (45) we can rewrite

(46) and (48) as

N
ΣviVi = 0 (49)

and

2/1 -2/2 = 1 - ^ 7
-C2/1 +2/2 ~(l-e)2/3 = -j-

~m +2/3 -(l-e)ί/4 = - ^

: . : : ^ >
-q/i +2/Λr-i -(1 - e)yN = - φ

-2/1 +2/ΛΓ = -j^

Using the observations that j - = ^ + O(e), j ^ = 1 + O(e), and ,̂ _ .{ =

jj + O(e) for i = 1,2, , N - 2, we can express j/2) 2/3> > !/tf as

2/2 = 2/1 ~ 1 + ^ + O(e) (51)

2/3 = 2/1-1 + ^ + 0 0 0 (52)

2/4 = y i - l + - | + O(€) (53)

(54)

Substitute (51), •••, (54) into (49), then recalling that ΣiLiPi = 1 and
(α + O(e))(b + O(e)) = αb + O(e) we obtain (with the help of (44))

N

0 = Σ
t = l

N

i = 2

= ΣftW + Σ (jf + O(e)) (-1 + ij± + O(e))

Σ
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Now we have

( 5 6 )

Prom (44) and (56) we obtain

L{f) = xi+

+ Oie). (57)
D

Proof of Lemma 3.3: For simplicity, we present only the proof of part
(i) of Lemma 3.3. The proof of part (ii) is similar to the proof of part (i).
The details can be found in Ke Liu [3].

By definition of the stationary probability distribution (that is, any row
of P*(f) ), we can derive it as the solution of

PTP(f) = P T (58)

and
N

where pi > 0, i = 1,2, , N.
By (31), (58) and (59), we have

P2+ P3+ ••• + PN-1+ PN = 1

^p2~\~ £P3~\~ m'' "I" εpN—i~H ^p^v == P i
(1 - e ) p ^ = P2

(I-Φ2 = P3 (60)
(1 - Φ 3 = P4

(1 - e)pisr-i = PN

Prom the first two equations of (60) we have

e
Pi = 7-Γ

and from the others we have

P2+ P3+ " + PN-1+ PN = Ϊ^J

-P2+ (1-ΦJV = ϊ ^

Φ 2 = P3 .

(l-e)ps = P4 ( 6 1 )

(1 - e)pN-ι
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From (61) we have

n = V2 + (1 - e)p2 + (1 - e)2p2 + - - + (1 - e)N~2j>2 = - ? - . (62)
i=2

So

ί>2 =
(63)

where few is defined as in (33), and

Pi = ( 1 " C ) < 2 1 = 3 , 4 , - , * .

Thus we obtained (32) and the proof is complete. D

Proof of Lemma 3.4: For simplicity, we prove only part (i) of Lemma

3.4. The proof of part (ii) is quite similar to the proof of part (i). The details

can be found in Ke Liu [3].

By Lemma 3.2 the stationary distribution p(f) of the transition proba-

bility matrix P(f) is:

kN

Similarly to the proof of Lemma 3.1 x(/) = (Ϊ^J> ϊφj>" '» ϊ+i) a n d y(/) =
(2/1,2/25 ,VN) is the unique solution of (46) and (47). For our case, (46)
and (47) are

Σpi2/i = 0 (64)

and

yi -2/2 = 1 - τ+ί

ty\ +2/2 ~(l-c)V3 = Tfe

(65)

-ej/i - ( 1 - e)y2 +VN = ~ χ ^
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So we have

2/2 = 2/1 - 1 +
1 + 6

= y i - 1 + 0(6) (66)
1 e

= y i - 1 + 0(6) (67)

2/4 = y i - 1 + 0(6) (68)

VN = » i - 1 + 0(6) (69)

Substitute (66), (67), , (69) in (64) to obtain

N

i=2
Γ N 1

t=l t=2

ί = 2 K Λ Γ

= ^ - ( l + OίβJJ + Oίe) (70)

So we have

yi = l + O(e). (71)

Now we obtain

X l + W = Γ Ϊ 7 + X + °( e) = ! + °(c) (72)

The proof is now complete. D

5 Conclusions

At this stage, it is difficult to comment on the significance of Theorem 3.1.
Perhaps, it is only a mathematical curiosity that the first two coefficients
of BlackwelΓs expansion (13) are related to the famous Hamiltonian Cycle
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Problem. On the other hand, it is not inconceivable that the inherent dif-
ficulty of the HCP can be better understood by explaining the behavior of
the fundamental matrices H(f, e) as e —• 0. After all, the structure of the
graph is contained in these matrices and the embedding in the singularly
perturbed MDP allows for an analogy to be drawn between sub-cycles and
ergodic classes.

We are grateful to the referee for pointing out that Theorem 3.1 is also
valid when the perturbation is dropped, that is, in the case e = 0. The idea
of using equations (46) and (47) which simplified our previous proof is also
due to the referee. Arguably, the ultimate goal of this line of research is to
construct an objective criterion that will lend itself to numerical minimisa-
tion schemes. If these schemes were to be carried out over the frequency
space X it may be that the case e > 0 will be more tractable because of
the correspondence between its extreme points and deterministic policies of
Γ(e).
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