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PARAMETRIZING DOUBLY STOCHASTIC MEASURES

BY RICHARD A. VITALE*

University of Connecticut

Doubly stochastic measures can be identified with the trace of a pair of
(Lebesgue) measure preserving maps of the unit interval to itself.

It has been of traditional interest in probability theory to produce a

random vector (or metric space element), which has a given distribution and is

defined on a standard space, such as [0,1] endowed with Lebesgue measure. In

a classic work, Levy (1937, section 23) used an approach based on conditioning.

For the purpose of the Skorokhod representation, Billingsley (1971, Theorem

3.2) considered the case of random elements of a general metric space. Whitt

(1976, Lemma 2.7) considered general measures on Rn and employed a Borel

isomorphism to treat questions of extremal correlation and minimal variance.

Rύschendorf (1983) used a similar approach to consider a general class of

optimization problems.

In this note, we revisit the question of representing a random element in

the special case of a doubly stochastic measure on the unit square. First we

show the existence of a random element (using essentially Whitt's approach)

with a refinement to a canonical representation. Then we turn to criteria for

extremality of a doubly stochastic measure. Our aim is to provide the reader

who is interested in extremality with different settings.

This paper was invited for presentation at the AMS-IMS-SIAM Joint

Summer Research Conference on Distributions with Fixed Marginals, Doubly-

Stochastic Measures, and Markov Operators, July 31-August 6, 1993. At

the Conference, the author learned of A Representation for Doubly Stochastic

Measures by W. F. Darsow and E. T. Olsen. Subsequently, a revision (Darsow

and Olsen, 1994) was provided to the author. Interested readers axe directed

to this work for variant arguments and related topics, including copulas.
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1. Doubly Stochastic Measures via Pairs of Measure-Preserving
Mappings. A doubly stochastic measure is a Borel measure on the square
with Lebesgue marginals. We use I and / x / for the unit interval and unit
square respectively. B and B x B will denote their respective Borel σ-algebras
(associated Lebesgue measures m and m x m). U will stand for a random
variable uniformly distributed on [0,1].

DEFINITION. A Borel measurable function σ : I —> I that satisfies
m(σ~1(B)) = m(B) for each B G B is measure-preserving (m.p.). The class
of such maps will be denoted Σ.

DEFINITION. A doubly stochastic measure μ on B x B is realized by a
pair (σ, r) of elements of Σ if for any Borel subset B2 of the square μ(B2) =

We can now assert the following representation.

THEOREM 1. (i) If σ,τ £ Σ, then the measure μ on B x B defined by

μ(B2) = m((σ,r)~1(J32)) is doubly stochastic, (ii) Conversely, every doubly

stochastic measure μ can be realized as a pair (σ, r) G Σ x Σ. (Hi) In (ii),

one may assume that (σ,r)~1(B x B) = B. In this case, we say that (σ, r) is

canonical

Before proceeding to the proof, we collect some well-known results.

THEOREM 2. (Kuratowski, see Royden (1988)). Every uncountable, com-

plete, separable metric space S is Borel equivalent to I, that is, there is a 1 — 1

map φ : S -> I such that both φ and ψ~ι are Borel measurable.

PROPOSITION 1. (e.g. Vitale, 1991). Let X be a random variable with con-

tinuous distribution function F. Then U = F(X) is uniformly distributed on

[0,1] and X &= F~ιF{X), where F~ι(u) = Ίnΐ{x\u < F{x)} is left-continuous.

PROOF OF THEOREM 1. For (i), note that if B2 = B1 x J, Bι e B, then
μ(B2) = m(σ~1(B1)) = m(B1) and likewise for the other marginal.

For (ii), recall the standard fact that there exists a pair of random vari-

ables (X,Y) with joint distribution μ. From Theorem 2, there is a Borel

equivalence φ : I x I -ϊ I. Set W = φ(X,Y), and let F be its distribu-

tion function. F has no jumps since this would imply an atom in the dis-

tribution of (X,Y). By Proposition 1, U = F(W) is uniformly distributed

and W = F~l(U). It follows that (X,Y) a= φ-ιF~ι(U), and we can take

(<j,τ) =φ~1F~1 : / 4 l x / .
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For the final assertion note that by Theorem 2 (φ"1 F"1)"1 (B x B) =

{F~ι)~ιψ{B x B) = (F"1)"ι(B). The last expression is equal to B since

(JΓ-1)-1([O,ί1-1(u)]) = [0,u] for every u<Ξl. I

2. Extreme Doubly Stochastic Measures. The class of doubly
stochastic measures is a convex sub-class of the Borel measures on B x B. The
Douglas-Lindenstrauss condition for extreme points (Douglas (1964); Linden-
strauss (1965) takes the following form.

THEOREM 3. The doubly stochastic measure realized by (σ, r) G Σ x Σ is

extreme iff given any Borel-measurable f : I x I -> R such that E\f[σ(U),

τ(U)]\ < oo and e > 0, there are functions g,h : I —)• R such that

E\f[(σ,τ)(U)j - g[σ(U)] - h[τ(U)}\ < e. (1)

Approximation by simple functions leads to the following variant, which

is more convenient to apply in some cases (see the following example).

THEOREM 4. The measure realized by (σ,τ) is extreme iff for every A G
σ~ιB, B G τ~1B, and e > 0 there are measurable partitions A\, A<ι, A3, , Am

G σ~ιB and B\,B2,B$, ,£?n G r~ιB and constants αi,l < i < m and

bj, 1 < j <n such that

m n

E\1AΠB(U) -ΣαdAi(U) - ΣbjlBi(U)\ < e. (2)

For the sufficiency part, the sets A and B can be specified to be of the form

(-oo,ί].

EXAMPLE. Consider the doubly stochastic measure which places mass 1/3

uniformly on each of the 3 line segments:

(u,tι),

(u,l/2(u-l/3)), 1/3 < M < 1

(u,2u + l/3)), 0<ιx<l/3.

This can be parametrized by the pair (σ, r), where

f 2n + 1/3, 0 < u < 1/3

σ(u) = u - 1/3, 1/3 < u < 2/3

. 2« - 1, 2/3 < u < 1
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and

τ(u) =

tx, 0 < u < 1/3

2u - 1/3, 1/3 < u < 2/3

k 2ti - 1, 2/3 < u < 1 .

Note that for any α, 6, the set [σ < a]Π[τ < b] is (modulo a null set)'a union

of sets among [0,ci],[l/3,c2],[2/3,c3], where 0 < ci < 1/3,1/3 < c2 < 2/3

and 2/3 < c$ < 1. It is enough to observe then that l[o,ci] = l[τ<ci]> l[i/3,c2]
 =

l[σ<C2_i/3], and l[2/3,c3] = 1[i/3<τ<2c3~i] ~ l[σ<c3~2/3]5 which implies that

the associated doubly stochastic measure is extreme (cf. Shiflett (1972)).

DEFINITION. If B\ and /?2 are two sub σ-algebras of 23, then we write

B\ « B2 if they differ only by null sets, i.e., for any B\ £ B\ (B2 G #2)) there

is a B2 e B2 (Bι G Bx) such that m(jBiΔj52) = 0.

Theorem 4 has the following immediate consequence.

COROLLARY 1. The property of being extreme for (σ, r) depends only on

σ~λB and τ~ιB. That is, if for any other pair (σ, f),

σ~ιBπσ-ιB and f "λB « r " 1 ^,

ίlien either both pairs (σ, r), (σ, f) are extreme or neither is.

One might ask from the Corollary whether every pair of candidate sub

σ-algebras can be realized (modulo «) as σ~xB and τ~1B. The next result

implies that this is the case.

PROPOSITION 2. Given a non-atomic sub σ-algebra B\ C B, there isσ € Σ

such that σ~xBttB\.

PROOF. Let Di,i) 2 , be the respective dyadic subintervals of /, i.e.,

Dx = [0,1/2],JD2 = [0,1/4] U [l/2,3/4], . Their indicator functions are

stochastically independent, symmetric Bernoulli random variables. Define a

random variable U on / by

Suppose in addition that -Do is any other Borel subset of/. By the Caratheodory

isomorphism theorem for measure algebras (Royden (1988) p. 399), there is a

system of subsets BQ,BI, - of B\ such that

m(Bi) = m(Di) (4)
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for all i and
m(Bi Π Bj) = m(Di Π JD,-) (5)

for all ί φ j . Define the random variable σ : I —> I by

We claim that

σ~λ(B)ttB\. (7)

Note that σ~1(B) is the σ-algebra generated by Bχ,B2, . It is enough to

show "inclusion" from the right in (7), so consider Bo G B\ (by the isomor-

phism theorem, we can assume that such an arbitrary choice is the image of

some DQ under the isomorphism). Now it is standard that m(-DoΔliminfn_>00

D^) = 0 for a sequence D^ in the algebra generated by {Di, D25 # •}• By the

isomorphism, i.e., (4) and (5), it must be that m(BoΔliminfn_>00B*) = 0 for

the image sequence B* in the algebra generated by {Bi, B2, •} and hence in

3. A Second Characterization. We turn to another way of charac-

terizing extreme (equivalently, non-extreme) doubly stochastic measures.

DEFINITION. A random variable valued in I is of class BD (Bounded

Density) if it has a bounded density with respect to Lebesgue measure. In

particular, a uniform random variable is of class BD.

THEOREM 5. Let (σ,τ) canonically represent a doubly stochastic measure

μ. Then μ is not extreme iff there is a nonuniform BD random variable X such

that both σX and τX axe uniform.

PROOF, (i): Suppose the existence of such an X. Let μ\ be the bivariate
measure induced on the square by (σ, τ)X. For any Borel subset B 2 of the
square, μi(B2) = Pr(X G (σ,τ)~ιB2) < c m({σ,τ)-ιB2) = c • μ(B2). Here
c > 1 is any number which exceeds the essential supremum of the density
of X. Note that μ\ φ μ since there is some Borel B in the interval such
that Pr(X 6 B) φ Pr(C/ £ B). By the canonical nature of (σ,r), we have
B = {σ,τ)-ιB2 for some B 2, which implies that μi(B2) φ μ(B2). Now define
μ2 = (1 - l/c)-ι(μ - (l/c)μi). We have μ = ( 1 / φ i + (1 - l/c)μ2, which
exhibits μ as non-extreme.

(ii): If μ is not extreme, μ = θμ\ + (1 — 0)μ2> μi Φ μ? then by the Radon-
Nikodym theorem, there is a bounded density /, not identically unity, such
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that for any Borel subset B2 of the square

μι(B2)= I f{x,y)μ{dx,dy),

or, using that (σ, r) realizes μ,

μx{B2) = Ef(σU,rU)lB2(σU,τU) = Ef(σU,τU)f(σU,τU)l(σtT)-iB2(U).

(8)
Note that

Ef(σU,τU)lB(U)

defines a nonuniform probability measure on Borel subsets B of the interval.

If X has this probability measure, then

Pτ{X eB) = E1(X EB) = Ef(σU,τU)lB(U),

and (8) may be rewritten

μi(B2) = Pr((σX,τX) e B2).

Since μ\ is doubly stochastic, it follows that σX and τX are uniform. |

REMARK. We should emphasize that this result does not hold if the bounded-

ness of the density of X is relaxed. This can be seen in an example of Losert

(1982, p. 391).
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