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The paper deals with weak approximations of stochastic differential equa-
tions of Itό type, where convergence rates of the approximate solutions are ob-
tained using E|| Hc[to,τ]> P ^ [2>°°) The rates can also be interpreted as rates
for the Lp Wasserstein metrics, p G [1, oo), between the distributions of exact and
approximate solutions. This metric is a minimal distance of two r.v.'s with fixed
distributions, and, thus, it is the optimal value of a marginal problem. The ap-
proximation scheme considered is a combination of the time discretization based
on the stochastic Euler method with a chance discretization based on the invari-
ance principle, and it works on a grid constructed to tune both discretizations.
The schemes are adapted to treat econometric ARCH/GARCH models.

1. Introduction. This paper is designed to approximate the solution of
a multi-dimensional stochastic differential equation (sde) of Itό type, following
the lines in Gelbrich (1995) and adapting the results in order to deal with
approximate solutions known in econometrical models. That means, drift and
diffusion may depend not only on the present, but also on past time points.
The methods investigated here are based on the evaluation of the drift and
diffusion coefficients at grid points, and they combine the time discretization
of the sde - as done for instance by the stochastic analogue of Euler's method
- with the discretization of the stochastic input, the Wiener process. This
combination of time and chance discretization is necessary for a computer
simulation of the solution of the Itό sde.
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A broad survey of various approximations to solutions of sde's is given

in the monograph by Kloeden and Platen (1992). Platen (1981) gives conver-

gence orders of time discrete approximations - constructed via the stochastic

Taylor expansion - with respect to the mean square of the supremum norm.

The method of order one considered there is the stochastic Euler method

(introduced by Maruyama (1955)) and will be the basis of the method con-

sidered in the present paper. Together with these time discretizations we will

discretize the Wiener process and estimate the distance between the distribu-

tion of the exact solution and the distributions of the approximate solutions

- all solutions being referred to as random variables with values in a space of

continuous functions.

Kanagawa (1986) uses a method derived from the stochastic Euler method

by replacing the increments of the Wiener process by other "simpler" i.i.d.

random variables: He uses Lp Wasserstein metrics (p > 2) between the distri-

butions of exact and approximate solutions, thus achieving convergence rates.

(For a broad survey of probability metrics see Rachev (1991), of Lp Wasser-

stein metrics see, e.g., Givens and Shortt (1984) and Gelbrich (1990). We use

the same metrics, but make the method of Kanagawa more flexible, so that it

will converge faster.

On an interval [to,T] let an equidistant grid H with grid points to = to <

iι < < in — T with step size h be given. H will be the minimal set of

time points at which values are available for the method, and h will be the

period between two neighbouring observations in the past which influence the

present drift and diffusion coefficients at any time. For any t G [to-, T] we define

ifl(t) := max{i : i{ < t} as the number of time steps h one can go back into

the past from t.

We consider a stochastic differential equation in integral form where drift

and diffusion coefficients depend on the present state as well as on the states

at times reached by going from the present back into the past by multiples of

h:

rt rt

x(t) — xo — \ b(x,s)ds + / σ(x,s)dw(s)

= / b(x,s)ds+
Jto

q
(I)

/ &j(x,s)dwj(s), v ;

te [to,τ},xoei

where w = (wi,. . .jWq)
τ is a g-dimensional standard Wiener process, and
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where we use the notations

b(x, s) := 6 >W(x(β), x(s - Λ), x(s - 2Λ),..., x(s - i

σ(z, s) = (σι(x, s), . . . , σg(α, s))

:= σf"*M(s(*), φ - Λ), φ - 2Λ),..., φ - i

w i t h b v G C ( M ^ + 1 ^ d ; M d ) a n d α " G C ( M ^ ^ d ; C ( M ^ ; l R d ) ) , v = 0 , . . . , ί ( )

where σj G C(Mi<1/^d;Md), j = 1,...,?, denote the columns of the matrix
function α" = (σ^,.. . ,σ£). Here and in the sequel we denote by C spaces of
continuous functions, by C spaces of linear mappings, and by || || the Euclidean
norm on Mn (n £ IN) and the corresponding induced norm on a space C

For any random variable ζ mapping a probability space (Ω,^4, P) into
a separable metric space (X, d) with the Borel σ-algebra B(X), the notation
D(ζ) shall mean the distribution P o ζ~λ induced on X by ζ. V(X) shall be
the set of all Borel probability measures on X.

The case in which b and σ explicitly depend on the time / can be written
in the form (I) by taking t as another component of x. A direct treatment of
this case - carried out in Gelbrich (1989) for equidistant grids and bounded b
and σ depending only on the present state - follows the same lines as in this
paper, but permits relaxation of second order differentiability w.r.t. ty that
would be required for using the results in the present paper, to first order
differentiability w.r.t. t.

For p e [1, oo) we define a metric Wv on the set MP(X) := {μ G V(X) :
Jχ(d(x,θ)ydμ(x) < oo,0 e X} by

Wp(μ, v) := [inf / (d(x, y))pdη(x, y)} ? (μ, v G MP(X))
L Jxxx 1

where the infimum is taken over all measures η G V{X X X) with marginal
distributions μ and v. Thus, computing Wv is equivalent to solving a marginal
problem. Wp is called the Lp Wasserstein metric or Lp Kantorovich metric
(see Rachev (1991)) and has the properties of a metric on MP(X) (see Givens
and Shortt (1984)). With respect to these metrics Kanagawa (1986) states a
convergence result for a sequence of approximations to the solution x of (I)
which are constructed over equidistant grids using both the stochastic Euler
method and a substitution of the Wiener process increments between grid
points by other i.i.d. r.v.'s (which are for instance easier to generate on a
computer). This idea of joint discretization w.r.t. time and chance (earlier
considered also by Janssen (1984)) gave rise to a certain construction leading
to the definition of the approximate solution (E3); we shall describe them both
in the rest of this section.
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The approximate solution (E3) can be seen as a framework for deal-
ing, e.g., with certain models known in econometrics literature as Autoregres-

sive Conditional Heteroscedasticity (ARCH) or Generalized ARCH (GARCH)

models which use discrete time processes in order to model stock price changes.
We give a definition of these concepts:

Considering the equidistant grid to = to < i\ < < in — T with step

size h on the time interval [to, T], we follow Engle (1982) and Bollerslev, Chou,

and Kroner (1992) in defining a univariate ARCH model as a discrete time

stochastic process (e£.);=o,...,π of the form

ei.Λ = σi.δi

where σ$. is a positive measurable function of the time points to, t i , . . . , t t and
the δ$ are i.i.d. r.v.'s with zero mean and variance one. In a linear ARCH(ψ)
the variances σ^. depend on the squares of the past φ values of the process:

ψ-i

whereas in the more general linear GARCH(φ,φ) they may also depend on the
φ recent variances:

i • (i)
r=0 "ι~r r = l

In these models it is assumed that u ; > 0 , α r > 0 , / 3 r > 0 for all r. Later we

will embed this model (slightly modified) into the constructed approximation

for the sde (I).

The corresponding multivariate model reflects price changes in portfolios

of d assets and is a process (€j.)t =o,...,n C Md with

€ί<+1 = Ω ί / \

where the Ω^ are positive definite d x d matrices and measurable functions

of t o , . . . , ti* and where the δi. are i.i.d. r.v.'s with zero mean and have the d-

dimensional unit matrix as covariance matrix. For the the multivariate linear

GARCH(φ,φ) one sets

v e c h ( Ω i i + 1 ) : = W + Φ Σ u r U V r
r=0 r=\

where vech( ) puts the lower right triangle of a symmetric d x d matrix in the
form of a vector in JRVM^+i), and where W G Epl*<d+1) and the Ar and Br
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are (1/2 d(d+l)) X (1/2 d(d+ 1)) matrices. The process (e?.) is designed to
model stock price changes, and a model (5£.)if...fa of a d-dimensional portfolio
price process is obtained by setting

ef. =ln(5 ί.)-ln(S' f._ 1),

the logarithms taken componentwise. Then the process

has independent increments whose covariance matrices Ωj. depend on the
prices at the times /0, -,*«_1- The method (E3), defined in the sequel, will
also produce processes with independent increments and will provide conver-
gence rates w.r.t. the Wp metrics towards the solution of (I). Compared with
(ln(5£.));=o,...,n, the convergence result for (E3) will require a bounded diffu-
sion and allow for a drift, both as functions of the present state and of the
states reached by going any number of time intervals h back into the past.
Moreover, the discretization will go beyond the grid mentioned above and use
(possibly) a finer grid for a better time discretization, using the stochastic
Euler method (El), and an even finer grid to construct invariance principle
approximations - with a rate fitted to the time discretization rate - of the
Wiener process between neighbouring grid points for the Euler method (El).
The method (E3) is given - following the lines in Gelbrich (1995) - together
with the two "intermediate" methods (El) and (E2) which will facilitate the
proof of the main convergence result by allowing us to divide it into three
steps.

In the sequel we shall use the following general assumptions concerning

(I):
(VI) There exists a constant M > 0 such that

for all j = 1,..., q\ v = 0,..., IH{T) and x0,..., xv G Md

\\bu(xQ,..., xu)\\ < M(1 + max ||&,||) and

| | σ ^ 0 , . . . , ^ ) | | < M .

(V2) There exists a constant L > 0 such that
for all j = 1, . . . ,q\ v = 0 , . . . , Ϊ H ( T ) a n d x0,...,xv,yo,...,yueRd

\\bu(x0, . . . , & „ ) - 6"(ifo, , ik) l i < L m a x \\xp - yp\\ a n d

(VI) and (V2) assure the existence and uniqueness of the solution of (I),
both in the strong sense (see Gikhman and Skorokhod (1977)). The bounded-
ness of σj in (VI) seems to be essential for the proof of Theorem 2.3.
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As mentioned above, the approximate solutions in this paper are each
based on a "double grid" - a coarse grid for the time discretization and a
fine grid, being a refinement of the former, for the chance discretization via
the invariance principle which yields a lower convergence speed than the time
discretization. That is why we consider a grid class £/(m,α,/3). Here let
m : (0,T — to] —• [l,oo) be a monotone decreasing function, and let α,/3 > 0
be constants. Then each element G of £/(ra, α, β) is constructed in the following
way and has the following properties:

G consists of two kinds of grid points:

• the time discretization points tk,k = 0 . . . , n, with to < t\ < . . . < tn = T
and

• the chance discretization points u^i = 0,...,m/-,fc = 0 , . . . ,n — 1, with

Hence, G is a combination of a coarse subgrid consisting of all points tk relevant
for the pure time discretization and of a fine grid consisting of all points u*

needed for the discretization of the Wiener process. Now G is required to
satisfy the following assumptions:

(Gl) tk - tk-i = ^ k =: h < 1 for all k = 1,..., n and h/h e IN,

(G2) l<mk < m(h)α for zΆ fc = 0,.. . , n - l ,

Here (Gl) means that the coarse grid is equidistant with step size h (required
to be bounded by 1 only for convenience, in order to write simpler upper
bounds later) and contains the master grid H. (G2) and (G3) say that each
interval of the coarse subgrid is subdivided in an equidistant way by the points
u![i both the number of the subdivisions and the step size of the full grid being
bounded by functions of h. As an example, it is easy to see that all equidistant
grids which satisfy rrik = [m(h)], fc = 0, . . . ,n —1, belong to G(m, 1,2).

For a grid G of G{m, α, β) we define

[t]G\—tk and iG{t):—k, if t G [**,<*+!), k = 0,... , n - l , and
: = u i i f *€ [«?,ti*+1), t = 0 , . . . , m * - 1, fc = 0 , . . . , n - l .

We construct the approximate solution in (E3) in three steps. The first step
is a pure time discretization using the stochastic Euler method (El) (see
Maruyama (1955)). Here only the coarse subgrid is involved.

(El) yE(t) = xo+ f b(yE, [s}G)ds + £ //0 σ fcΛ [s)G)dwj(s), t 6 [ί0, T\.
Jto 3=1
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In the second step, a continuous and piecewise linear interpolation of the
trajectories in (El) between the points of the whole fine grid yields the method
(E2).

(( yE is continuous, and linear in the intervals [izjLj,^],

i = l,...,ro*, * = 0 , . . . , n - l ,

with yE(u*) = yE(u*), ί = 0,...,m*, k = 0,.. .,n - 1.

In the third step, the Wiener process increments over the fine grid are
replaced by other i.i.d. r.v.'s: Let μ £ V(M) be a measure with mean value 0
and variance 1, and let

be a family of i.i.d. r.v.'s with distribution D(ξ^) = μ. Then we can define
the following method (E3) yielding continuous trajectories which are linear
between neighbouring grid points:

z ( Ί£Q J—XQ , a n d

fc-l

zE(uk

i)=x0 + Σ hb(zE, tr) + h ^-b(zE, tk)

4γ-k-p o i l <I 1 rrYΊ i £» — C\ T> 1

For this last step, the Wiener process w and the r.v.'s £^ will have to
be defined anew on a common probability space. The following section inves-
tigates the convergence rates w.r.t. the norm E sup || | |p for C([to,T];Mdy

to<t<T

valued r.v.'s in each of the three steps.
But first we will explain how (E3) looks for the univariate GARCH(V>,<£)

model (1). For this we note that we can write the diffusion σj. , v — 0,..., n,
as a function

v—1

tv V ί j / ' i —}ι"> ' i tv—vh' V ^ ' Z-/

for some positive numbers ωυ and 0 ^ . This becomes clear by recursive sub-
stitution using (1). It is obvious that all σv satisfy (V2). In order to fulfill
the boundedness condition (VI), instead of σy, we use a function bounded by
some number B > 0, namely
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This slight modification should not be significant in practical applications.

Now, for the univariate linear GARCH(^,<^>), our model (E3) has the following

form which we will call refined bounded GARCH (RBGARCH):

(RBGARCH) Λ

..., ΛE(tk-iH(tk)h))Σξξ.
' s=l

for all i = 1,. . . , τn,jς, k = 0, . . . , i

where we define the values of Λ^ between the grid points by linear interpo-

lation. Here the increments of Λ^ may depend on all the so far passed time

points in the coarse time discretization grid which is usually finer than the mas-

ter grid H (but contains it) on which the scheme (1) operates. That means,

with a finer time discretization more observations are needed for the whole

approximation, but at each time point the diffusion coefficient still needs a

restricted number of observations back in the past in time intervals with fixed

length h.

The matching sde (I) for the method (RBGARCH) is

Λo

(2)

for t G [^Ojϊ1]. Later we will see that Λ^ converges towards A in VFp-sense.

We call (2) continuous bounded GARCH. It is our hope that the Lp estimates

of the closeness between the discrete model (RBGARCH) and the continu-

ous bounded GARCH will provide us with the necessary tools to construct a

contingency claim valuation theory and capital asset pricing models based on

(2) which is certainly a much more realistic model for asset pricing than the

log-Gaussian model (see Kariya (1993), Mittnik and Rachev (1993) for further

discussion).

2. Convergence results . According to the evolution of the method

(E3) via (El) and (E2), each step will be represented by one convergence

theorem, yielding then immediately the main result given in two forms - one

using the Wp metrics. The proofs of these three theorems can be found in

Section 3. The theorems in the sequel will be formulated for an arbitrary fixed

grid G of the grid class £(ra,α,/3). Therefore G fulfills (G1)-(G3) with the

construction in the previous section.

For convenience, throughout the whole paper, we shall denote by K any

constant depending only on p, the considered grid class, and on the data of
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the original sde (I). This means, K does not depend on the particular grid.
Moreover, K may have different values at different occurrences.

The first theorem gives rates for the convergence of the approximate
solutions in (El) to the solution of (I). For p — 2 and drift and diffusion
dependent only on the present state, it was proved by Platen (1981) - and it
was generalized to the case p G [2,oo) in Gelbrich (1995), Theorem 2.6, using
quite similar techniques.

THEOREM 2.1. Let p G [2,oo). Then, (VI) and (V2) imply

E sup \\x(t)-yE(t)\\p <K-hp/\
tQ<t<τ

Whereas the solution in (El) behaves like the Wiener process between
two neighbouring points t^-i and tk of the coarse subgrid of G, the method
(E2) provides a solution smoothened by linear interpolation with vertices in
all grid points of G, that means in all u1-. The next theorem gives estimates
for the Zp-norm of the difference between the approximate solutions in (El)
and (E2):

THEOREM 2.2. Let p G [2,oo). Tien (VI) and (V2) imply

E sup mt)-i

In the last discretization step the Wiener process increments shall be re-
placed by i.i.d. r.v.'s with a given distribution μ on JR. But the corresponding
results in Theorem 2.3 hold only in the weak sense, i.e. the Wiener process
(and its increments between the points of G) and i.i.d. r.v.'s fj can be defined
on a common probability space such that the estimates hold.

THEOREM 2.3. Let p G [2, oo) and μ G V{M) have the following properties:

CO OO OO

/ xdμ(x) = 0, / x2dμ(x) = 1 and / etxdμ(x) < oo
J J J (o)

—oo —oo —oo

for all t with \\t\\ < r, r > 0.

Then we can define a q-dimensional standard Wiener process (w(/)) ^ τ,

a n d a s e t of i.i.d. r.v.'s { f £ : j = 1 , . . . , g ; i = l , . . . , m j k ; A: = 0 , . . . , r c - l }

with distribution D(ξ^1) = μ on a common probability space, such that for
the solutions in (E2) and (E3) constructed with them we have, under the
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assumptions (VI) and (V2), that

The preceding three Theorems 2.1, 2.2, and 2.3 yield the following theo-
rem which gives bounds for the £p-norm of the differences between the exact
solution x of (I) and the approximate solution zE defined in (E3). Again, as
in Theorem 2.3, this is a result in the weak sense.

THEOREM 2.4. Let p G [2,oo) and μ G V{JR) have the properties (3).
Then we can define a q-dimensional standard Wiener process {w(t))tGu τ i
a n d a set ofi.i.d. r.v.'s { £ ^ : j = l , . . . , # ; i = l , . . . , m ^ ; k = 0,.. . , n — 1 } with

distribution D^ξ^) = μ on a common probability space, such that for (I) and
the method (E3) constructed with them we have, under the assumptions (VI)
and (V2), that

E sup \\x(t)-zE(t)\\P <κ
tQ<t<τ

PROOF, show that the assertion follows from the Theorems 2.1, 2.2, and
2.3 it suffices to verify that

But this follows easily from (26) for 7 = ^ > 1 (because of (Gl)) and δ =
m(h) > 1. I

Since Theorem 2.4 provides a result in the weak sense, it is appropriate
to formulate it as an estimate for the Lp Wasserstein metric between the
distributions of the exact solution and the approximate solution:

COROLLARY 2.5. Let p £ [l,oo) and μ G V(M) have the properties (3).
Moreover, let (w(t))tGrt jη be a q-dimensional standard Wiener process and
{£^. : jf = 1 , . . , ,g; i = 1 , . . .,771^; k = 0 , . . . , n — 1} a se t of i.i.d. r.v.'s with

distribution -D(^ii) = μ. Then for (I) and the method (E3) constructed with
them we have, under the assumptions (VI) and (V2), that

E\\ / zr J LI/2 , l+lnm(/ι
Wp(D(x),D(z*))< iΛh1'2

PROOF. For p G [2,00) the assertion follows directly from Theorem 2.4
and after applying to the right-hand side the inequality α\ + o?2 < (αi + α,2)p
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for αi,α2 > 0 and p G [2,oo). (This inequality becomes obvious by dividing
a\ and α2 by a\ + α2 in case this sum is positive.) The assertions are also true
for p G [1,2), since WPl < WP2 for 1 < p\ < p2 < oo (see Givens and Shortt
(1984)). I

The estimates in Theorem 2.4 and Corollary 2.5 give convergence rates
w.r.t. h for the method (E3) and for any grid sequence in G(m,a,β). These
rates consist of two summands, one depending on h and the other depending
on ra(/ι), representing the rates of time and chance discretization, respectively.
Obviously it is not desirable that one of both summands converges faster than
the other for this would only increase the costs in relation to the effect. Namely,
if the second summand converges faster than the first, this would mean that
m(h) increases too fast and consequently - because of (G3) - the whole fine
grid has too small a step size, i.e. there are too many points v% in relation to
the tk in each grid and therefore a random number generator would be used
too often. If the first summand converged faster than the second, then m(h)
would increase too slowly, i.e. the intervals [/fĉ fc+i] would not have enough
intermediate grid points u!f, so that the chance discretization would not keep
up with the time discretization. Therefore, it is desirable to tune the rates of
both summands, i.e. to equal the powers of h in both summands. This means
to choose m(h) to be increasing like 1/h. In this way we get the following two
corollaries immediately from Theorem 2.4 and Corollary 2.5.

COROLLARY 2.6. Let p G [2, oo) and μ G V(M) have the properties (3).
Then we can construct the solutions in (I) and (E3) on a common probability
space (as in Theorem 2.4) so that under the assumptions (VI), (V2), and
max j s u p o ^ ! θm(θ),supo<5<1 ̂ ^ y | < K we have that

E sup \\x{t)-zE(t)\\P <K-hp/2(l-\nhγ.
to<t<T

COROLLARY 2.7. Under the assumptions in Corollary 2.5 and with

max {supo<5<1 θm(θ),supo<5<1 ̂ ^y} < K we have:

Wp(D(x), D(zE)) < K h^2(l - In h).

Thus, given a grid sequence in G(m,α,β) with h —> 0 and using the
metric Wp, we have, under the assumptions of Corollary 2.7, for the method
(E3) the convergence rate O(/ι1/2(l — Inh)) w.r.t. the maximal step sizes h of
the coarse subgrids and the convergence rate O((^τ^r)1/4(1 — In ̂ τ^τ)) w.r.t.

the maximal step sizes ^ of the whole fine grids and the convergence rate

(9(j/V~1/4(l+ln N)) w.r.t. the number N of all gridpoints of the whole fine grids.
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Kanagawa (1986) deals with the method (E3) in the case of m(h) = 1 and gets

at most - assuming the existence of the third moment of ξ^λ - the convergence

rate O(iV~1/6(ln7V)e), (e > 1/2). Kanagawa's result does not follow from

the results proved here and was proved using different tools and different

assumptions. Our method (E3) yields a better order (essentially TV"1/4) than

Kanagawa's method - we call it (K) - (essentially iV"1/6). Moreover, (E3)

needs to compute the coefficients b and σ only in a small part of the N grid

points, namely the points tk of the coarse subgrids, whereas (K) requires the

computation of the coefficients in all TV grid points. This shows that (E3) has

also lower costs than (K) for the same N. If we take in the grids for (E3) and

(K) the same numbers n of "expensive" grid points (i.e. points where b and σ

have to be computed) or the same corresponding step sizes /ι, then the orders

of (E3) and (K) are essentially n'1'2 and n " 1 / 6 = TV"1/6 (or h>>2 and /i1/6),

which makes the difference between both methods more significant.

Under the assumptions of Corollary 2.7 we get for the discrete model

(RBGARCH) and the solution of (2) (the continuous bounded GARCH) the

convergence result

WP(D(A), D(AE)) = O(h^2(l - In h)),

i.e., the distribution of the process Λ^ - obtained by (RBGARCH) - and the

solution Λ of the sde (2) are closely related, where Λ can be referred to as

the ideal, continuous model and Λ^ as its discrete approximation, and for the

model (RBGARCH) we can estimate the approximation error by means of

the Wp metrics. The link of this model to the sde (2) and its solution, the

continuous martingale Λ, immediately allows the use of stochastic calculus and

martingale theory to investigate (2) and Λ and draw conclusions for the time

discrete process AE defined by the method (RBGARCH).

3. Proofs. The proof of Theorem 2.1 shall use three lemmas which

are stated below and proved in Gelbrich (1995). The first one provides the

multi-dimensional Holder inequality in both continuous and discrete form:

LEMMA 3.1 (HOLDER'S INEQUALITY), a) Let p G [l,oo), s < t, and let

g : [s,t] —• Md, g(u) — (gι(u),.. . , ^ ( w ) ) τ (u G [s,ί]), be a Borel measurable

function such that \gi\p is Lebesgue integrable over [θ, t] for i — 1, . . . , d. Then

f g{u)duV <{t-sγ~ι ί\\g(uψdu.
Js Js

b) Let p e [1, oo) and αt G Md for all i = 1,. . . , r. Then

Σ
t = l

t = l
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The main tools for the proof of Theorem 2.1 are the multi-dimensional
martingale inequalities which the following lemma contains in both continuous
and discrete form. It is a consequence of a generalization of results in Ikeda and
Watanabe (1981) and Shiryaev (1984) to the multi-dimensional case, combined
with Lemma 3.1.

LEMMA 3.2. Let p E [2,oo). Then there exist constants CP,AP > 0 such

that the following assertions hold:

a) Let (w(/),.F(ί)) t€[7j£i ^ e a one-dimensional standard Wiener process
over the probability space (Ω, A, P). Then for every function ff = (fifi,..., 9d) '

[7,0] xίl-4 Md with

(i) #( ,ω) is square-integrable over [7,$] for almost all wGίί, and

(ii) g(u) = g(u, •) is T^-measurable for all u £ [7, δ], we have

E sup
Ί<s<t

for all t € [7,$].

b) Let (M5, ^5)5=0,...^ be an Md-valued martingale (i.e. each component
is a martingale), and let p G [2,00). Then with AMS := Ms - Ms_χ we have

E max | |MS | |P < Ap(dr)pf2'1EJ2 | |ΔM 5 | |P.
0<5<r s—ι

Also for Gronwall's lemma we need - besides its original form - a discrete

analogue:

LEMMA 3.3 (GRONWALL'S LEMMA), a) Let f : [to,T] —> [0,oo) be a contin-

uous function and c\, c2 be positive constants. If for all t £ [tfô T1]

i f f{s)ds
Jtα

< cι+c2 / f(s)ds
to

then

sup f(t) < C

to<t<T

b) Let α o , . . . , α n and cχ? c2 be non-negative real numbers. If for all

k i + 2 Σ
ni=o

then
max α,i < C\eC2.

0<i<n ""
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Now we prove Theorem 2.1, following the lines of the proof of Theorem

2.6 in Gelbrich (1995):

PROOF OF THEOREM 2.1. First, we observe the boundedness of the pth

moment of the solution in (I): From Lemma 3.2a) and Lemma 3.1a), b) and

(VI) we get for all t G [to,T]

E sup \\x(sψ < K[\\xo\\p+E sup (T-to)
p-ψ\\b(x,uψdu

to<s<t y to<s<t Jto

rs p\

/ σj(x, u)dwj(u)
Jto )

f E\\σj(x,uψdu

sup
j=l to<s<t

< K ( 1+ / E sup \\x\
V Jto to<s<u

and from Lemma 3.3a)

E sup \\x(tψ<K. (4)
to<t<T

Using the definitions (I) and (El), we split the following difference for

rt rt

x(t) - yE(t) = / [b(x, s) - b(x, [s]G)]ds + / [b(x, [s]G) - b(yE, [s]G)]ds
Jto JtoI to

to

=• Ji(t) + J2(t) + Σ U3j(t) + j*j(ty
3=1

Now for all ί G [ίo,T] Lemma 3.1a) and (V2) imply

r*.

to<r<t Jto to<u<s
Esup | |Ji(r) | |"<(Γ-*o) I '- 1 i 1 ' /*E sup \\x(u) - x([u]Gψds, (6)

to<r<t Jto to<u<s

E sup | | J 2 ( r ) P < ( Γ - ί 0 ) ? ' - 1 i p / E sup \\x([u]G) - yE([u]G)\\pds
to<r<t Jto to<u<s

rt

<K I E sup \\x(u)-yE(u)\\pds,
Jto to<U<S
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while Lemma 3.2a) and (V2) imply

E sup
to<r<t

sup \\Jφψ < K I E sup \\x(u)-x([u]Gψds, (8)
<r<t Jt0 to<u<s

<K\ E sup \\x([u)G)-yE([u]Gψds
Jto to<U<S

<K[E sup ||x(«) - yE(u)\\pds.
Jtn tn<U<S

(9)

Here, by Lemma 3.1b), a), Lemma 3,2a), (VI) and (4), it holds for all s G [*o, Γ]
that

E sup | | Z ( » - Z ( M

<K E sup
to<.U<S

ru y

 q ru ^ |

/ b(x,υ)dυ +Σ / (Tj(x^υ)dwj(υ) >
J[U]G i=l ^Mσ J

<KE sup Ih?-1 Γ \\b(x,v)\\pdv+J2hp/2-1Γ Wσ^x.υψdυ}
to<u<s [ J[u]G j=l J[u]G J

l + E ^ u p J | z ( * ) | Π > < K

Summarizing (5)-(10), we get for all t £ [ίo,Γ] that
(10)

E sup \\x(r)-yE(rψ<K
to<r<t

sup
to<r<t

E sup ||Ji(r)||" + E sup \\J2(rψ
tQ<r<t to<r<t

sup \
to<r<t

sup \
tO<U<S

and the assertion follows from Lemma 3.3a). I

For the proof of Theorem 2.2 we need the following lemma which is proved
in Gelbrich (1995) (Lemma 3.3).

LEMMA 3.4. Let ao < a\ < . . . < ar be a partition of [αo,αr] with max-
imal step size Δ := max (αt +i — αt ) and (w(ί))ίGrα α i a one-dimensional

0<i<r—l '

standard Wiener process. Then

E max sup |tδ(ί) - ώ(αt ) |p < K Δ p / 2 (1 + In r)v'2.
0<t<r-l
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The proof of Theorem 2.2 again follows the lines of the proof of Theorem
3.4 in Gelbrich (1995):

PROOF OF THEOREM 2.2. First we consider the process yE with yE(t0) =
*o, yE{uk

i) = yE{uk

i), yE(t) = yE(ul1)foτt€[ul1,u
l[)(k = 0,...,n-l;i =

1,. . . , Tϊik). Then, by Lemma 3.1b), (VI), Lemma 3.4, (G2) and (G3), we have

E sup \\yE(t)-yE(t)\\p

to<t<T

< K I E sup
I to<t<T

/ * / F r ! x P A , F r i x / *

/ &(y,[ί]<3)αs +X;E sup σj(y , [ίjc) / «^j

<A r ^E sup ( t- [ ί ]^) p Aί p ( l+ sup ||yβ([θ]σ)||p)
I to<t<T L <o<s<<

y;E max sup \wAt)-w^uk:)\p

= 1 0<i<mk-l «*<<<«?+1

max (-*-Y(l + E sup

9

+ J^ max

< A ' | 1 + E ̂ u p ^ \\yE(t)\\E(t)\\p

n

(11)
Since we have by Minkowski's inequality that

/ \i/p / \i/p / \i/p

( E s u p l l y ^ W l Γ ) < f E S U P I k ί O - ϊ / ^ W l Γ I + ί E S U P I I ^ W I Γ l(
| | ( ) Π P | |^)^W|Γ [ p

to<t<T J \ to<t<T J \ to<t<T )
where the right-hand side is bounded because of Theorem 2.1 and (4), it holds
that

E sup \\yE(t)\\p < K. (12)
ίo<ί<Γ

Hence, by (11) and (Gl),

E sup | | ^ ( ί ) - yE(t)\\P < K ( J M ) " 7 2 (1+ In n + In
to<t<τ

On the other hand,
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= E

 U 4 < u *

E E k ( 1 4 )

^ m a x ^ sup \\yE(t) - yE(ufψ
ϋ S * S m f e - 1 "t ^"^"-t+i

= E sup
to<t<T

Now, by (13) and (14) we have

E sup \\y

E(t)-yE(t)\\p

to<t<T

sup | | j ,S(ί)-^(ί) | | p

 + E sup \\yE(t) - yE(t)\\
to<t<T to<t<T

< K • E sup | | ^ ( ί ) - yE(t)f < K ( ^ ) P / (l + In

As the main tool in the proof of Theorem 2.3 we shall use the following
lemma. The proof of the lemma can be found in Gelbrich (1995) (Theorem
4.1, Lemmas 4.2 and 4.3 and the beginning of Theorem 4.4 up to the formulas
(32)-(34)) and essentially uses results by Komlόs, Major, and Tusnady (1975,
1976).

LEMMA 3.5. Let μ 6 V(M) have the following properties:

/ xdμ(x) = 0, / x2dμ(x) = 1 and / etxdμ(x)

—oo —oo —oo

for all t with ||t|| < r, r > 0.

Tien tiere exist a q-dimensional standard Wiener process (w(ί))ίG[<0)j ] and a
set {£*• : j = 1,..., g; fc = 0,..., n — 1; i = 1,..., m^} ofi.i.d. random variables
with distribution i}(£π) = μ, both on the same probability space, such that
with the notation A^Wj : = Wj(u^) - Wj(t*f_i), j = l , . . . , ? ; i = l , . . . ,m^; fc =

0,..., n — 1, tie following three assertions hold:

a) For fc = 0 , . . . , π —1 , j = l , . ,g, and p G [2,oo),

E max
\<i<mk

5 = 1

p

l n m ( / ι ) ) p .
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b) For j = 1, . . . , q and p G [2, oo),

E max max
0<Ar<n-l s=l s=l

c) For A = 1,.. .,ra — 1,

£J5 and Δ > j , j = l,...,ςr; s = l , . . . , r a r ; r = k,...,n- 1

are independent of the σ-algebra ^ generated by

{fjθ, Δ > j : J = 1 , . . . , Ϊ ; θ = l , . . . , m r ; r = 0,.. .,Λ - 1}.

The estimate for the chance discretization step is proved along the lines

of the proof of Theorem 4.4 in Gelbrich (1995):

PROOF OF THEOREM 2.3. We consider those w and ξ that were asserted

to exist in Lemma 3.5, as well as the approximation methods (E2) and (E3)

defined on the basis of w and £. According to the definitions, for the estimate

only the values of the approximate solutions in the grid points of G have to

be taken into account:

First we consider the approximate solutions (E2) and (E3) only in the

grid points tk of the coarse subgrid of G. Then, with the notation

AkWj := wj(tk+i) - Wj(tk), j = l , . . . ,g; fc = 0 , . . . , n - l ,

the definitions of (E2) and (E3) yield, with Lemma 3.1b), for fc = 0, . . . , n

< Kl E max
~ I i<f<k

V

/ - i

Σh[b(yE,tr)-b(zE,tr)}
r=0

max
7 = 1 l</< r = 0 5 = 1

(15)
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Now, from Lemma 3.1b), (V2), and (Gl), it follows that for fc = 0,..., n

DE{k) < max Σ hP

 M max \\f(iτ - ph) - zE(tr - phψ

< K(nh)p-E Σ max \\yE(tr - ph) - zE{tr - phψ
Π r = Q θ < < i ( t )

< JΓ i f c ΣE max
Ur—Q 0<s<r

(16)

and, for j =

E max
/ - i

r=0

+ E max
/ - I

r=0

Because of Lemma 3.5c),

s=l

(17)

Σ k
r=0

r=0

*r) " σj{zE,tr)]Δrw3 and

5 = 1

are d-dimensional martingales w.r.t. (^4/)/=o,...,n? and that is why, using Lemma

3.2b), they can be estimated in the following way for all j = l , . . . , g and

EDE

3l(k) <
k-\

r=0

Since both factors in the braces are independent (because of Lemma 3.5c)),



116 DISCRETIZATION FOR DIFFERENTIAL EQUATIONS

from (V2) and (Gl) it follows that

k-\
Dξn(k)<K • n^2-1

K • n

r = 0

Σ

x E max \\yE(tr -ph) - zE(tr-ph)\\Λ
0<p<iH(tΓ)

(18)

k—1
Σ max \\yE(tr - ph) - zE{tr - phψ

Γ=0 0<p<iH(tT)

<K-±-ΣErnΆχ\\yE(ts)-zE(tsψ.
Πr—Q 0<s<r

Here we used that, since all -j=ArWj are standard-normally distributed, all

E -4=Δrit;j are equal to the same constant only depending on p.

For the other summand Lemma 3.2b), (VI), Lemma 3.5a), (Gl), and
(G3) yield

k-l

r=0 s=l

< K •

< K

< K

k—1
1

r = 0

p

ΐ ) E mr

Σ
5 = 1

—-
m(h)J

(19)

+ In m{h)Y

< K

Now, considering (15) to (19), we get for all k — 1,..., n that

l+lnm(/ι)

m(h)

and by Lemma 3.3b) we have

(20)

In the next step we extend this estimate to the intermediate grid points
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and we use the notation j = l,...,g;jfc =

=: if \yE (tk) - zE(tkψ

Here, (V2) and (Gl) imply

Dξ<K \\yE(tk) - zE(tkψ.

On the other hand, we have for all j = 1,..., q that

max max

+ E max max

0<k<n—1 l<i<τrik

KST)E 4- DE \

5 = 1

(21)

(22)

(23)

Further, using (V2), the Cauchy-Schwarz inequality, (20), Lemma 3.4, and
(Gl), we get

1/2

1/2

s u p j ( _ (

\ vm(/ ι)
+ In n

/

(24)
since h(l + In n) = /ι(l + In 21=ία) < K for /ι G (0, T - ίo] This estimate was
done so roughly since, for the final result, here a better estimate than in (20)
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does not pay. This consideration applies also to the following estimate: By
(VI), (G3), Lemma 3.5b), and (Gl) it follows that

D 2 <I(E{%2 <I(E{ max max (
\θ<k<n-l l<i<mk\

m*

( 2 5 )

/m{h)

The last step is implied by

\ Vδ J

< -. ( ^ ^ ) for aU real 7, δ > 1.

Now it follows from (21) - (25) that

and by (20) we get the assertion. I
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