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NONSQUARE "DOUBLY STOCHASTIC" MATRICES
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An n x m non-negative matrix with uniform row sum m and column sum
n is called a "doubly stochastic" matrix. When n = m, such a matrix is a scale
multiple of a doubly stochastic matrix in its classical sense. Garrett BirkhofF
proved a theorem characterizing all classical extremal doubly stochastic matrices
as permutation matrices. We will discuss the characterization of the extremal
matrices for nonsquare "doubly stochastic" matrices in the spirit of BirkhofFs
theorem.

An n x m matrix M = (rnij) is called a doubly stochastic matrix (with
uniform marginals) of size n x m if

m

(uniform row marginals) \_\ rnij — m f°r i = 1,2, ...,n. (1)

n

(uniform column marginals) \_]'mij = n for j = 1,2, ...,m. (2)
ι=l

(positivity) rriij > 0 for i = l,2,...,n and j = l,2,...,m. (3)

For example,

/ I 3 0 0\ / 3 1 0 0\
Mi = 1 0 3 0 and M 2 = 0 2 2 0

l 0 0 3/ \0 0 1 3/

(4)

are two doubly stochastic matrices of size 3 x 4 .

For integers m, n > 1, let MnXm denote the set of all doubly stochastic
matrices of size n x m. Then it is easy to see that ΛΊ n X m is a convex set (of
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finite dimension). So

Mnχm = the convex hull of extremal doubly stochastic matrices of size nxm.

It is well known that in 1946 Garrett BirkhofF (BirkhofF (1946)) proved
a theorem characterizing all extremal doubly stochastic square matrices. This
can be stated in our notation as follows.

BIRKHOFF'S THEOREM: If M £ MnXn, then M is extremal if and only if
^M is a permutation matrix.

We use the following equivalence relation:

DEFINITION. TWO matrices of the same size are called equivalent if one
can be transformed into the other by rearranging rows and columns.

Using this equivalence relation, we have

BIRKHOFF'S THEOREM RESTATED: An n x n doubly stochastic matrix is
extremal if and only if it is equivalent to the identity matrix times the scalar
n.

It is in the spirit of this form of BirkhofF's theorem that we want to
characterize all extremal doubly stochastic matrices in ΛΊ n X m .

We remark that other types of characterization theorems are known. For
example, it is shown in Li, Mikusiήski, and Taylor (1997) that if we regard a
matrix as a function on the set of its indices, then the uniqueness of the support
of a doubly stochastic matrix is equivalent to the extremality of that matrix.
A characterization in terms of graph theory is given in Balinski and Rispoli
(1993) and Brualdi (1976). Another set of characterizations using submatrices
appears in Jurkat and Ryser (1967).

Our approach is different in that we use a canonical representation of a
matrix to check its extremality.

Some other references to extremal points and faces of polyhedra of dou-
bly stochastic matrices are Brualdi and Gibson (1977), Gibson (1976), and
Grzaslewicz (1985). The problem of the description of extremal infinite dou-
bly stochastic matrices with given marginals was considered in Denny (1980),
Grzaslewicz (1987), Isbel (1962), Kendall (1960), Letac (1966), and Muker-
jee (1985). In the case of doubly stochastic measures, a functional analytic
characterization of an extremal measure μ in terms of subspaces of L\(μ) was
given in Douglas (1964) and Lindenstrauss (1965).

From now on we assume m>n. We start with some simple results.

PROPOSITION 1. If Me Mnχm, (where m> n) then the following hold:
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(i) Each column contains at least one positive entry.

(ii) Each row contains at least \m/n] positive entries, where \x] denotes the

smallest integer not less than x.

If, in addition, M is extremal, then

(Hi) All entries of M are integers.

PROOF. Assertions (i) and (ii) are immediate consequences of the defi-

nition of Mnxm (cf. (l)-(3)) Assertion (iii) follows from Jurkat and Ryser

(1967), Theorem 4.1, and the fact that in our case the row sum vector is

(m, ra,..., ra) £ Rn and the column sum vector is (n, n,..., n) G Rm. I

REMARK. A more direct proof of assertion (iii) in Proposition 1 is to show

that if there is a non-integer entry, then we can find a "cycle" (see Proposition 2

below) of non-integer entries, which contradicts the extremality of M.

The next result says that a matrix is extremal if and only if there is

no "cycle" in its support. By a "cycle" we mean a sequence of "cells" or

"positions" in the matrix of the form

It may be visualized as a sequence of moves, alternately vertical and horizontal,

from one cell of the support to another which ultimately returns to its starting

point. Here is an example of a matrix whose support contains a cycle, and

therefore it is not extremal:

M 3 =

/O

•

•

0

•

0

•

0

•

•

0

where each V indicates a positive entry. The cycle in this case may be taken

to be

(2,1), (3,1), (3,2), (1,2), (1,4), (2,4).

PROPOSITION 2. If M(Ξ Λ4 n X m , then M is extremal if and only if it is

impossible to find distinct row indices {z'i, ^2,..., ip} and distinct column indices

{ii?i2? ••• >jp} such that all entries at the following positions are positive:

q = 1,2, ...,p- 1; (ip,ji). (5)

PROOF. Assume that there exist row indices {H,i25 ?v} and column

indices {ji, j*2,..., jp} such that all entries at the positions given in (5) are

positive. Let m0 := min({m ί q^ : q = l,2,...,p}U { m ^ + 1 : q = l , 2 , . . . , p -
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l}U{ra; p J 1}). Then ra0 > 0. Set ra^ := πiij if ( i , j) is not one of the positions

given in (5),

w! • : = TO; 7 — ran, <7 = 1 , 2 , . . . , o
1>q,3q 1<HJ<1 υ ' ^ ' ' ' ^

and

m ' w 9 + i : = m*W*+i + mo> ? = 1>2, . . . , p - 1; mj p i j l := mipJl + m 0 .

Then M7 := (ra' j) £ Λ Ί n X m , the support of M' is contained in the support of

M, and Mf φ M, which implies M is not extremal (see [14, Theorem 1]).

Now, assume M is not extremal. Then M = a A + 6B, where a + b =

l,α > 0,6> 0, A and B G M n X m , and A / B . Now, M - A = 6(B - A) φ 0

has zero marginals. Note also that the positions of nonzero entries of M - A

are contained in the support of M. We now demonstrate how to find a "cycle"

in M. Pick a positive entry in M —A, say at (ii, jΊ), then in the ii-th row, there

is a negative entry, say at (ii, J2); then in the j'2-th column, there is a positive

entry, say at (22,^2)- By continuing to pick positive entries in the columns

then negative entries in the rows alternatively, eventually we will arrive at an

entry we have already picked up (since there are only finite number of nonzero

entries in M — A); when this happens, we find a cycle in the support of M. |

Proposition 2 is a special case of the general property of extremality (see,

for example, Brualdi (1976) and Li, Mikusiήski, Sherwood, and Taylor (1997)).

PROPOSITION 3. If Me MnXm and each row ofM contains exactly \m/ri\

positive elements, then M is extremal.

PROOF. Assume that ME Mnχm and each row of M contains exactly

\m/n"\ positive elements but M is not extremal. Then, from Proposition 2,

there exist distinct row indices {ii,..., ip} and distinct column indices {jΊ,..., jp}

such that all entries of M at positions given by (5) are positive.

Let k := |~^ ] — 1. From (1), we have

771

pm= Σ Σ m ^

Since each row has k + 1 positive entries, there are exactly (k + l)p positive

entries in {witj}t=ii,t2,...!«p» j=i,2,...,m Since these (k + l)p positive entries in-

clude all positions given by (5), there are at least p columns containing (at

least) two of these positive entries. So, at most {k — l)p additional columns of

M contain the rest of these (k + l)p - 2p — {k - l)p positive entries. Thus,

the (k + l)p positive entries are contained in at most p + (k — l)p columns of
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M. So, from (2) and (3) we have

Therefore, pm < kpn or ^ < |"^] - 1, which is impossible. I

When n|ra, we can characterize the extremal matrices as follows.

PROPOSITION 4. If m — kn, then all extremal elements of Λ4nXπι are
equivalent to the following "block diagonal matrix":

(n n ... n

n n ... n

n n ... n/

The proof of this result will be given at the end of the paper as a con-
sequence of our main result, Theorem 5. Proposition 4 tells us that up to
equivalence there is only one extremal matrix if m = kn. The situation be-
comes much more complicated when m is not a multiple of n. Note that Mi
and M2 in (4) are both extremal in M3X4 but not equivalent. So, in general,
there is more than one equivalence class of extremal matrices.

To see the kind of structure that can occur, look at the following examples.

Let n = 7 and m = 16 (note that 16 = 2 x 7 + 2),

/4 7 5

3 7 3 3

2 7 7

M 4 = 2 7 7

2 7 7

5 4 7

2 7 7/
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and

Ms =

/7 7 2

5 7 4

3 7 6

1 7 7 1

6 7 3

4 7 5

2 7 7/

Matrices M 4 and M 5 are extremal in MTXIQ, but they are obviously not
equivalent to each other.

We show next that, in general, we can transform matrices into some
canonical form (like the form we used to express M4 and M5) from which we
can easily see whether the matrices are extremal or not. To state our result,
we need to describe the structure of a special class of matrices.

THE SIMPLE BLOCK: Each row of the block contains exactly k +1 positive
entries. The first column of such a block contains all positive entries. This
first column of positive entries is followed by / zero columns and I may be
any integer greater than or equal to 0. After these zero columns, each column
contains exactly one positive entry as indicated by

' k

• υ
' k

0 0

0 0 0 • (6)

> 0 0 ••• 0

where each V indicates a positive entry. We will refer to the blocks of k
positive entries in each row as diagonal elements, and the number k as the
step length.

The reader may notice that matrix M 4 contains 4 simple blocks, and M 5

contains 7 simple blocks.

Two METHODS TO BUILD A MATRIX FROM THE SIMPLE BLOCKS: We present
here two methods of putting simple blocks together. These are not the only
ways in which they can be put together, but they will be of particular interest
to us in what follows.
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Method I (Without Jump): Given two blocks of form (6), we can con-
struct a matrix by putting one block "above" the other so that their diagonal
elements form a staircase pattern as the following figure indicates:

/ • O . O

• ••
•0 0 • •

(7)

• •• ••/

where V and V indicate positive entries in the two blocks respectively. In
this situation, we will say the two blocks in (7) are connected together without
jump.

Method II (With a Jump of Length L + 1): Another way to construct a
new matrix from two simple blocks is to put the two blocks at the diagonal
position as follows:

L (8)

• •• ••/

The number L + 1 will be refered to as the length of the jump between the
two blocks. So we will say the two blocks in (8) are connected together with
a jump of length L + 1.

These two methods can be used to construct matrices of interest from
any given number of simple blocks of form (6).

With this terminology, we can state our main result.

THEOREM 5. Assume ME Mnχm is extremal and m = kn + r, 0 < r < n.
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Then M is equivalent to the sum of two matrices Mβ and

0 ••• 0 \ /O R12

0 0

\ 0 0 0 BrJ

and
0 0 L2r

\O 0 0 0 /

where tie blocks in the two matrices are associated with the same row and
column partitions, such that

(i) each B{ is built from simple blocks using only method I (with step length
k) each column of Bi has at least one positive entry;

(ii) Mβ is a non-negative matrix with at most r — 1 positive entries.

PROOF. We first show that matrix M can be transformed to an equivalent
matrix of block upper triangular form

R12

B2

Rlr\

\ 0 0 0 Br )

where each B{ is built from a number of simple blocks obtained by Method I
(with step length fc), each column of B{ has at least one positive entry, and
each R{j is a nonnegative matrix.

To ensure the following transformation can be carried out, we need only
the following two properties of M:

PROPERTY 1. Each row has at least k + 1 positive entries.

PROPERTY 2. There is no cycle of positive entries in the matrix.

We note that these properties are verified in Propositions 1 and 2.

Now, we describe the transformation. We start by rearranging the rows
of M so that, in the first column of M, the positive entries are all above the
zero entries. Assume there are s such positive entries. Next, we work with
the first s rows of M. In each of the first s rows of M, there are at least k
additional positive entries (by Property 1). These additional positive entries
in different rows of the first s rows of M cannot share a column, otherwise a
cycle of positive entries can be formed, contradicting Property 2. Therefore,
we can interchange between columns 2 through m of M so that in rows 1
through s and columns 1 through ks + 1 of M we obtain a simple block (with
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step length k). To initiate the second round of transformation, we concentrate

on the submatrix M i formed by rows s + l t o n and columns 2 to m of M, and

find the first nonzero column of M i . By rearranging the rows of M i we can

move up all rows with a positive entry in this column of M i so that, in this

column of M i , the positive entries are all above the zero entries. Note that

Property 2 guarantees that there are at least k additional positive entries in

these rows and from columns ks + 2 to m of M. So, as before, we can obtain

a simple block (with step length k) in M i . Continue in this fashion until the

process stops. (This will happen since there are only finitely many rows in

M.) Finally, by grouping neighboring simple blocks without jumps together

we can form blocks B{. Assume there are t such B{ blocks. Then 0 < t < n. If

B{ is of size U{ x ra;, then ra2- = krii +1. Since n = Σ*_i n t and m = Σ * = 1 m t ,

m = Σ\=1(krii + 1) = kn + t. But m — kn + r (0 < r < n), so, t = r,

or, in other words, there must be r such B{ blocks. Now, we see that M is

transformed into the form as described at the beginning of the proof. So we

have established (i).

Next, we verify (ii). Note that each Rij can have at most one positive

entry since otherwise a cycle of positive entries can be found in M. Also, we

claim that among the r(r - l)/2 matrices Rij there are at most r - 1 nonzero

matrices. To prove this claim, we shall use the language of graph theory: We

take the blocks B{ as the node set and two nodes B{ and Bj are connected by

an edge if R^ has a positive entry, then we get a graph. When two nodes B{

and Bj are connected, their positive entries are connected in the sense that

any two positive entries can be taken as end points of a path (of horizontal

and vertical lines) through only positive entries in the two blocks and R^. It

is easy to see that when B{ and Bj are connected and Bj and B^ are also

connected, the positive entries in B{ and Bk can also be connected (through

positive entries in 2?z, JBJ, Bk, Rij and Rjk) Therefore, whenever a set of nodes

B{ are connected to form a cycle in the graph, there is a cycle of positive entries

formed by the positive entries in these blocks. Since M is extremal, there must

be no cycle of positive entries. So, the graph formed by the blocks B{ must be

a forest (of trees). This is the case only if the number of the edges is (strictly)

less than the number of the nodes (which is r), in other words, the number of

nonzero matrices among Rij must be less than or equal to r — 1. |

REMARK. Consider, for example, the matrix M4. Here we can take
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where

» 1 =

/4 7 5 \

3 7 3

2 7 7

2 7 7

\ 2 7 7/

and Bo =

Using Theorem 5, we can prove the following.

PROPOSITION 6. Suppose m = kn + 1 and M£ Mnxm. Then M is
extremal if and only if each row of M contains exactly k + 1 positive entries.

PROOF. The sufficiency is implied by Proposition 3. We now prove the
necessity. Assume that M is extremal. By Theorem 5, M is equivalent to
Mβ + Mβ. Since r = 1, so MR = 0. Thus M = Mβ and each row has exactly
k + 1 positive entries. I

PROOF OF PROPOSITION 4. By Theorem 5, M is equivalent to Mβ + MR

where each B{ in Mβ is of size 1 X fc (& in Theorem 5 is m/n — 1 now). It is
easy to see (by (2)) that B\ = (n,..., n) G Rk. Then the first row of Mβ must
be zero because of (1). From this we have (by (2)) that B2 = (n, ...n) G Rk,
and so the second row of M# is also zero. Continuing in this fashion, we get
that MR = 0 and

/ n n n \

n n n

\

This completes the proof.

n n ... nj
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